Decoding Auditory Attention (in Real Time) with EEG

¹Trinity College Dublin, ²University of California, San Francisco, ³Boston University, ⁴University of Maryland, College Park, ⁵University of Western Sydney, ⁶University of Kansas, ⁷University of Washington, ⁸University of California, Berkeley, ⁹Johns Hopkins University, ¹⁰Microsoft Research, ¹¹Stanford CCRMA

Both magnetoencephalography and electrocorticography recordings have been used to decode which of two competing sources a listener is attending. However, it is not clear whether these techniques might work with Electroencephalography (EEG), particularly in a real-time system. We therefore set out to decode a listener's attentional focus from EEG signals in real time, knowledge that could be incorporated into next-generation assistive listening devices.

sea

Offline, we acquired EEG data when a subject listened to a single speech source, from which we estimated a mapping from the EEG data to the perceived speech. The subject then attended to one of two simultaneous speech streams, presented dichotically. The previously estimated system transfer function from the singlesource presentation was used to estimate the attended stream in real time. Whichever input speech stream more closely resembled the estimated input was deemed to be the attended stream. Three decoding methods were tested. The first approach, canonical correlation analysis (CCA), is based on measuring the correlation between audio streams and the EEG signals. The second two approaches estimate the mapping from the EEG to the input stimulus. This can be done using a single channel at a time and summing the result, or by finding a single multi-channel filter that represents all the signals.

Single Source (Typical BCI)

Edmund Lalor¹, Nima Mesgarani², Siddharth Rajaram³, Adam O'Donovan⁴, James Wright⁵, Inyong Choi³, Jonathan Brumberg^{3,6}, Nai Ding⁴, Adrian KC Lee⁷, Nils Peters⁸, Sudarshan Ramenahalli⁹, Jeffrey Pompe⁹, Barbara Shinn-Cunningham³, Malcolm Slaney^{10,11,7}, Shihab Shamma⁴

2012 Neuromorphic **Cognition Engineering** Workshop

We found the best results by estimating a multivariate linear filter that incorporates the channel covariance structure in the least-squares estimation of the impulse response, similar to the approach described by Mesagarani & Chang (2012). Using this approach we could estimate single-speaker data with high accuracy. Notably this approach yielded estimates of the speech envelope that were better correlated with the original speech (r ~= 0.08) than the other two methods. Applying this to the attention paradigm (after training on singlespeaker data), we could predict the focus of attention with 95% accuracy for a one-minute-long sample of dichotic speech. As we shortened the amount of data used to decode, our accuracy fell almost linearly to about 65% for 10 seconds. Other presentation conditions (i.e., diotic and HRTF) were decoded with lower accuracy than dichotic.

EEG signals can be decoded in real time to determine what natural speech stream a listener is attending with relatively high accuracy.

	Performa	ance	Accu	iracy	Corre	elation	
Decoding cy, rame	CCA		>90%		0.02-0.04		
	Single Channel		>90%		0.02-0.04		
	Optimal		>90%		0.04-0.08		
on ng cv,			Accu		racy		
	CCA			65-80%			
	Single Channel			65-80%			
ok (Optimal			75-95%			
on Decoding cy (%) vs. me (s)	100						
	80 -						
	60						
	40 -	-All Conditions					
	20 –	- Dichotic					
	0]
	10	20	30	0 Secon	40 ds	50	60