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ABSTRACT 

This paper describes techniques to automatically morph from one 
sound to another. Audio morphing is accomplished by representing 
the sound in a multi-dimensional space that is warped or modified 
to produce a desired result. The multi-dimensional space encodes 
the spectral shape and pitch on orthogonal axes. After matching 
components of the sound, a morph smoothly interpolates the ampli- 
tudes to describe a new sound in the same perceptual space. Finally, 
the representation is inverted to produce a sound. This paper 
describes representations for morphing, techniques for matching, 
and algorithms for interpolating and morphing each sound compo- 
nent. Spectrographic images of a complete morph are shown at the 
end. 

1. INTRODUCTION 
This paper describes techniques to automatically morph from one 
sound to another. In video, morphing is a process of generating a 
range of images that smoothly move from one image to another. In 
a good morph, the in-between images all show one object smoothly 
changing its shape and texture until it turns into another object. We 
would like the same thing to happen in an audio morph. A sound 
that is perceived as one object should change smoothly into another 
sound, maintaining the shared properties of the starting and ending 
sounds and smoothly changing the other parameters. 

Figure 1 shows a block diagram of our approach. Audio mor- 
phing is accomplished by representing the sound in a multi-dimen- 
sional space that can be warped or modified to produce a desired 
result. After matching components of the sound, a morph smoothly 
interpolates the sound amplitudes to describe a new sound in the 

same perceptual space. Finally, the representation is inverted to 
produce a sound. The body of this paper describes representations 
for morphing, techniques for matching, and algorithms for interpo- 
lating and morphing each sound component. Spectrographic 
images of a complete morph are shown at the end. 

2. RELATED WORK 
Previous work in audio mlorphing has used sinusoidal analysis 

[l]. This paper describes techniques based on magnitude spectro- 
grams. In a sense we have taken sinusoidal analysis to its limit and 
allowed any sound to be easily and completely represented. Far 
from complicating the problem, spectrograms make morphing eas- 
ier because it is no longer necessary to track sinusoids and their 
phase [21. 

Work described elsewhere [3] allows spectrograms, without 
their phase information, to be inverted to find a sound that has the 
same magnitude spectrogrami. Using magnitude spectrograms to 
represent the sound allows UIS to make dramatic changes to the 
spectrograms and not worry about the phase. The phase will be 
recovered later as part of the spectrogram inversion process. 

This paper describes techniques for automatically morphing 
one sound into another. We use a rich, multi-dimensional represen- 
tation to describe sound, so it is no longer easy to see the best 
matches. Auto-correspondence methods, as described for video [4], 
provide accurate matches without human lintervention. A similar 
philosophy is used here. 

This work is different from that reported on voice transforma- 
tions [5 ] .  Voice transformations change one speaker's utterances to 
match the statistical properties of another voice. Thus every time an 
/a/ is spoken, the formant frequencies are changed to match the tar- 
get speaker's formants. This work, on the other hand, generates 
new sounds that are in between two exemplars. 

4 inversion F 

I Sound Representation (Sec. 4) 1 Matching (Sec. 5)  I Interpolation (Sec. 6) 

Figure 1. The three stages of audio morphing, representation, matching, and interpolation, are. shown. The signal path for representing sound 2 is not 
shown to simplify the drawing. 
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Figure 2. These three magnitude spectrograms show simple spectro- 
gram morphs. The left example shows a cross-fade between /a/ and 
/id. The middle example shows a cross-fade between two lal‘s at 
different pitches. The lines crossing near the middle cause the 
morph to be perceived as two sounds. The right example shows the 
same start and end as the middle example, but the harmonics are 
aligned before cross-fading. The pitch splitting is fixed, but the 
formant frequencies have moved. 

3. TEMPORAL ASPECTS OF AUDIO MORPHING 
Time is a special component of sound. Sound does not exist with- 
out time. This simplifies audio morphing because sounds that hap- 
pen at the same time are perceived together. Thus an audio morph 
should keep simultaneous components of a sound aligned in time 
throughout the morph. This means that, unlike image morphing, an 
important dimension of sound, the timing, can be considered inde- 
pendently of the other sound dimensions. The morphs described 
here consider time separate from the other dimensions of the audi- 
tory signal. As will be shown, the separability of the temporal 
dimension simplifies all aspects of audio morphing. 

Time complicates other aspects of audio morphing. Most 
importantly, there are three kinds of audio morphing. In the sim- 
plest case, the two sounds are stationary and we can describe the 
sounds as points in a high-dimensional space. The dimensions of 
this space include spectral shape, pitch, rhythm and any other per- 
ceptually relevant (and quantifiable) auditory dimensions. We 
morph between the two sounds by tracing a path between the two 
points in an appropriately warped space. This is directly analogous 
to the image morphing case. In the simplest form, a steady vowel 
morphs into a single note from an oboe. 

The second kind of morph is between moving objects. The 
morph starts with the characteristics of the first sound and slowly 
changes to have all the characteristics of the second. This is directly 
analogous to morphing between videos of two different objects. 

Finally, there is a unique kind of audio morph which is gener- 
ated by smoothly changing a repetitive sequence of sounds. The 
word xxx changes to yyy in a sequence of steps. Each step is small 
and in the middle of the sequence the word sounds like something 
in between xxx and yyy. The result is a cyclostationary morph. It is 
cyclic because we play the sound repetitively to affect the morph. It 
is stationary since each sound instance is a completely stationary 
(no change) example of the range of in-between sounds. 

4. REPRESENTATIONS 
A proper representation of sound is key. In video, a retinotopic 
image is natural and easy for humans to change. There is no obvi- 
ous choice for audio. Conventional spectrograms can represent any 
sound, but cross-fading spectrograms does not produce convincing 
morphs. 

The problems with spectrograms are illustrated in the three 
examples of Figure 2. In these examples, magnitude spectrograms 
of two vowels are interpolated. A short section of the original voice 
with vibrato is included at the beginning and end of the spectro- 
gram to provide context. The middle of the spectrogram shows the 
morph. 

In the first example, the singer’s /a/ is cross-faded to her /i/. The 
morph is convincing because the pitch is similar across the morph. 

In the second example, the morphed sound has two separate 
pitches, causing the sound to be perceived as two different auditory 
objects, and destroying the illusion of a continuous morph. Finally, 
by scaling the frequencies of the spectrogram, much like sinusoidal 
analysis would do, interpolation can be done across different 
pitches to produce a proper morph. However, this simple scaling 
does not work if there are drastic pitch changes because formants 
move with the harmonics. 

We would like a multi-dimensional representation of sound 
where each dimension is independent and salient. Then we could 
morph the sound by simple interpolation in this ideal space. 
Instead, this work approximates the ideal by decomposing the 
sound into a smooth spectrogram that represents the broad spectral 
shape, and a second “pitch” spectrogram that encodes the pitch and 
voicing of the sound. 

We use mel-frequency cepstral coefficients (MFCC) to model 
part of the sound [6] .  Cepstral coefficients are a type of homomor- 
phic processing which allows us to separate the broad spectral char- 
acteristics of the sound from the pitch and voicing information. The 
MFCC coefficients are used in the initial temporal matching and to 
compute the smooth spectrogram. 

MFCC is computed by resampling a conventional magnitude 
spectrogram to match critical bands as measured by auditory per- 
ception experiments. After computing logarithms of the filter-bank 
outputs a low-dimensional cosine transform is computed. 

The MFCC representation is inverted to generate a smooth 
spectrogram for the sound. After applying the cosine transform 
again and undoing the logarithm we have a smooth estimate of the 
filter-bank output. The filter-bank output is then reinterpolated to 
get a spectrogram. The logarithmic transform and low quefrency 
cosine transform serve to filter out the pitch information in the 
spectrogram. MFCC is good at modeling the overall spectral shape, 
but it doesn’t include pitch. When we invert MFCC we get a rough 
approximation of the spectrogram, but without the pitch informa- 
tion. 

It would be nice if we could summarize all the information 
about pitch with a small number of scalars and then smoothly vary 
these numbers to get intermediate excitations. For example, we 
might use one number for the pitch and one to indicate the amount 
of voicing. Unfortunately, this type of summarization is not suffi- 
cient as is seen in speech compression systems. Simple LPC sys- 
tems suffer from objectionable inaccuracies in the excitation. To 
provide acceptable reconstructions, a large codebook is needed to 
summarize the possible residues. 

In audio morphing we use a spectrogram of the residue to code 
the pitch and voicing in the acoustic signal. A conventional short- 
time spectrogram S( O, t )  encodes all the information in the signal 
and the smooth spectrogram S&o, t )  describes the overall spectral 
shape. Dividing the short-time spectrogram, S ,  by the smooth 
spectrogram, S,, gives us a “pitch” or residual spectrogram, 
SJw, t )  , which describes the pitch and voicing information in the 
sound. The smooth and pitch spectrograms form the basis of our 
morphing techniques and are illustrated in Figure 3. We recover the 
original spectrogram by multiplying the pitch and smooth spectro- 
grams together. 

5. MATCHING 
Matching is necessary so that we know which features of the first 
sound correspond to any particular feature of the second. Often a 
feature has moved and to affect a morph we need to slowly move 
the feature from where it is in the first sound to its position in the 
second. There are many ways to perform the matching. Dynamic 
time warping and harmonic alignment are used to match features in 
audio morphing. 
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Figure 3. A smooth spectrogram for the word “comer” is shown on 
the left. Its pitch spectrogram is shown on the right. The smooth 
spectrogram encodes the broad spectral shapes and the pitch and 
voicing is encoded in the pitch spectrogram. 

Dynamic Time Warping (DTW) is used to find the best tempo- 
ral match between the two sounds. Over the course of the morph, 
we want features that are common to both sounds to remain rela- 
tively fixed in time. MFCC is often used in modern speech recogni- 
tion systems as a distance metric and is used here for the same 
purpose. Using DTW allows us to calculate the best match between 
the two sounds so that later spectral stages have less work. 

Audio morphs with different properties are created with differ- 
ent matching functions. In morphing between two versions of the 
same song, the melody is important. The temporal matching is done 
with a distance metric based on the dominant pitch. For other music 
(i.e. rap) we will want to consider the underlying rhythm. 

In this work we have represented pitch and voicing information 
as a spectrogram. In a pitch spectrogram the pitch information in 
the sound is visible as a series of peaks. The spacing of the peaks is 
proportional to the pitch. When the sound is unvoiced the peaks dis- 
appear and the “pitch spectrum” is flat. 

To smoothly morph the pitch spectrogram we need to match the 
pitch, if present, and then cross-fade the amplitude at each fre- 
quency. Unfortunately, the pitch might be absent or difficult to find 
at each point. We also have to deal with times when one sound has a 
pitch and the other doesn’t. When there is a pitch, we want to match 
it in the two sounds, otherwise we want to cross-fade the noise. 

To solve this problem we estimate a pitch for the entire utter- 
ance. We use a combination of a conventional pitch scheme and 
dynamic programming to find a “pitch” everywhere. The basic 
pitch algorithm (autocorrelation of the peak enhanced waveform) 
produces many possible pitch peaks. It is difficult to know, without 
more information, which is the best pitch. 

Secrest and Doddington [7] propose using dynamic program- 
ming to estimate a pitch that fits the available data (the peaks in the 
pitch spectrogram) and smoothly changes over time. We use this to 
calculate a “pitch” estimate for the entire sound, whether it is actu- 
ally voiced or not. 

We use the complete pitch estimate from both sounds to per- 
form the match. It is most important to match the pitch between the 
two sounds, and less important to match the inharmonic residual. 
Thus we want to stretch and compress the frequency axis of the 
pitch spectrograms to make sure the pitch peaks agree before we 
cross-fade the two spectrograms. Depending on the change in pitch, 
the unvoiced components of the sound will move in frequency. This 
is less important than not splitting the harmonics that cause pitch. 

Matching the features of the smooth-spectrogram is less criti- 
cal. Researchers have investigated the proper domain to do interpo- 
lation for voice coding [SI. They argue for cross-fading the spectral 
shapes (without pre-warping) or for interpolating the spectral peak 
locations by cross-fading line spectral pairs (LSP). Section 7 dis- 
cusses the results of both approaches. 

Figure 4.One-dimensional morphing (either in frequency or time) pro- 
ceeds by warping along the dashed matching Ilines, p(?,) = t 2 ,  and 
cross-fading the signals. 

6. ONE DIMENSIONAL MORPHING 
A morph includes some type of interpolation step. Scalar quantities 
are easiest to morph because it reduces to a simple cross-fade. If 
one component of a sound description is loudness, then the loud- 
ness of the morph should charige smoothly from the loudness of the 
first sound to the loudness of the second. 

Unfortunately, acoustic information is not always scalar. Tem- 
poral alignment and spectral warping shaire the same problem. 
Given a dense match between two one-dimensional curves, how do 
we smoothly morph between these curves? 

The data we are trying to morph is described as sl(t) and s2(t) . 
We want to find a new curve s(h, t )  such that the s function is 
between the s, and s2 curves. Since the match functions are 
monotonic, we know that matching lines do not cross and for each 
point (h, t )  there is only line establishing the correspondence. Our 
problem simplifies to finding the times tI and t2 that should be 
interpolated to generate the data at (A, r )  . 

We do this by calculating the path location for all (sampled) 
values of tl and then picking the tl whose path is closest to the 
desired sample point, (A, t) . Given lines ending at t l  and t2 as 
shown in Figure 4, the interselction with the h morphing line is at 

t - t  2 = h  => t = h( t2- - t1)+t1  
t2 - tl 

Given the proper values for t l  and t 2 ,  we generate the new data at 
(A, t) by cross-fading the wauped signals 

This results in a smooth cros,s-fade between s, when h = 0 and 
s2 when X = 1 .  

Mappings between s1 anld s2 are described as paths. Path p 
warps s2 to look like s1 . Thus p is the mapping that produces the 
smallest different between s2(p(t)) and sli(t). Using this, we can 
simplify the above equation so that the intermediate t i s  given by 

s(h, t )  = ( 1  - h)s, ( t , )  + X,s2(t2) 

t = u , P ( t l ) - t l ) + t l  
We could use the path malp to calculate the appropriate t 2 ,  but 

we get better results if we repeat the procedure in the other direc- 
tion. Because of quantization, more than one point along the tl 
axis might map into the same t 2 .  When h is equal to one, we will 
not get an exact copy of s2,  but some points will be slightly out of 
place It is better to repeat the procedure used to find the best tl to 
find the best t 2 ,  This is used to calculate the second half of the 
equation for s above. 

7. RESULTS 
Figure 5 shows a complete morph. This morph was generated by 
splitting two sounds (“morning” and “corner”) into smooth and 
pitch spectrograms. Dynamic programming is used on the peaks in 
the pitch spectrograms to summarize the pitch information in the 
two sounds. The MFCC vectors are used in dynamic time warping 
to time align the sounds. The pitch spectrograms are scaled in fre- 
quency to align pitch contours and cross-faded. 
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Figure 5.  The words “morning” and “corner” are shown in a cyclo-stationary morph along with two of the intermediate words. The time scale of the 
word is changed during the morph. At each corresponding frame, the pitch, voicing, and spectral shapes are independently morphed. (The original 
sound samples are from the first verse of the recording of “Tom’s Diner” by Suzanne Vega.) 

In the results shown in Figure 5,  the smooth spectrograms are 
cross-faded. The interpolated spectrograms are combined and 
inverted to recover the morphed sounds. This approach results in 
high-quality morphs. Part of the reason that this simple approach to 
smooth-spectrogram interpolation works so well may be because 
MFCC was used to do the temporal pre-alignment. The pre-align- 
ment helps to insure that the two MFCC vectors are similar. The 
use of MFCC in many speech recognition systems would imply 
that a smooth spectrogram as calculated by inverting MFCC is well 
behaved. Sounds that are close in the smooth-spectrogram repre- 
sentation should sound similar. 

An alternative approach to matching the smooth spectrograms 
was also considered. This second approach is analogous to Yong’s 
approach of blending LSPs. Instead of using LSP, we applied 
dynamic warping, this time on the smooth spectra as a function of 
frequency, to match peaks in the two sounds.’ The results in our 
limited testing do not sound as good as cross-fading the smooth 
spectrograms. 

The entire process is not expensive. The cost of the homomor- 
phic processing is dominated by the cost of the initial spectrogram 
calculation. Depending on the breadth of the search, dynamic time 
warping can be expensive, as much as Ow2) where N is the num- 
ber of spectrogram frames. Spectrogram inversion techniques 
described elsewhere [3] allow the iterative procedure to quickly 
converge, often at a cost only four to five times as expensive as the 
original spectrogram calculation. 

Perhaps the biggest obstacle is that spectrogram inversion tech- 
niques need overlapping windows in the time domain. Estimating 
the phase of a spectrogram can be done, but each point in the wave- 
form must be included in two different spectral slices. A four way 
overlap is even better. Thus using 256 point windows, as in this 
work, means that a new spectral slice is calculated every 64 points. 

8. CONCLUSIONS 
Previous work in audio morphing has been shaped by the con- 
strained representations that are used in speech and music synthe- 
sis. This paper describes a new approach based on separate 
spectrograms to encode the pitch and broad spectral shapes of the 
sound. These spectrograms are independently modified to create 
pleasing morphs between many sounds. 

An important contribution of this work is the realization that, 
unlike image morphing, audio morphing can effectively be sepa- 

l .  Our preference for the smooth spectrogram is because LSP is not a 
universal representation of sound. It is optimized for voice. The 
smooth spectrogram contains much the same information as LSP but 
is more general. 

rated into multiple, independent dimensions. This paper has used as 
its dimensions: time, smoothed spectral shape and high-pass or 
“pitch” residual. Finally, this work has investigated techniques for 
matching these independent dimensions. 

Future work on audio morphing should revolve around better 
representations, better matching techniques and more natural 
sounding interpolation schemes. Spectrograms are a good represen- 
tation of sound, but better representations will allow the details of 
the pitch and voicing information to be separated. Automatic corre- 
spondence simplifies the morphing procedure, but different match- 
ing functions will be necessary for different tasks. Finally more 
work is needed to find perceptually optimal interpolation functions. 
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