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ABSTRACT

Modeling heterogeneous data sources remains a fundamental chal-
lenge of acoustic modeling in speech recognition. We call this the
multi-condition problem because the speech data come from many
different conditions. In this paper, we introduce the fundamen-
tal confusability problem in multi-condition learning, then discuss
the problem formalization, the taxonomy, and the architectures for
multi-condition learning. While the ideas presented are applicable
to all classifiers, we focus our attention in this work on acoustic
models based on deep neural networks (DNN). We propose four
different strategies for multi-condition learning of a DNN that we
refer to as a mixed-condition model, a condition-dependent model, a
condition-normalizing model, and a condition-aware model. Based
on the experimental results on the voice search and short message
dictation task and the Aurora 4 task, we show that the confusabil-
ity introduced when modeling heterogeneous data depends on the
source of acoustic distortion itself, the front-end feature extractor,
and the classifier. We also demonstrate the best approach for dealing
with heterogeneous data may not be to let the model sort it out
blindly, even with a classifier as sophisticated as a DNN.

Index Terms— Multi-task learning, deep learning, CD-DNN-
HMM, noise robustness, channel compensation

1. INTRODUCTION

Modeling heterogeneous acoustic data sources coming from diverse
acoustic environments—distinct channels, and different speakers
with varying speaking styles or accents—is a fundamental chal-
lenge for acoustic modeling in large-vocabulary speech recognition.
While recent advances in acoustic modeling using deep neural net-
works (DNN) have led to significant performance improvements on
a variety of academic and industrial tasks [1, 2, 3, 4, 5], a recent
study revealed that model robustness and effectively modeling het-
erogeneous acoustic sources remain important research problems
for acoustic modeling [6].

We categorize the prior research on modeling heterogeneous
acoustic data into two approaches. The normalization approach
refers to methodologies which normalize or factor out the phonet-
ically irrelevant heterogeneity. Cluster adaptive training [7, 8] and
acoustic model factorization [9, 10] are examples of the normaliza-
tion approach. The explicit modeling approach directly models the
heterogeneous data source, such as the acoustic trajectory model, the
generalized mixture HMM, and the synchronous HMM [14, 15, 16].

There is previous research that studies multi-condition learning
in a deep neural network [17, 18, 19]. In this paper, we endeavor
to further this research and provide a systematic view of modeling
heterogeneous data. Specifically, we first describe the confusability
problem when modeling multi-condition data. We then formalize the

multi-condition acoustic modeling problem. In particular, we adopt
the source-channel speech model, in which the observed speech is
generated by passing a canonical speech signal through various com-
ponents of an acoustic scene. Here, the term “acoustic scene” repre-
sents all phonetically irrelevant acoustic conditions, each causing a
distortion of the original signal.

We thus elucidate four architectures for handling multi-condition
data in the context of a neural network acoustic model: the mixed-
condition model, the condition-dependent model, the condition-
normalizing model, and the condition-aware model. We present
experiments with these multi-condition learning approaches to illus-
trate the ideas and demonstrate their use in dealing with the different
gender, the distinct acoustic channels, and the various environmental
noise.

Two important outcomes of this paper are: the confusability is-
sue in modeling heterogeneous data depends on the nature of the
specific acoustic distortion and the invariant feature extraction capa-
bility of the model; the best approach for dealing with heterogeneous
data is to not necessarily let the model sort it out blindly, even with
a classifier as sophisticated as a DNN.

We further point out that the condition-dependent model can
naturally solve the confusability issue; nevertheless practically it
very often leads to the sub-optimal performance due to the data
scarcity. In the partially condition-dependent model with condition-
normalizing hidden layers, different layers of the neural network
may be suitable for the modeling of different types of acoustic dis-
tortion factors.

The rest of this paper is organized as follows: Section 2 dis-
cusses the confusability problem in multi-condition modeling; Sec-
tion 3 presents four multi-condition learning approaches within the
context of a DNN acoustic model: the formulation, the implemen-
tation architecture, and the utility; These approaches are evaluated
through a series of experiments in Section 4. Finally, we summarize
our finding and present some conclusions in Section 5.

2. CONFUSABILITY WHEN MODELING
HETEROGENEOUS DATA

The fundamental problem in modeling data from heterogeneous
sources arises as the result of confusability at the classification
boundary. Consider the two-class recognition problem shown at the
top of Figure 1. For condition 1 and condition 2, there is a single de-
cision boundary that can clearly divide the data into the two classes.
In this case, one can build a classifier to label /a/ vs. /i/ for either
condition, or the combination.

Now consider the alternative scenario shown at the bottom of
Figure 1. Here the /a/ vs. /i/ boundary is clear for either condi-
tion in isolation, and yet taken together, the decision boundary is



Fig. 1. Two different types of confusability in an arbitrary feature
space. In condition 1 the two vowels are distinguishable, even with-
out knowing the condition (top). In condition 2 one must know or
compensate for the condition to obtain perfect classification (bot-
tom).

unclear. Without knowing which condition generated the data, there
is not a single good decision boundary. This illustrates the confus-
ability problem in the multi-condition modeling. To solve the con-
fusability problem in multi-condition modeling, one needs to either
model the classification boundary for each condition separately, or
a feature so that the “blurred” or “deformed” classification bound-
ary in the multi-condition setup is well-separated again. Next, we
will present the architecture and formulation of four different multi-
condition learning methodologies and discuss how the confusability
issue is handled in each of them.

3. FOUR MULTI-CONDITION LEARNING APPROACHES
WITHIN THE CONTEXT OF A DEEP NEURAL NETWORK

We assume that the speech signal passes through various compo-
nents of an acoustic scene (C) and we observe the signal (YC ). The
acoustic scene refers to a set of acoustic distortions that modify the
canonical acoustic distribution and contain information irrelevant to
phone discrimination, e.g. the environmental noise, channel, gender,
speaker vocal tract, speaking style, etc. We treat each of them as
one acoustic distortion channel and a subset of them jointly defines
a particular acoustic scene in the multi-condition acoustic model
framework. The remainder of this section will describe four multi-
condition learning approaches within the context of the DNN-based
acoustic model framework. These four approaches are illustrated in
Figure 2.

3.1. Mixed-Condition Model

In the mixed-condition training we ignore the properties of the
acoustic scene and pool the mixed-condition data to train a single
model:

P (X|YC) = P (X|Y ). (1)

Figure 2(a) is the widely-used multi-style training. Since this model
mixes multi-condition data together, this type of model very often
has “blurred” or “deformed” classification boundary. Whether the
confusability issue described in Section 2 exhibits the top or the bot-
tom scene as illustrated in Figure 1 dependents on the specific acous-
tic scene, the feature space, and the model. We further address this
issue in our experiments.

3.2. Condition-Dependent Model

In the condition-dependent model, we partition the data into scene-
dependent subsets and train scene-specific models:

P (X|YC) = PC(X|Y ). (2)

Fig. 2. Four multi-condition learning architectures within the con-
text of the DNN-based acoustic model framework. Each circle rep-
resents data from one acoustic condition.

During the decoding stage, each utterance is processed by multiple
models if details of the acoustic scene are unknown. The multiple
models will compete to produce the final results:

P (X|YC) = argmax
C

PC(X|Y ). (3)

The model separation mechanism in the condition-dependent model
as in Figure 2(b) naturally resolves the confusability issue. However,
for complicated acoustic scenes with many different acoustic factors,
this approach is impractical. More importantly, this approach may
have poor performance due to the data fragmentation, which will be
further illustrated in our later experiments.

3.3. Condition-Normalizing Model

Figure 2(c) demonstrates a partial condition-dependent model struc-
ture that utilizes the condition-normalizing layers to explicitly model
different conditions. This structure allows maximal data sharing
across various conditions and yet keeps the modeling capability for
heterogeneous data. The layers can be either linear or non-linear.

The condition-normalizing layer placed on the bottom hidden
layer can be viewed as a nonlinear feature-normalization layer.
The input is forward propagated through the appropriate condition-
dependent lower branch of the model to normalize the input into a
representation which removes the condition-specific irrelevant vari-
ability. By training the shared upper layers and condition-dependent
lower layers jointly, we ensure the condition-dependent lower layers
learn to perform the required normalization while the shared upper
layers can focus on learning distinctions between phonetic classes.

The condition-normalizing layer can be also placed on the top
or on the middle hidden layers. The choice of the placement for
the condition-normalizing layer depends on the specific condition to
be models and the neural network invariant feature extraction. The
condition-normalizing hidden layer is typically trained via conduct-
ing model adaptation from a condition-independent model [11, 12,
13]. Usually re-training of the shared condition independent portion
of the network generates further performance gain.

3.4. Condition-Aware Model

The condition-aware model explicitly models the posterior given the
speech observation and the acoustic scene. Information about the
acoustic scene is added to the neural network input as illustrated in
Figure 2(d).

Below is the generalized formulation for the condition-aware



model:
P (X|YC) =

∑
c

P (X,C|YC)

=
∑
c

P (C|YC)P (X|YC , C).
(4)

When the condition is known a priori, the model is simplified to
P (X|YC , C) which is illustrated in Figure 2(d).

The selection of the acoustic conditions to be modeled and their
representation are the two key factors in the success of the condition-
aware model. The acoustic scene in general should consist of the
most distinct acoustic distortion factors in the task. Regarding the
condition-aware representation, it remains as unresolved due to lack
of a principled guide. The rule of thumb is that the representation
should provide sufficient activation capacity to guide the neural net-
work learning towards better class separation.

We further note that the acoustic scene information does not
have to be descriptive information about the distortion, it can also
be information estimated from the speech observation [17].

4. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we present experimental results with the four models.
We will demonstrate their usage in modeling gender, channel, and
background noise.

Specifically, we first illustrate that the confusability behavior
can change due to different modeling techniques by comparing the
gender dependent and independent models in the GMM and the
DNN; then demonstrate the confusability behavior also depends on
the nature of the condition itself. We show that even with deep
learning techniques the confusability issue still exists across distinct
channels. We further demonstrate using the condition-normalizing
layer can remedy the data fragmentation issue in the channel-specific
model. Lastly, we present the condition-aware DNN modeling noise.

All of our experiments were conducted on a mobile voice
search and short message dictation task (VS/SMD) except that the
condition-aware model experiments were conducted on the Aurora
4, a medium-vocabulary corpus for evaluating noise robustness. All
experiments used a Viterbie-based decoder and a 3-gram language
model for decoding.

4.1. Mix-condition versus Condition-dependent Model for Gen-
der in the GMM and DNN

In this experiment, we compare mixed-condition and the condition-
dependent models with respect to gender using the GMM and DNN
on the short message dictation task (SMD). The GMM is a dis-
criminative model using the feature-space minimum phone error rate
(fMPE) [24] and the boosted MMI (bMMI) [23] criterion with a 39-
dimension MFCC front-end. The DNN model is a cross entropy
(CE) model with 87-dimension log filter bank (LFB) front-end fea-
ture with 11-frame context windows. The GMM and the DNN share
the same 400 hour training data, the decision tree, and the MLE seed
model.

Table 1 compares the gender-dependent versus the gender-
independent GMM and DNN models evaluated on a 50 hour SMD
test set. With a GMM, the GD model outperforms the GI model
with 8.7% word error rate reduction (WERR). This clearly demon-
strates the condition-dependent model performs better than mixed-
condition training for gender in the GMM. Nevertheless, with a
DNN, the GI model performs almost as well as the GD model with
a negligible performance difference.

Table 1. Performance comparison of the gender-dependent (GD)
and gender-independent (GI) GMM and DNN on the short message
dictation task (SMD).

GI GD WERR (GD vs.GI)
GMM 21.8 19.9 8.7
DNN 14.9 14.7 1.3

This experiment indicates given a specific acoustic distortion
factor, whether the confusability in the multi-condition learning ex-
hibits the top or the bottom case in Figure 1 depends on the specific
classifier (model) and the feature space. The deep neural network
with the layer-wise nonlinear feature extraction may learn better in-
variant and selective features and therefore can turn a confusable
problem in the GMM into a well-separable one in the DNN. The
gender distortion is such a good example.

4.2. Channel Confusability and Multi-model for Distinct Chan-
nels

Many distortion factors do not belong to the above category and the
confusability problem persists in the deep learning acoustic model.
Channel variability is such an example. In a recent study [6], we
found that the DNN improves the ASR performance of speech com-
ing from all different devices comparing to the GMM. Nevertheless,
the performance gap across different devices remains large. In this
section, we illustrate that the confusability problem exists in deep
learning based mixed-channel acoustic models.

We trained three channel-specific DNNs with 40 hours of
speech from each mobile device channel. We also trained two
mixed-channel DNNs, one using 40 hours randomly selected mixed
channel data and the other one using all 120 hours mixed-channel
data. All five DNNs share the same decision tree and the MLE seed
model. Furthermore, for reference, we distilled “A+B+C.Multi”
from the three channel-specific models. The test combines three 4
hour test set for each channel.

As shown in Table 2, the channel-specific DNN outperforms
mixed-channel DNN trained using the same 40 hours of data with
4∼5 % WERR for all three devices. This indicates confusability ex-
ists in the mixed-channel DNN. The notably different observation on
channel as compared to gender suggests that whether the confusabil-
ity existing as a distinct problem not only depends on the modeling
technology, but also depends on the nature of the acoustic condition
itself. In the DNN, certain acoustic conditions, such as the channel
variation, does not get normalized as successfully as others, such as
the gender.

If we increase the training data by mixing all 40 hour training
data from the three devices, the resulting model (A+B+C.120hrs)
has significant performance boost for each device. This shows the
data fragmentation issue in the multi-model approach as described
in Section 4.2.

Table 2. Performance comparison of the mixed-condition versus the
condition-dependent model for channel.

A B C AVG
A.40hrs 27.6 32.7 26.7
B.40hrs 32.0 28.9 28.8
C.40hrs 29.7 31.5 25.9
A+B+C.Multi 27.6 28.9 25.9 27.4
A+B+C.40hrs 28.3 29.7 26.9 28.4
A+B+C.120hrs 22.9 23.5 21.8 22.7



4.3. Condition Specific Layers for Channel Normalization

In this section, we present an experiment using the condition-
normalizing layers to model specific channels and yet allow maxi-
mum data sharing across channels. This directly addresses the data
fragmentation issues in a channel-dependent model.

Specifically, we train a mixed-channel DNN (A+B+C.120hrs)
with 120 hours mixed channel data with the same setup as be-
fore, then add a channel-specific bottom hidden layer (linear
layer) for each channel. The channel specific layer was trained
via model adaptation using the 40 hour channel-specific data
with the top layers fixed. We then evaluate the resulting model
(A+B+C.120hrs.ChanLayer) with channel specific layers on the
corresponding matched-channel test set. As shown in Table 3,
“A+B+C.120hrs.ChanLayer” yields 0.7%, 0.5%, and 0.6% absolute
word error rate reduction for device A, B, and C respectively as com-
pared to the baseline mixed-channel model (A+B+C.120hrs). On
average, a 2.6% reduction in WER was achieved. Furthermore, we
conduct model re-training for the shared top layers using the chan-
nel normalized features derived from the channel dependent bottom
layer. The resulting model (A+B+C.120hrs.ChanLayer.RT) yields
an additional 0.2% absolute word error rate reduction. In total, 3.5%
WER reduction is obtained over to the baseline multi-condition
model (A+B+C.120hrs). We further note that the placement of the

Table 3. Performance of the condition-normalization DNN with
channel-specific layers.

A B C AVG
A+B+C.120hrs 22.9 23.5 21.8 22.7
A+B+C.120hrs.ChanLayer 22.2 23.0 21.2 22.1(2.6)
A+B+C.120hrs.ChanLayer.RT 22.1 22.7 21.0 21.9(3.5)

condition specific layer depends on the specific conditions to be
modeled, the layer-wise feature learning, and the information dis-
tribution in the deep neural network. The multi-lingual DNN work
in [20, 21] suggests an alternative choice for the placement of the
condition specific layer.

4.4. Condition-Aware Model Experiments

In order to study the potential of a DNN-based acoustic model to ex-
ploit information about the acoustic scene, we performed an experi-
ment using Aurora 4, a medium-vocabulary corpus based on WSJ0.
In this corpus, the multi-condition training set consists of 7137 ut-
terances from 83 speakers. One half of the utterances was recorded
by a high-quality close-talking microphone and the other half was
recorded using a variety of secondary microphones. Both halves in-
clude a combination of clean speech and speech corrupted by one
of six different types of noise (street traffic, train station, car, bab-
ble, restaurant, airport) at a range of signal-to-noise ratios (SNR) be-
tween 10–20 dB. The evaluation set consists of 330 utterances from 8
speakers. This test set was recorded by the primary microphone and
a number of secondary microphones. These two sets are then each
corrupted by the same six noises used in the training set at SNRs
between 5–15 dB, creating a total of 14 test sets. These 14 test sets
can then be grouped into 4 subsets, based on the type of distortion:
none (A), additive noise only (B), channel distortion only (C), and
noise + channel (D).

In this experiment, we defined the acoustic scene as the noise
environment of the utterance. There were six noise environments
plus the clean condition for a total of seven acoustic scenes. To make
the network aware of the scene, a 7-dimensional vector that performs

a one-hot encoding of the acoustic scene (noise condition) is added
to every hidden layer of the network. This one-hot vector can be
considered a dynamic bias at each layer that changes based on the
acoustic scene. In this experiment, we assumed that knowledge of
which environment an utterance was in was known a priori, in both
training and test. Knowledge about the particular SNR was not used.

Table 4 compares the performance of two DNN-based speech
recognition systems. In both cases, the networks were trained with
a context window of 11 frames of 24-dimensional log filterbank fea-
tures, augmented with the log energy. Static, delta, and delta-delta
features were used and mean normalization was applied. The net-
work was trained with three hidden layers with 2048 hidden units
each, and an output layer representing 3202 senones. In the context-
aware network, all three hidden layers were augmented with the en-
coding of the acoustic context. We note that the baseline system
performance is slightly different from [17] due to a different model
training setup.

As the table shows, only a marginal improvement in overall ac-
curacy was obtained by this method of augmenting the input features
with information about the acoustic context. Improvements in per-
formance in additive noise conditions (B) were negated by a degra-
dation in clean conditions (A). We note that an ASR system that in-
cludes speaker information shows promise using a similar condition-
aware model approach [19].

Table 4. Performance comparison of a standard DNN and a DNN
augmented with an encoding of the acoustic scene.

A B C D AVG
DNN (3×2048) 5.9 10.4 9.8 22.4 15.2
+ scene dynamic bias 6.1 10.2 9.8 22.4 15.1

5. CONCLUSION

We studied the multi-condition learning problem in a deep learning
acoustic modeling framework. We first described the fundamen-
tal confusability problem in the multi-condition learning; then
discussed the mixed-condition, condition-dependent, condition-
normalizing, and condition-aware four types of methodologies on
the formulation, implementation architecture, and practical utility.

We introduced the “acoustic scene” concept to represent differ-
ent acoustic distortion channels for canonical speech. We showed
that the degree of confusability introduced in modeling heteroge-
neous data depends on the specific acoustic distortion factor itself,
the acoustic front-end feature extractor, and the classifier. The deep
neural network with the layer-wise nonlinear feature extraction may
turn some confusable problems (e.g. gender) in the GMM into a
well-separable one. Nevertheless, many other heterogeneities (e.g.
channel variation) cannot be normalized blindly as successfully even
in the DNN. We illustrated that the condition specific layers can be
used to normalize the channel variation in the DNN. The best place-
ment of the condition specific layer in the network may depend on
the nature of the acoustic condition itself.

Lastly, we studied the condition-aware DNN model which ex-
plicitly models the posterior given the speech observation and the
acoustic scene. The success of the condition-aware DNN largely de-
pends on the effective representation of the acoustic scene which can
be the simple identifier or descriptiive information about the specific
acoustic condition estimated from the speech observation. The best
approach for dealing with heterogeneous data is not to necessarily
always let the model sort it out blindly, even with a classifier as so-
phisticated as a DNN.
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