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ABSTRACT | Locality-sensitive hashing (LSH) is the basis of

many algorithms that use a probabilistic approach to find

nearest neighbors. We describe an algorithm for optimizing the

parameters and use of LSH. Prior work ignores these issues or

suggests a search for the best parameters. We start with two

histograms: one that characterizes the distributions of dis-

tances to a point’s nearest neighbors and the second that

characterizes the distance between a query and any point in

the data set. Given a desired performance level (the chance of

finding the true nearest neighbor) and a simple computational

cost model, we return the LSH parameters that allow an LSH

index to meet the performance goal and have the minimum

computational cost. We can also use this analysis to connect

LSH to deterministic nearest-neighbor algorithms such as k-d

trees and thus start to unify the two approaches.

KEYWORDS | Database index; information retrieval; locality-

sensitive hashing; multimedia databases; nearest-neighbor

search

I . INTRODUCTION

It seems like a simple problem: Given a set of data and a

query, find the point in the data set that is nearest to the

query. One calculates the distance between the query and

each point in the database, and then returns the identity of

the closest point. This is an important problem in many

different domains, for example, query by example and

multimedia fingerprinting [10]. We can find the nearest
neighbors by checking the distance to every point in the

data set, but the cost of this approach is prohibitive in all

but the smallest data sets, and completely impractical in an

interactive setting. We wish to find a solution, an index,

whose cost is very, very sublinear in the number of points

in the database.

The simplicity of the problem belies the computational

complexity when we are talking about high-dimensional,
web-scale collections. Most importantly, the curse of

dimensionality [19] makes it hard to reason about the

problem. Secondarily, the difficulty of the solution is

complicated by the fact that there are two thoroughly

researched and distinct approaches to the problem:

probabilistic and deterministic. The stark difference in

approaches makes them hard to compare. Later in this

paper we will show that the two methods have much in
common and suggest a common framework for further

analysis.

The primary contribution of this paper is an algorithm

to calculate the optimum parameters for nearest-neighbor

search using a simple probabilistic approach known as

locality-sensitive hashing (LSH), which we describe in

Section II. The probabilistic nature of the data and the

algorithm means that we can derive an estimate of the cost
of a lookup. Cost is measured by the time it takes to

perform a lookup, including cache and disk access. Our

optimization procedure depends on the data’s distribution,

something we can compute from a sample of the data, and

the application’s performance requirements. Our approach

is simple enough that we can use it to say a few things

about the performance of deterministic indexing, and thus

start to unify the approaches.
In conventional computer hashing, a set of objects (i.e.,

text strings) are inserted into a table using a function that

converts the object into pseudorandom ID called a hash.
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Given the object, we compute an integer-valued hash, and
then go to that location in an array to find the matches.

This converts a search problem, which implies looking at a

large number ðNÞ of different possible objects and could

take OðNÞ or OðlogðNÞÞ time, into a memory lookup with

cost that could be Oð1Þ. This is a striking example of the

power of a conventional hash.

In the problems we care about, such as finding nearest

neighbors in a multimedia data set, we do not have exact
matches. Due to the vagaries of the real world, not to

mention floating point errors, we are looking for matches

that are close to the query. A conventional hash does not

work because small differences between objects are

magnified so the symbols Bfoo[ and Bfu[ get sent to

widely differing buckets. Some audio fingerprinting work,

for example, chooses features that are robust so they can

use exact indices to perform the lookup [25]. But in this
work we consider queries that are more naturally

expressed as a nearest-neighbor problem.

The curse of dimensionality makes designing an index

for high-dimensional data a difficult proposition. Fig. 1

shows the normalized distance between any one point

(a query) and all the other points in a uniform-random

k-dimensional distribution. As the dimensionality in-

creases the distribution becomes narrower, thus implying
that all points are equal distance from all other points. This

suggests that nearest-neighbor calculations are an ill-posed

problem [3] since all points could be nearest neighbors.

But in reality we are not concerned with all points, just
those on the left tail of this distance distribution. With

billions of points, we still have a significant number of

neighbors even six standard deviations from the mean.

Those are the points we want to find. Fortunately for this
paper the world is not full of photographs with pixels or

features from a uniform random distribution, making the
nearest-neighbor question better behaved.

The focus of this work is on a common approach to

finding nearest-neighbors known as LSH. However, there

are several parameters to an LSH index and the current

literature does not give a definitive statement about how to

find the best parameter values. One can search for the best

parameters by brute force trials, but these experiments are

difficult to perform with large data sets. Dong’s work [7]
derives some of the expressions needed to optimize LSH,

but this paper gives a more complete story. Our initial

intuition that LSH would benefit from a large number of

bins in each projection turned out to not be true (in all

cases we have examined).

Given a query point, one can use LSH algorithms to find

both its nearest and near neighbors. In this work, we

concentrate on the theoretical and empirical properties of
only one aspect of this problem: How do we choose the

parameters of an LSH algorithm so that we minimize the

cost of the search given a specification for the probability of

success? If we get the parameters wrong we could do more

work, even more than required for a linear search, or not

even find the nearest neighbor. The specification can be as

loose or tight as desired, and when we do not succeed we

will either return no candidates, or a point that is not the
absolute closest. We require an average-case guaranteeV
on average we will miss the absolute nearest neighbor with

a (user-specified) probability of less than �. Related

problems, such as near neighbor, are also solved using

the approaches described in this paper (see Section III-G).

A probabilistic approach has just one global value of

error probability for all likely queries (as opposed to having

separate errors for every query), and therefore it is easy to
use as an optimization target. Our optimization algorithm

only needs to know the size of data set n, an acceptable

error probability �, and the probability distribution

functions (pdfs) dnn; dany for the distances between the

query point and 1) its nearest neighbor or 2) any random

member of the data set. Given this, we return the optimal

parameters for an LSH implementation: the quantization

width w, the number of projections k, and the number of
repetitions or tables L. We also return the cost of searches

over this database. Here, by optimal parameters we mean

those corresponding to the absolute minimum search cost

for LSH based on p-stable distributions for any data set

with the given distance characteristics. We describe these

parameters in detail in Section II.

Our main result suggests that the distance profile is a

sufficient statistic to optimize LSH. Parameters recom-
mended by our optimization remain valid for any data set

with the same distance profile. Moreover, we can use an

Bupper bound[ distribution as input to our optimization in

order to cover a larger class of data sets (see Section III-A).

Thus, we can be sure that dynamic changes of the data

set (provided that they stay under the same distance

distribution) will not disturb the behavior of LSH. This

Fig. 1. Distance distributions versus data dimensionality. These

curves show the likelihood of different (normalized) distances for

D-dimensional Nð0; 1Þ data. The distribution becomes sharper as

the data become higher dimensional (from 4 to 512 dimensions).

To facilitate comparison, we normalize the distance data from each

dimensionality to have a mean of one and normalize the peak level of

the distributions.
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stability property is important for practical implementa-

tions. Recommended LSH parameters are independent of

the representational dimension. Thus, if one takes a 2-D
data set and puts it in 100-dimensional space, our

optimization algorithm will recommend the same para-

meters and provide the same search cost. This property

was not previously observed for LSH.1

This paper describes an approach to find the optimal

parameters for a nearest-neighbor search implemented

with LSH. We describe LSH and introduce our parameters

in Section II. Section III describes the parameter
optimization algorithm and various simplifications.

Section IV describes experiments we used to validate our

results. We talk about related algorithms and deterministic

variations such as k-d trees in Section V.

II . INTRODUCTION TO
LOCALITY-SENSITIVE HASHING

In this work, we consider LSH based on p-stable distri-

butions as introduced by Datar et al. [6]. Following the

tutorial by Slaney and Casey [24], we analyze LSH as an

algorithm for exact nearest-neighbor search. Our tech-

nique applies to the approximate near-neighbor algorithm

as originally proposed by Datar et al. [6] and as we describe
in Section III-A. We only consider distances computed

using the Euclidean norm ðL2Þ. Below we present a short

summary of the algorithm.

A. Basic LSH
LSH is based on a simple idea: After a linear projection

and then assignment of points to a bucket via quantization,

points that are nearby are more likely to fall in the same
bucket than points that are farther away. Fig. 2 illustrates

this idea for points in a 3-D space that are projected onto

the (paper’s) plane.

We use the following notation: D is the input data set;

its points are denoted by �p with various subscripts; �q is the

query point. LSH has three parameters: the quantization
width w, the number of projections k, and the number of

repetitions L. A Gaussian random vector �v is a vector with
every coordinate independently taken from the normal

distribution Nð0; 1Þ. We pick a random shift value b is

taken uniformly from the interval ½0;wÞ.
Using LSH consists of two steps: indexing the data and

searching for neighbors of a query point. The overall

indexing algorithm is illustrated in Fig. 3.
Step 1: Indexing.
• Randomization: Select k random vectors �v with the

same dimensionality as the data, where each

coordinate is a Gaussian random variable Nð0; 1Þ,
and a scalar bias term b from a uniform random

distribution between 0 and w.
• One-line projection: Take a point �p 2 D, compute

its dot product with the Gaussian random vector �v,
and quantize the result with step w: bð�p � �vþ
bÞ=wc. The bias term b does not affect our per-

formance, but simplifies the analysis to follow

because it ensures that the quantization noise is

uncorrelated with the original data.

• Multiline projection: Obtain an array of k integers
by doing k one-line projections. All points that

project to the same k values are members of the
same (k-dimensional) bin. At this stage, a conven-

tional hash is used to reduce the k-dimensional bin

identification vector to a location in memory. With

a suitable design, this hash produces few collisions

and does not affect our analysis.

• Repeat by hashing the data set to k-dimensional

bins into a total of L times. Thus, we place every

point in the dataset into L tables.
Step 2: Search.
1) Compute the L (k-dimensional) bins for the query

point using the same random vectors and shift

values as in the indexing stage.

1This also suggests that doing dimensionality reduction, using an
algorithm such as principal components analysis (PCA), will harm the
retrieval task only so far as the dimensionality-reduction step adds noise to
the data set.

Fig. 2.Projectinga3-Ddatasetonto the2-Dplane.Points thatare close

together (the spheres) stay close together, while points that are far

apart (the cubes) are usually far apart after a projection.

Fig. 3. Indexing with LSH. Data points are projected k times and

quantized. We store points into a bucket (or bin) labeled by a

k-dimensional integer vector. This index is hashedwith a conventional

hash to convert it into a 1-D index. L tables are created in parallel

to increase the probability of finding the nearest neighbor.
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2) Retrieve all points that belong to all identified bins
(we call them candidates), measure their distance

to the query point, and return the one that is
closest to query point.

B. Multiprobe
Multiprobe is a popular enhancement to LSH [18]. It is

based on the observation that a query’s nearest neighbors

might not be in the query’s bucket, and perhaps we should

look in nearby buckets as well. There are many ways to

find nearby buckets. For the analysis in this paper, we

consider a simple approach based on the Hamming dis-

tance. This idea is shown in Fig. 4, where a query is shown

after quantization in two of the k projection directions. For
a Hamming distance of radius r, we look at all buckets that
differ in at most r of the k projection coordinates. We only

consider the side of the 1-D query bucket closest to the

query.2 Thus, there are Cr
k buckets at a Hamming distance

of r from the query bucket.

We should note that choosing multiprobe bins by using

the Hamming distance is suboptimal compared to mea-

suring the exact distance between the query and the

nearest corner of any other neighboring bin [18]. We
simplify our analysis by using the Hamming distance and

this provides guidance for the most common and useful

case when r ¼ 1.

Looking for data within a small Hamming radius, after

projecting and binary quantization, is common in the

computer-vision literature. Here we note that many

researchers are doing a form of multiprobe, as we define

it in this paper [13]. Salakhutdinov [23] uses a deep belief
network to create a bit vector (with k ¼ 20, 30, and 128 b)

to represent an image. He then measures distance with a

Hamming metric (for example, r ¼ 4 or 5). Weiss [26]

describes how to create optimal projections and splits

using the graph Laplacian. Their graph encodes image
similarity and they split the graph to minimize the cuts.

He [11] and Jeǵou [15] look for projections that contain

maximal information. All of these approaches use a

Hamming metric to measure simularity and are analogous

to LSH with just one table ðL ¼ 1Þ. Similarly, a product

quantizer [14] uses the product of k vector quantizers to

define a bucket. Each quantizer only sees a subset of the

overall vector dimensions and thus each quantizer is
analogous to a trivial, axis-aligned projection.

C. Cost Model
We optimize retrieval performance, given the desired

error requirement �, using a simple computational model.

For the search phase, we use unit costs Uhash and Ucheck.

Here, Uhash is an upper bound (for any practical value of k)
of the cost for computing the location of the bin

corresponding to the query point, while Ucheck is a cost

of computing a distance between a candidate point and a

query point. We suppress the dependence on k here for
two reasons: 1) in practice, arithmetic operations are

cheap compared to memory lookups; and 2) it allows us to

greatly simplify the choice of optimal parameters of LSH.

Essentially, we just ignore the benefit that smaller k gives
to query hashing, and optimize the total sum of all other

costs.

Thus, the total costs of LSH are3

search time: LUhash þ jcandidatesjUcheck (1)

and the memory cost for the index is

index space: Ln: (2)

D. Experimental Data
We use two different data sets to demonstrate the

optimization calculations that follow and verify their per-
formance. For all tests, the design specification ð�Þ
required that the true nearest neighbor be retrieved with

a probability of 1� � ¼ 0:5.
Our real-world data are derived from a data set of more

than 850 000 images of European cities. We analyzed the

first 100 000 images with a convolutional deep-belief

network (DBN) [12] that produced a 1024-dimensional

feature vector for each image.4 This feature vector per-
formed well in an image-classification experiment, so it

is a good data set for nearest-neighbor queries. We see

similar performance with features based on audio

modulation.

Fig. 4. Hamming distance in quantized projection space. Quantized

projections convert the original feature space into rectangular buckets

in a k-dimensional space. Multiprobe looks in nearby buckets to

find likely matches. Here we show the adjacent buckets in just

two of the k dimensions.

2This is a one-sided version of multiprobe. One could look on both
sides of the query bucket and all that changes in our derivation is the �0

function shown in Fig. 7. But with large bucket sizes, this is not necessary.

3Pauleve’ uses the same cost function [22, eq. (3)].
4This R7 EC1M data set is available through Yahoo’s WebScope

program at http://webscope.sandbox.yahoo.com/catalog.php?datatype=r.
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We also tested our LSH parameters using a synthetic
data set over which we have control of the data’s dimen-

sionality. This is important because, as we will see, our

simple model is good except when the number of pro-

jections is larger than the intrinsic dimensionality of the

data.

We synthesized random data for our experiments by

taking low-dimensional random data and then blowing it

up to 1000 dimensions. Thus, our data had the distance
properties of the low-dimensional subspace, but the same

computational costs associated with longer vectors. To do

this, we generated 100 000 Gaussian random vectors

Nð0; 1Þ with dimensionalities ðdÞ of 10, 20, 30, and 40. We

then multiplied these data by a d� 1000 matrix to expand

the original d-dimensional data into 1000 dimensions.

We used our Python LSH implementation in all these

tests.5 To estimate the Uhash and Ucheck parameters needed
for the LSH optimization, we measured the total central

processing unit (CPU) time needed to retrieve the nearest

neighbors for a number of queries. We tested different

parameter values, and thus had the CPU time as a function

of k and L. Each experiment required different numbers of

hashing (Nhash) and checking (Ncheck) operations and took

a number of CPU seconds (Tcpu). We used a linear model,

NhashUhash þ NcheckUcheck ¼ Tcpu, and estimate the unit
the unit costs with linear regression. On a test machine, a

large 2-GHz 64-b CPU, and with this implementation, we

estimate Uhash is 0.4267 mS and Ucheck is 0.0723 mSAQ3 .

Since these times are in milliseconds, all the cost

estimates in this paper are also in milliseconds. For

each data set, we found the nearest neighbors for 5000

random queries. We could then estimate the dnn and

dany histograms that form the basis of the parameter
optimization.

III . OPTIMIZATION ALGORITHM

The optimization algorithm OAðn; �; dnn; dany; rÞ has five

input parameters. Here n is the number of points in a data

set and � is the acceptable probability that we miss the
exact nearest neighbor. The function (or an empirical

histogram) dnn is the pdf for the distance between any

query point and its nearest neighbor. Similarly, dany is the
pdf for distance between the query point and any random

point in the data set. Finally, r is the allowable Hamming

radius for multiprobe.

Given the dnn and dany distance distributions, we com-

pute the probabilities that a query point and the nearest
neighbor or any point will hash to the same quantization

interval (see Section III-B). These probabilities are a

function of the proposed bin width w. From the ratio of

these two probability functions we can then find the

optimal value for the bin width w, because this width
provides the maximum separation between true and false

positives in our search. Given the size of the database, we

know how many points will hash to each bucket and we

select k so that on average each multiline projection returns

approximately one candidate. We repeat this procedure L
times so that we obtain the true nearest neighbor with the

desired probability. The proof in Section III-D describes

these steps in more detail, and a simplification that is easier
to understand is shown in Section III-F. We start with some

implementation notes in Section III-A and describe how to

calculate collisions in Section III-B. These probabilities are

the key to our derivation.

A. Distance Profiles Versus Task
Our derivations depend only on the two distance

histograms. Commonly these histograms will be measured

empirically. Starting with the distance profiles leads to two

important points. First, everything we do is based on these

distance profiles, and the points that are used to create
these profiles define our task. We will make this claim

more precise in Section III-G. Second, our performance

guarantee � is true for any data with distance histograms

no worse than the ones we start with. We explain this

latter idea in the remainder of this section. The perfor-

mance of LSH depends on the contrast between our two

distance profiles.6 Moving the dnn distribution to the right

makes it harder for LSH to find the nearest neighbors
because the nearest neighbors are farther from the query.

Similarly, moving the dany profile to the left makes LSH

work harder because there will be more Bany[ (false

positive) neighbors returned by a search. Thus, we can

define more pessimistic upper and lower distance profiles.

The search for nearest neighbors will be suboptimal, but

the probability of returning the true nearest neighbor will

be above 1� � when averaged over all queries.
We can formalize left and right movements as follows.

In order to get stronger accuracy guarantees one can use

Blower bound[ dlnn and Bupper bound[ duany distributions

instead of sampled histograms. Here, by lower bound, we

mean that for any x, the integral of dlnn on ½0; x� is a lower
bound for the integral of dnn over the same interval. The

upper bound is defined in the opposite way. These two

distributions represent pessimistic estimates of the two
distributions.

With large databases we can easily subsample the data

and calculate dany for two random points in the smaller

data set. Unfortunately, the calculation for dnn is not as

easy. Calculating dnn requires finding the true nearest

neighbor and is most easily accomplished via a brute-force

search. Subsampling the data set over which we search for

the nearest neighbor leads to a pessimistic estimate of the
nearest-neighbor distribution. This is shown in Fig. 5.

5This Python LSH implementation and the Matlab code to calculate
the optimum parameters are available via GitHub: https://github.com/
yahoo/Optimal-LSH. 6Kumar formalized this in a nice way [17].
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Fortunately, the parameter construction process guaran-

tees that we will meet the performance requirements ð�Þ,
but we might have suboptimal computational effort.

Note that query sampling allows us to compute highly
accurate and tight upper and lower bounds for the actual

distributions. Also, using an upper/lower bound ensures

that rounding errors in the functional transformations we

use in our algorithm are not breaking accuracy guaran-

tees. Finally, bounds on the actual distributions can be

used in the case when the data distribution is not uni-

form. In this paper, we optimize the overall probabilistic

behavior, but if the data or query distribution is dense in
one portion of the space then one might want to use a

specially crafted distance distribution to model the inho-

mogenous distribution.

B. Collision Probabilities
Before deriving the optimal parameters we first derive

expressions for the collision probabilities due to projec-

tions. We want to know how likely it is that the true nearest

neighbor and any other data point are in the same bucket as

the query point. This calculation models the first stages of

the LSH algorithm: a dot product with a Gaussian random
vector, followed by scaling and quantization. We can then

combine k projections into a single table. From these

probabilities, we estimate the cost of an LSH lookup, and

then optimize the remaining parameters (Section III-C).

Our derivation starts with the histograms of the

distance between a query and 1) its nearest neighbor and

2) any neighbor in the database. Fig. 5 shows the distance

probabilities for our image data set and these two
distributions are well separated. But recall that the any-

neighbor distribution represents n2 points, so there are

still a significant number of points, including all the

nearest neighbors, in the left tail of this distribution.

It is known [27] that the normal distribution has the

following 2-stability property:

pdf �p � �v ¼ jpjNð0; 1Þ: (3)

In other words, the pdf of a dot product between a fixed

vector �p and a Gaussian random vector (zero mean, unit

variance) is equal to the pdf of the normal distribution

magnified by the norm of input vector j�pj. We now apply

this property not to a single vector j�pj, but to the pdf for the
difference vectors �q� �p and �q� �pnnð�qÞ. Recall that the
pdfs of norms of the vectors dnn; dany are the input of our

optimization algorithm. Thus, we can compute pdfs

gnn; gany of dot products between �q� �p and random

Gaussian vector by doing pdf multiplications between

dnn; dany and Nð0; 1Þ, as shown below [9]7

gnnðyÞ ¼
Z

Nð0; 1ÞðxÞdnn
y

x

� � 1

jxj dx (4)

ganyðyÞ ¼
Z

Nð0; 1ÞðxÞdany
y

x

� � 1

jxj dx: (5)

By way of illustration, Fig. 6 shows the probabilities

that the nearest neighbor and any neighbor points project

to a given normalized distance. Note that there is much

overlap in the distributions. We next normalize the
distances by w so that all points with the same integer

value will be in the same single-line bucket.

Given the difference value ð�p � �v� �q � �vÞ, the probabil-

ity that p and q are quantized to the same value is computed

using a triangle function �wðxÞ, as shown in Fig. 7. This

works because the bias random variable b ensures that the
quantization boundary is randomly positioned with respect

to the two points. When the two points, after projection,
have zero distance, then they will always fall in the same

bin. If their distance is 1 or more, then they can never fall

in the same bin. Thus, the � function increases linearly

from 0 to 1 on the interval ½�w; 0� and decreases sym-

metrically on ½0;w�. In order to compute the collision

7Datar [6] used pdf multiplication to show that his hash functions are
locally sensitive.

Fig. 6. Projectionhistograms for the EC1M image data set. The narrow,

jagged curves are the raw distance histograms, while the smooth

curves are the histograms of projection locations.

Fig. 5. Distance estimates versus sample size for the EC1M data set.

The nearest-neighbor distance estimates (left set of curves) shift to

the left as larger portions of the data set are used to estimate the

nearest-neighbor distribution. The any-neighbor distribution is an

unbiased estimate no matter what sample size is used. There are

870 000 images in the full data set.
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probabilities for a nearest-neighbor �pnn and average �pany
point we should integrate the product of g and �

pnnðwÞ ¼
Z

gnnðxÞ�wðxÞ dx (6)

panyðwÞ ¼
Z

ganyðxÞ�wðxÞ dx: (7)

A similar collision calculation applies for multiprobe.

Fig. 7 also shows the �0 function that corresponds to the

simplest multiprobe case, a one-sided search. The query

point falls in the right half of its (1-D) bucket and we want

to know the probability that a candidate point with the
given distance falls in the next bucket to the right.

This probability distribution starts at 0 for zero distance

because the query and the candidate are just separated by

the boundary. For distances between 0.5 and 1.0, the

probability is equal to 1.0 because at those distances the

candidate can only be in the adjacent bin. The probability

goes to zero as the distance approaches 1.5 because at these

distances the candidate point is likely to be two buckets
away from the query’s bucket. Note that the calculation is

symmetric. We show �0 for the right-hand side adjacent

bin, which is used when the query is on the right-hand side

of its bucket, but the same equation holds on the left.

Thus, the probability that the query and its nearest

neighbor fall into adjacent bins is

qnnðwÞ ¼
Z

gnnðxÞ�0
wðxÞ dx: (8)

Note that we use q, instead of p, to represent the proba-

bilities of falling in the adjacent bin. Similarly, the proba-

bility that the query and any other point fall into adjacent

bin is

qanyðwÞ ¼
Z

ganyðxÞ�0
wðxÞ dx: (9)

Fig. 8 shows the critical distributions that are the basis

of our optimization algorithm. We show both theoretical

(solid lines) and experimental (marked points) results for

the EC1M image data set. We calculate the distance pro-

files empirically, as shown in Fig. 5, and from these pro-
files we use (6) and (7) to compute the expected collision

probabilities pnn and pany. Both these probabilities are

functions of w. We use a similar process for the q
probabilities.

We implemented the LSH algorithm described here

using a combination of Python and NumPy. We then built

LSH indices with a wide range of quantization intervals

ðwÞ and measured the system’s performance. The discrete
points are empirical measurements of collision probabili-

ties (with k ¼ 1 and L ¼ 1). The measured distance pro-

files and probability calculations do a good job of

predicting the empirical probabilities shown in Fig. 8.

C. Combining Projections
Our model assumes that each projection is indepen-

dent of the others. Thus, we can combine the probabilities

of different projections and the probes of adjacent bins.

The probability that a query and its nearest neighbor fall

into the same k-dimensional bucket is equal to

pnnðw; kÞ ¼ pknnðwÞ: (10)

Then, the probability that two points have a Hamming

distance � r in one table is

pnnðw; k; rÞ ¼ pknnðwÞ þ kpk�1
nn ðwÞqnnðwÞ
þ � � � þ Cr

kp
k�r
nn ðwÞqrnnðwÞ: (11)

Fig. 8. Bucket collision probabilities as a function of bin width for

the EC1M data set of photos. All probabilities start at 0, since the

collision probabilities are infinitesimally small with small buckets.

The two sigmoid curves show the probabilities for the query’s bucket.

The two unimodal curves show the collision probability for the

data in the adjacent bin. The left curve in each set is the probability

of finding the nearest neighbor, and the right curve is any other point.

Fig. 7. These windows give bucket probabilities as a function of

distance. The triangle is DwðxÞ and describes the probability that

a data point at a distance of x is in the same bucket as the query.

The trapezoid is D0
wðxÞ and describes the same probability for the

closest adjacent bucket, given that we know the query is in the

right half of its bucket.
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In practice, we only consider small r, like r ¼ 0; 1; 2. Since
r � k, we note

pknnðwÞ � kpk�1
nn ðwÞqnnðwÞ � Cr

kp
k�r
nn ðwÞqrnnðwÞ (12)

and hence we only need the last term of (11)

pnnðw; k; rÞ � Cr
kp

k�r
nn ðwÞqrnnðwÞ: (13)

Similarly, the probability that any two points have a

Hamming distance � r in one table is

panyðw; k; rÞ ¼ pkanyðwÞ þ kpk�1
anyðwÞqanyðwÞ

þ � � � þ Cr
kp

k�r
anyðwÞqranyðwÞ (14)

and we approximate pany by

panyðw; k; rÞ � Cr
kp

k�r
anyðwÞqranyðwÞ: (15)

From the original distance data, we have calculated the

collision probabilities. We can now derive the optimal LSH
parameters.

D. Theoretical Analysis

Theorem 1: Let dnn, dany be the pdf for j�q� �pj distances
for some data set distribution D and a query distribution

Q. Then, the following statements are true.

1) LSH with parameters OA.parameters ðn; �; dnn;
dany; rÞ works in expected time OA.search_costðn;
�; dnn; dany; rÞ time.

2) It returns the exact nearest neighbor with

probability at least 1� �.
3) Parameter selection is optimal for any data set/

query distributions with the given distance profile

ðdnn; danyÞ.
Proof: We work backwards to derive the optimal

parameters. We predict the optimal number of tables L by

hypothesizing values of w and k. Given an estimate of L, we
find the k that minimizes the search time cost. We then

plug our estimate of k and L to find the minimum search
cost and thus find the best w.

1) Optimizing L: Given the collision probabilities as

functions of w, we examine the steps of the optimization

algorithm in reverse order. Assume that parameters k and
w are already selected. Then, we have to select a minimal L
that puts the error probability below �. Given w and k, the

probability that we will do all these projections and still
miss the nearest neighbor is equal to

1� pnnðw; k; rÞð ÞL� �

log 1� pnnðw; k; rÞð ÞL � logð�Þ: (16)

Let us use the approximation logð1� zÞ � �z here for
ð1� pnnðw; k; rÞÞ; this is fair since in real settings

pnnðw; k; rÞ is of order of 1=n [see (46)]. Thus, once we
find k and w, we should use (13) to find

Lopt ¼
� log �

pnnðw; k; rÞ
� � log �

Cr
kp

k�r
nn ðwÞqrnnðwÞ

: (17)

This is optimum, given the values of w, k, and r. Using
fewer tables will reduce the computational effort but will

not meet the error guarantee. Using more tables will

further (unnecessarily) reduce the likelihood of missing

the true nearest neighbor, below �, and create more work.

2) Search Cost: The time to search an LSH database for
one query’s nearest neighbors is8

Ts ¼ UhashLþ UcheckLnpanyðw; k; rÞ: (18)

With this computational model, the search time is

Ts ¼ Uhash
� log �

Cr
kp

k�r
nn ðwÞqrnnðwÞ

þUchecknð� log �Þ
Cr
kp

k�r
anyðwÞqranyðwÞ

Cr
kp

k�r
nn ðwÞqrnnðwÞ

: (19)

We call this our exact cost model because the only

approximations are the independence assumption in (10),

which is hard not to do, and (12), which is true in all cases

we have seen. One could optimize LSH by performing a

brute-force search for the parameters w and k that
minimize this expression. These calculations are relatively

inexpensive because we have abstracted the data into the

two distance histograms.

We can simplify this cost function to derive explicit

expressions for the LSH parameters. We note r � k and

8A more accurate estimate of the search time is: Ts ¼ UhashLþ
UbinC

r
kLþ UcheckLnpanyðw; k; rÞ where Ubin is the cost to locate one bin. In

practice, we only use small r, like r ¼ 0; 1; 2.Moreover,Ubin is usually much
smaller than Uhash. In practice, Uhash consists of tens of inner products for a
high-dimensional feature vector, while Ubin is just a memory location
operation. So we can assume UbinC

r
k � Uhash. And hence, search time can

still be approximated as UhashLþ UcheckLnpanyðw; k; rÞ.
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Crk � kr=r!. Furthermore, we define the following two
expressions (to allow us to isolate terms with k):

Ch ¼ Uhashð� log �Þr! pnnðwÞ
qnnðwÞ

� �r
(20)

and

Cc ¼ Uchecknð� log �Þ pnnðwÞ
qnnðwÞ

qanyðwÞ
panyðwÞ

� �r
: (21)

Now the search time can be rewritten as

Ts ¼
Ch

krpknnðwÞ
þ Cc

panyðwÞ
pnnðwÞ

� �k

: (22)

3) Optimizing k: The above expression is a sum of two
strictly monotonic functions of k: the first term increases

with k since pnnðwÞ is less than one, while the second is an

exponential with a base less than one since pany is always
smaller than pnn. It is difficult to find the exact optimum

for this expression. Instead, we find the value for k such

that the costs for k and kþ 1 are equalVthe minimum will

be in between. That is, we need to solve the equation

Ch
krpknnðwÞ

þ Cc
panyðwÞ
pnnðwÞ

� �k

¼ Ch
ðkþ 1Þrpkþ1

nn ðwÞ þ Cc
panyðwÞ
pnnðwÞ

� �kþ1

: (23)

Note that ððkþ 1Þr=krÞ ¼ ½ð1þ 1=kÞk�ðr=kÞ � er=k and

since r � k, then er=k is very close to 1. So

Ch
krpknnðwÞ

þ Cc
panyðwÞ
pnnðwÞ

� �k

¼ Ch
ðkþ 1Þrpkþ1

nn ðwÞ þ Cc
panyðwÞ
pnnðwÞ

� �kþ1

� Ch
krpkþ1

nn ðwÞ þ Cc
panyðwÞ
pnnðwÞ

� �kþ1

(24)

or by multiplying both sides by krpkþ1
nn ðwÞ

ChpnnðwÞ þ Cck
rpkanyðwÞpnnðwÞ ¼ Ch þ Ccp

kþ1
anyðwÞkr: (25)

With simplification, we have

Ccp
k
anyðwÞkr pnnðwÞ � panyðwÞ

� �
¼ Ch 1� pnnðwÞð Þ (26)

or in other words

pkanyðwÞ ¼
Ch 1� pnnðwÞð Þ

Cckr pnnðwÞ � panyðwÞ
	 
 : (27)

Putting the definition of Cc and Ch into the above, we

have

pkanyðwÞ ¼
Ch 1� pnnðwÞð Þ

Cckr pnnðwÞ � panyðwÞ
	 


¼

Uhash

Ucheck
1� pnnðwÞð Þr!

kr pnnðwÞ � panyðwÞ
	 


n
qanyðwÞ
panyðwÞ

� �r : (28)

Thus, the optimum k is defined by the fixed point

equation

k ¼ log nþ r log kþ �ðwÞ
� log panyðwÞ

(29)

where

�ðwÞ ¼ log
pnnðwÞ � panyðwÞ
	 


1� pnnðwÞ
þ r log

qanyðwÞ
panyðwÞ

þ log
Ucheck

Uhash
� logðr!Þ: (30)

We wish to find a value for k that makes both sides of

this equation equal. First, define k0 ¼ ðlog nþ �ðwÞÞ=
� log panyðwÞ so we can express k as a linear function of r

k � k0 þ r� log panyðwÞ logðk0Þ ¼ k0 þ r0 logðk0Þ: (31)

Putting this approximation into both sides of (29) gives

us k0þ r0 logðk0 þ r0 logðk0ÞÞ ¼ k0 þ r0 logðk0Þþr0 logð1þ
r0ðlogðk0Þ=k0ÞÞ. The difference between the left- and right-
hand sides is �r0 logð1þ r0ðlogðk0Þ=k0ÞÞ, which is small

and close to 0. So k ¼ k0 þ r0 logðk0Þ is a good approximate

solution for (29).
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The optimum value for k is

kopt �
log nþ �ðwÞ
� log panyðwÞ

þ r0 log
log nþ �ðwÞ
� log panyðwÞ

� �
: (32)

4) Optimizing w: To simplify the notation in the follow-

ing derivation we omit the dependence of the projection

densities on w and write pnn and pany instead of pnnðwÞ and
panyðwÞ.

Now that we know how to select the optimal k and L for
a given w, we rewrite the whole cost function as a function

of w and select wopt as the argmin of the resulting expres-
sion. Putting (34) into (22), the search time is

Ts ¼
Ch
kr

þ CcðpanyÞk
� �

p�k
nn : (33)

We do not have an explicit formula for pknn, but from (28),

we know the value of pkany in terms of algorithm param-

eters (Ucheck, etc.) and our distributional measurements

(pnn, etc.). Thus, we can convert pknn to p
k
any by noting that

x ¼ ylog x= log y, therefore

p�k
nn ¼ p�k

any

h i log pnn
log pany

(34)

Ts ¼
Ch
kr

þ CcðpanyÞk
� �

p�k
any

h i log pnn
log pany

: (35)

Using expressions for pkany (28) and Ch and Cc [(20) and
(21)], we find the following expression for Ts:

Ts ¼ ð� log �ÞUhashr!
pnn
qnn

� �r
1

kr
ð1� panyÞ
ðpnn � panyÞ

� �

�
krðpnn � panyÞnUcheck

qany
pany

h ir
r!

ð1� pnnÞUhash

8<
:

9=
;

log pnn
log pany

: (36)

To minimize the LSH search time, we should find w to

minimize (35)

wopt ¼ argmin½Ts�: (37)

To find the optimum value, we evaluate (37) using the

equation for k (32) over a range of values. We choose the w
that gives the minimum CPU time. This is a relatively

trivial computation compared to the amount of effort
required to find the dnn distribution that is the key to our

optimization.

Given a description of the data (pnn and pany) and

choices for w and k, we know how likely we are to find

the true nearest neighbor. We have to check enough

tables to make sure we meet the performance guaran-

tee. Thus, we use wopt (37) and kopt (32) to compute

Lopt by

Lopt ¼
� log �

Cr
kopt

p
kopt�r
nn ðwoptÞqrnnðwoptÞ

& ’
: (38)

L should be rounded up, otherwise we will not meet our

performance requirements ð�Þ.

5) Search Points: Using (15) and (28), the average

number of points retrieved in one hash table is

npanyðw; k; rÞ � nCr
kp

k�r
anyðwÞqranyðwÞ

¼ qanyðwÞ
panyðwÞ

� �r
n
kr

r!
pkanyðwÞ

¼ Uhash

Ucheck

1� pnnðwÞð Þ
pnnðwÞ � panyðwÞ
	 
 : (39)

Note that this result is independent of k and r. In other
words, for all Hamming distances r, the optimum multip-

robe LSH chooses k such that the above equation is

satisfied.

Furthermore, as the cost of checking points ðUcheckÞ
goes up, the number of points per returned bucket goes

down. Similarly, a larger pnn decreases ð1� pnnðwÞÞ=
ðpnnðwÞ � panyðwÞÞ and hence decreases the number of

returned points. We further note that the ratio of
probabilities in (39) is often not far from 1, so the number

of points in a bucket is determined by Uhash=Ucheck. As the

relative cost of Ucheck goes up, the optimum number of

points per bucket goes down, so (hopefully) we spend less

time checking candidates.

Our model includes two parameters that describe the

cost of major operations in the LSH process. Since both

costs are measures of time, it is only their relative value
ðUcheck=UhashÞ that matters to the parameter calculation.

Fig. 9 gives one a feel for their effect. The value for w is not

affected by these costs. The optimum number of projec-

tions ðkÞ increases as the cost of checking candidates

increases, to better weed out false positives. The number of

tables ðLÞ must then also increase to make sure we meet

the performance goal ð�Þ.
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The costs of a search and the space needed for the

optimum index are given by

search costopt ¼ Lopt Uhash þ npkoptanyðwoptÞUcheck

� �
(40)

index spaceopt ¼ Loptn: (41)

6) Summary: Wrapping up our proof, the functional
transformations turn the distance-profile information into

collision probabilities as a function of quantization

threshold w. We presented formulas for computing optimal

L for any k and w (17) and for computing the optimal k for

any given w (32). Then, we rewrite the search cost as a
function of the single argument w (37). We walk these steps

in the reverse order to implement this algorithm. We select

wopt as the argmin of the search cost, then we get

kopt ¼ koptðwoptÞ and Lopt ¼ Loptðkopt;woptÞ. Our error

probability is less than � by the construction of L and our

choice of parameters is optimal due to the argmin choice of

w and conditional optimality of other parameters. We do

not have an expression for the optimal r. But since the best r
is small, it is easy to pick an r and evaluate the cost.

Fig. 10 shows typical results for real and synthetic data.

While the cost and performance vary over greatly as we

vary the bucket width w, the optimization algorithm

guarantees that LSH algorithm will meet the performance

guarantee ð�Þ. We explain the discrepancies between the

predictions and the experimental data in Section IV-A2.

E. Without Multiprobe
For completeness, we show here the formulas for the

optimum parameters without multiprobe ðr ¼ 0Þ. The
expression for pkany (27) becomes

pkany ¼
Uhashð1� pnnÞ

Uchecknðpnn � panyÞ
: (42)

We can then rewrite this to find the optimum for k without
multiprobe

kopt0 ¼
log nþ log pnnðwÞ � panyðwÞ

	 

� log panyðwÞ

� log 1� pnnðwÞð Þ þ logUcheck � logUhash

� log panyðwÞ
: (43)

Fig. 10. Number of candidates to check (top) and search time (bottom) for LSH indices built for the EC1M (left) and the synthetic 40-dimensional

data sets (right). For each potential bucket width ðwÞ, we find the optimum values of k and L, run an experiment with those parameters,

and then measure the performance of the LSH index. The solid lines are the predictions based on the ‘‘exact’’ optimization parameters,

while the markers show the measured performance.

Fig. 9. Changes in LSH parameters as costs change. These three curves

show how the optimal parameters changes as the ratio of costs

due to checking candidates increases over the cost of

computing the hash.
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The equation for the computational time Ts (36) becomes

Ts0 ¼ ð� log �ÞUhash
ð1� panyÞ
ðpnn � panyÞ

� ðpnn � panyÞnUcheck

ð1� pnnÞUhash

� � log pnn
log pany

: (44)

We find the wopt0 that minimizes this equation. The

equation for Lopt (38) without multiprobe becomes

Lopt0 ¼
� log �

pknnðwÞ

 �
: (45)

F. Simplified Parameter Selection
It is instructive to further simplify our estimates of the

optimal parameter choices. We approximate the optimal k
by keeping only the first argument in the first numerator of

(43) to find

ksimp ¼
log n

� log panyðwsimpÞ
: (46)

We perform this simplification since 1) we anticipate the
log n term to be the largest factor in the numerator; and

2) this change allows great simplifications in further steps

of the algorithm. The probability panyðwsimpÞ is often close

to 0.5 so in effect we partition the space with log n binary

splits. Thus, each bucket contains on average one point.

We just make a change of notation in (45) to write this

expression for the simplified L

Lsimp ¼ � log �

p
ksimp
nn ðwsimpÞ

: (47)

Now we want to find a simplified expression for w. It is
easiest to start with (22) and set r ¼ 0. We drop the

dependence on � because it does not affect the argmin, and

note that the simplified formula for k (46) implies the

equality p�k
any ¼ n. Therefore

wsimp ¼ argmin
Uhash þ Uchecknp

k
any

pknn

¼ argmin
Uhash þ Ucheck

pknn

¼ argminðUhash þ UcheckÞ p�k
any

� �log pnn= log pany

¼ argminðUhash þ UcheckÞnlog pnn= log pany : (48)

Thus

wsimp ¼ argminðlog pnn= log panyÞ (49)

is the optimal choice for w in this case. This is an

interesting choice because we are essentially choosing a w
that maximizes the contrast, in some sense, between the

two collision curves. Gionis [8] found a similar expression
for a lower bound on the probability of retrieving the

nearest neighbor ðpk1Þ, and we can maximize performance

making his lower bound as large as possible.

The simplified costs of a search (SC) and the space

needed for the index (IS) are given by

SCsimp ¼ Lsimp Uhash þ npksimp
any ðwsimpÞUcheck

� �
¼ ðUhash þ UcheckÞnlog pnnðwsimpÞ= log panyðwsimpÞ (50)

ISsimp ¼ Lsimpn: (51)

There are several things we can say about these

simplified parameter choices. First, we choose a w that

minimized the difference between the logs of pnn and pany.
This makes sense since the quantization step means we

make a decision, thus throwing away information, and we

want to pick a w that gives us the best performance on the
basic task. Furthermore, we choose ksimp so that we have

on average one point in each bucket after doing the k
projections. Finally, Lsimp is chosen so that we find the true

nearest neighbor with the desired � error rate.

G. Other Forms of LSH
The derivation we present here is valid for many

different interpretations of dnn and dany. Here we describe
three different variations of the nearest-neighbor problem:

an arbitrary neighbor, the first n neighbors, and near

neighbors. Instead of the nearest neighbor, we can

calculate the distance, for example, to the 42nd closest
neighbor. The parameters we derive allow LSH to find the

desired neighboring point, in this case the 42nd nearest

neighbor, with a probability at least 1� �. LSH imple-

mented with these parameters is likely to also return the

1st through 41st points, but our estimates of the

computational costs are accurate because these points

are part of the dany distribution used to calculate the search
cost. Similarly, we can measure and use the distance to
1000 of a query’s nearest neighbors. Using the parameters

we derive here, we can guarantee that LSH will return

each of the first 1000 nearest neighbors with probability at

least 1� �. Finally, the near-neighbor problem is often

specified as finding a neighbor within a distance 1þ � of
the true nearest neighbor. Our derivation still applies if dnn
is based on all the points with distance to the query less
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than dtrueð1þ �Þ where dtrue is the distance to the (empir-

ically measured) nearest neighbor.

More precisely, the distance distribution dnnðxÞ is a
conditional probability

dnnðxÞ ¼ Pðdistanceðq; pÞ ¼ xjp belongs to

q0s nearest-neighbor subsetÞ: (52)

By this means, we can define a query’s nearest-neighbor
subset in many different ways, and our theory will always

hold. In all cases, the performance guarantee becomes: we

guarantee to return any point �p in �q’s Bnearest-neighbor[
subset with a probability of at least 1� �. Finally, to be

clear, we note that dnn, gnn, and pnn are all conditional

probabilities, depending on the definition of the nearest-

neighbor subset.

IV. EXPERIMENTS

We describe two types of experiments in this section:

validation and extensions. We first show that our theory

matches reality by testing an LSH implementation and

measuring its performance. This validates our optimization

approach in several different ways. Most importantly, we
show that we can predict collisions and the number of

points returned. We also show how multiprobe affects

performance. We use synthetic data for many of these

experiments because it is easier to talk about the char-

acteristics of the data. We see the same behavior with real

audio or image data (as shown in the illustrations of the

previous section). Second we use the theory describing

LSH’s behavior to discuss how LSH works on very large
databases and to connect LSH and other approaches. We

performed all experiments using LSH parameters cal-

culated using the Bexact[ parameters from our optimi-

zation algorithm (not brute force or the simplified

approximations).

A. Experimental Validation

1) Combining Projections: Fig. 11 shows the number of

retrieved results as a function of the number of projections

ðkÞ for one table ðL ¼ 1Þ. We base the theory in Section III-C
on the hypothesis that each projection is independent and

thus the theoretical probability that any one point (nearest

or any neighbor) remains after k projections is pk. However,
we see that the theory underestimates the number of re-

trieved points, especially for large values of k. (The discre-
pancy is smaller for the nearest-neighbor counts.)

The four panels of Fig. 11 suggest that the deviation is

related to the dimensionality of the data. In retrospect this
makes sense. The first k ¼ d projections are all linearly

independent of each other. The ðdþ 1Þth projection in a

d-dimensional space has to be a linear combination of the

first d projections. Independence (in a linear algebra

sense) is not the same as independence (in a statistical

sense). Our projections are correlated.

In the remaining simulations of this section, we also show

a Bcompensated[ prediction based on the experimental
performance after the k projections. To gauge the discrep-

ancy when k > d, we do a simulation with the desired k and
measure the true pany performance. This then forms a new

estimate of panyðw; k; rÞ that we plug into the rest of the

Fig. 11. Probability of finding any neighbor. These four panels show

the probability of finding the true nearest neighbor as a function of k

in four different synthetic data sets. Note the relative magnitude

of the discrepancy between theory and experiments for large k.

Fig. 12. Quality of the LSH results. These four panels show the

probability of finding the true nearest neighbor in four different

synthetic data sets. In each case, the design specification 1� �

requires that the correct answer be found more than

50% of the time.
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theory. This shows that most of the discrepancies that follow
are due to the (under) performance of the k projections.

2) Overall Results: Fig. 12 summarizes the quality of the

points retrieved by LSH for the four test dimensionalities.

These four panels show the probability of getting the true

nearest neighbor for a large number of random queries.

For each value of w around the theoretical optimum we

predict the best parameters (lowest CPU time) that meet
the � performance guarantee. We are thus showing opti-

mum performance for all values of w (although only one of

these bucket sizes will have the absolute minimal CPU

time). In all but one trial the measured retrieval accuracy

rate is greater than the 0:50 ¼ 1� � target.

Fig. 13 shows the number of points returned in all L
buckets for all four dimensionalities. This result is im-

portant because it determines the number of points which
must be checked. If we return too many points, then the

retrieval time is slow because they all require checking.

While there are discrepancies, the Bcompensated[ curve is
a pretty good fit for the experimental results, especially for

the larger dimensionalities.

Fig. 14 shows the overall computational effort. These

tests were all performed on the same machine using our

implementation of LSH in Python. While the long vectors
mean that most of the work is done by the NumPy nume-

rical library, there is still overhead in Python for which we

are not accounting. In particular, the estimates are better

for the longer times, perhaps because this minimizes the

impact of the fixed overhead in a query.

Fig. 15 demonstrates the sensitivity of an LSH index to

its parameters. For each w and k, we select the L that meets

the performance guarantee and then plot the time it would
take such an index to answer one query. This figure shows

a long, narrow valley where the parameters are optimum.

This might explain the difficulty practitioners have in

finding the optimal parameters to make practical use of
LSH. Note that the curve in Fig. 10 shows the minimum

computation time as a function of just wVwe choose

optimum values for k and L. Thus, the 1-D curves of Fig. 14

follow the valley shown in Fig. 15.

Finally, we return to the real-world experimental re-

sults shown in Fig. 10. We believe that underestimating

the independence of the k projections, as shown in

Fig. 10, explains the discrepancy in the number of EC1M

Fig. 13. Number of LSH candidates. These four panels show the

number of candidates returned in an optimal implementation

of LSH, as a function of the bin width.

Fig. 14. CPU time per query. These four panels show the amount

of CPU time per query in an optimal implementation of LSH,

as a function of the bin width.

Fig. 15. CPU time as a function of k and w. At each point, we use the L

that guarantees we meet the performance guarantee, and thus costs

dramatically increase when the wrong parameters are used. The

minima found using the brute-force (*) and ‘‘exact’’ (x) calculations

are on top of each other. The simple estimate is close and is still in

the valley. All times are in milliseconds, and for display purposes,

we limited the maximum value to 1000 times the minimum value.
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candidates. This suggests that the intrinsic dimensional-
ity of this image feature data is low. Nevertheless, the

total CPU time is predicted with good accuracy, probably

because the query time is dominated by the Python

index. Our higher dimensional synthetic data are a better

fit to the model.

3) Multiprobe: Multiprobe offers its own advantages and

disadvantages. In the analysis in this paper, we limit the
Hamming distance between the query bucket and the

buckets we check. Better approaches might look at the true

distance to each bucket and thus might choose a bucket

with a Hamming distance of 2 before all the buckets with a

distance of 1 are exhausted [18]. Still most of the benefit

comes from the nearest bucket in each direction and this

simplification allows us to understand the advantages of

multiprobe.
Fig. 16 shows the effect that multiprobe has on the

index parameters. In this plot, we show the probability of

retrieving the nearest neighbor pnn as a function of the

number of tables ðLÞ, with and without multiprobe.

Multiprobe, even with r ¼ 1, reduces the number of tables

that are needed, in this case cutting it in half, while still

exceeding the performance guarantee. As expected, the

theoretical curves underestimate the collision probabilities
because the projections are not independent. We com-

pensate for this by adjusting the theory with a compen-

sation factor equal to pðk;wÞ=pðwÞk where pðk;wÞ is the

measured collision rate (either pnn or pany) using the

optimum w and k.

B. Experimental Extensions
We can use the distribution results from Casey [4] to

estimate dnn and dany over many orders of data set size, and

thus we can make predictions, based on the optimization
in this work, of how LSH behaves on larger data sets. We

assume independent and identically distributed Gaussian

coefficients in each vector. The any-neighbor distribution

comes from the difference of two Gaussian random

variables and thus the distance distribution is described

by a �2 distribution. On the other hand, Casey shows that

the nearest-neighbor distribution, as a function of distance

x, has the form cxðc�1Þe�ðwcÞ. In this expression, c and w are
quantities defined in Casey’s paper and are based on the

dimensionality and the size of the data set. This

approximation is valid for large values of N. We simulate

data sets with dimensionalities between 4 and 128, and

with sizes from 500 000 to 1 billion points.

1) Optimum Bucket Size: LSH originally seemed ap-

pealing, especially compared to k-d trees, because,
depending on w, LSH splits the points from a single

projection into many, many different buckets. Just like a

normal (string) hash, there could be an explosion of

buckets that turn a lookup into a Oð1Þ process. Yet a

range of experiments, both with real data and synthetic

data, suggest that small buckets are not the optimum

solution.

Fig. 17 shows the predicted panyðwÞ over a large range
of data set sizes. We use pany instead of w to characterize

our performance because this probability is a rough

measure of the spread of the data into different buckets.

If panyðwÞ ¼ 0:5, then there is a 50% chance that any

two points share the same bucket. (The complete story is

more complicated since there are potentially an infinite

number of possible bins and Gaussian data are

unbounded.)
As shown in Fig. 17, the optimum panyðwoptimumÞ varies

over a small range between 0.53 and 0.60, suggesting that

two buckets per projection is best. We do all this work and

Fig. 16. Multiprobe probability comparison test. The lower set of

curves shows the probability of retrieving the nearest neighbor

without multiprobe, while the upper set shows a better retrieval

rate, for the same L, when we explore a Hamming radius of 1.

Fig. 17. Optimum pany over a wide range of data dimensionality and

number of data points. Even over all these orders of magnitude,

the optimum value of pany never dips below 0.5.
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we end up with binary splits from each projection.9 This

result is also consistent with that shown, for example, in

Fig. 10, where the search cost only goes up slightly as w
gets larger. This is the first demonstration that we know of

that shows the power of binary LSH. Over this wide range

of parameter values we see no case where a small w, and
thus more bins per projection, is optimal.

Fig. 18 shows the optimal cost, in points to check, as

we vary the data set size and dimensionality. Even with

1 billion (109) points the number of points we must

check is predicted to be less than 50 000 points (the
real number is probably higher because of the interde-

pendence of the projections).

2) Multiprobe: Fig. 19 summarizes the computation and

memory differences with multiprobe. Using the synthetic

data sets described above, we see that the optimum w
declines by a little bit (perhaps 10%). More interestingly,

there is little benefit in computational cost. In fact, the
computational cost goes up by as much as a factor of 2.5.

On the other hand, the amount of memory needed goes

down by a factor of 2.5. This is good because in our initial

experiments with LSH, and thus the motivation for our

study here, we found that the number of distance checks,

and thus perhaps cache and virtual memory misses,

dominated the computational effort. Reducing memory

usage is an important benefit of multiprobe LSH.
The optimum pnn affects the possible performance of

multiprobe. The optimum pany without multiprobe is often

close to 0.5. The nearest-neighbor probability pnn is always
greater than pany. Thus, with pnn for any one projection

well above 0.5, the chance of finding the nearest neighbor
in the adjacent bin is small (since qnn G 1� pnn G 0:5).

V. RELATED AND FUTURE WORK

There are many methods for finding nearest neighbors. In

this section, we talk about some alternatives, how the

current analysis relates to these other approaches, and

suggest avenues for new research.

A. Binary LSH
It is interesting to examine the search cost as a function

of the quantization interval w. Fig. 10 is a typical result.

The cost declines to a minimum and then only goes up a bit

(perhaps a factor of 2) as w gets very large. We see the

same behavior in many of our tests. This suggests that

performing binary splits might be a reasonable idea.
Instead of using a random bias, we might split the data in

half, so that pany ¼ 0:5. The easiest way to do this is to

perform a projection and then split the data at the median,

as suggested by He et al. [11]. We have not investigated

whether the suboptimal performance, as predicted by the

derivation here, for large w is due to the fact that the

random bias b is unlikely to split the data exactly in half.

The popularity of binary LSH (see Section II-B) and its
power led us to wonder about the connection with k-d
trees, a popular deterministic approach for finding nearest

neighbors.

B. k-d Trees
The most prominent alternative to probabilistic algo-

rithms such as LSH are space-partioning schemes such as

k-d trees. The simplest form of k-d trees simply splits the
data at each node using axis-aligned projections and a

simple threshold [2]. We do this recursively, until the leaf

nodes are as small as desired. To answer a query, we

examine each node, making a decision to go left or right.

At the leaf node, we test a small number of candidate

points for the smallest distance. Then, we go back up the

tree, revisiting each decision we made, and test whether

the distance to the decision boundary is closer than closest
point found so far. If the distance to the decision boundary

is closer than the current best distance, then we evaluate

the other branch of the tree. A more sophisticated tree

approach chooses the decision or projection direction to fit

the data [5]. A data-adaptive approach such as a random

projection (RP) tree finds good splits because it adapts to

the data. This is useful if the data are inhomogeneous or

have local structure, as is usually the case. But in the end
all of these approaches split the data into buckets of

arbitrary shape.

We can better understand the similarities and differ-

ences of these different approaches by examining the

decision boundaries for k-d trees, RP Trees, and LSH, as

shown in Fig. 20. A simplified analysis based on fully

random data minimizes the benefits of the local decisions

9It is interesting to note that some of the first work on LSH [8]
assumed the data were represented as bit vectors, but later work
generalized LSH to multiple buckets using quantization.

Fig. 18. Number of candidates that need to be checked to find the

nearest neighbor as a function of true data dimensionality

and the number of data points.
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in k-d trees. k-d trees especially shine when there is local

structure in the data, and the decisions made at one node

are quite different from that of another node. But still, it is
useful to consider this random (worst) case, especially

since the analysis is easier.

With uniform data, a k-d tree with a depth of k levels is
analogous to LSH with k (global) projections, a binary

decision where panyðwoptimumÞ ¼ 0:5, and L ¼ 1. Without

backtracking, a k-d tree is unlikely to retrieve the nearest

neighbor.

But with backtracking, a k-d tree can retrieve the exact
nearest neighbor (with � ¼ 0). At each level of the tree,

the best branch is checked, and then the best or smallest

distance found so far is compared to the distance between

the query point and the decision boundary. If the best

distance so far is large enough, then we check the alternate

node. This can be painful, however, because if one checks

both sides of each node, then one checks the entire tree.

The computational cost of this kind of algorithm is shown
in Fig. 21. Even with a relatively low dimensionality such

as 20 we are looking at all the data points. This is due to the

curse of dimensionality and the structure of the tree.

It is hard to make use of the neighborhood information

in a tree because its structure is inhomogenous. Due to the

local decisions at each node, a bucket nearby the tree

might not be adjacent in feature space to the query bucket.

Thus, backtracking is an exhaustive approach (compared to
the regular approach in multiprobe). One could be smarter

about checking alternative nodes, in a manner analogous

to multiprobe, and thus could check fewer buckets. But the

overall algorithm looks a lot like binary LSH with L ¼ 1. As

shown above, for homogeneous data, our LSH analysis

suggests that this is suboptimal.

A more powerful alternative is a forest of k-d trees [21],
[20]. As implied by the name, multiple (random) trees are
built to answer the query. Backtracking is not performed;

instead the inherent randomness in the way the data are

grouped by different trees provides a degree of robustness

not found in a single tree. Thus, when the lookup is

performed with L k-d trees it has much of the same flavor

as LSH with L k-dimensional indices. It would be

interesting to analyze a forest of k-d trees using the

approach described here.
Finally, binary LSH is interesting, especially since we

have found that under the optimum LSH parameters each

dot product is being used to split the data into two buckets.

By going with binary LSH, we give up on having an infinite

number of (potential) buckets but the analysis is simpler.

Fig. 20. Data buckets for two kinds of k-d trees and LSH. These three images show typical bucket shapes for random 2-D data using

axis-aligned four-level-deep k-d trees, RP trees, and LSH with four projections.

Fig. 19. Effect of LSHmultiprobe on number of candidates to check (left) andmemory (right). In both cases, the ratio of the original cost over the

multiprobe cost is calculated. For high values of the data dimensionality ðdÞ and number of points ðnÞ, multiprobe LSH with a Hamming radius

of 1 ðr ¼ 1Þ requires more candidate checking but reduces the memory usage, all the while maintaining the same performance guarantee ð�Þ.
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One possible explanation for the superior behavior is that

adding a new quantization interval (by making w smaller)
must Bcost[ more than adding a new direction (increasing

k by 1).
Note that Paulevé et al. [22] talks about the perfor-

mance of a number of different Bmore advanced[ quanti-

zation techniques. They even show Fig. 3 for random

projections with a very small quantization interval.

Interestingly, our results indicate that larger quantization

interval is better. It is not clear whether this is true because
random projections are suboptimal and the best one can do

is a binary split, or whether simpler is better is true in

general with high-dimensional spaces.

C. Similarity Modifications
One can also improve LSH performance by optimizing

the projections [1], [15], [16], [26]. Random projections

are easy to analyze, but ignore the structure that is often

found in data. One can take several different approaches to

choose better projections. While we do not analyze these

approaches in this paper, we hope that the parameter

estimates we derive here are a useful starting point for
understanding nonrandom projections.

In LSH, the projections are chosen randomly (accord-

ing to some distributions). However, when the budget of

bits is small, e.g., only tens or hundreds of bits for each

sample, random projections may not be effective enough.

Thus, several recent papers, for instance, one on spectral

hashing [11], learn more effective projections by splitting

the data into equal-sized bins. He et al.’s goal is to optimize

computational effort and the ability to find the true nearest
neighbor. This is different from our approach in two ways.

First, in our work, we use a secondary (exact) hash to map

the k-dimensional bucket ID into a linear bucket ID. Thus,

the effect of larger k is extra vector multiplications, which

are cheap because the coefficients often reside in a nearby

memory cache. Second, we optimize total CPU time under

an absolute performance guarantee ð�Þ.
Researchers at Google start with a desire to maximize

the difference between audio fingerprints from the same

and different songs [1]. Starting with a high-dimensional

feature vector based on a spectrogram (image), they then

learn projections that give image segments from the same

song and the same label (either 0 or 1). No single pro-

jection (learner) does this classification perfectly, but in

concert they do very well. This is the same principle that

makes LSH workVeach projection only tells us a little
about another point’s similarity. Then, each bit vector

identifies an LSH bucket containing other candidate

neighbors.

VI. CONCLUSION

In this paper, we have shown how to derive optimum

parameters for LSH. We start with estimates of the
nearest-neighbor and any-neighbor distributions and the

desired performance level (retrieve the absolute nearest

neighbor with probability 1� �). Based on a simplified

version of our analysis, we see that we should choose the

quantization interval w to maximize the contrast between

the nearest-neighbor and any-neighbor collision probabil-

ities. Then, the number of dot products that are combined

to make one k-dimensional projection causes on average
each k-dimensional bucket to contain just one point.

Finally, we use L k-dimensional projections to get the

probability of finding the nearest neighbor above 1� �.
We believe this the first derivation of the optimal

parameters for LSH.

We extend our analysis to multiprobe, where we

increase the chances of retrieval success by also looking in

nearby buckets. This changes the optimal bucket size, and
thus the other parameters. With some extra computa-

tional effort one can significantly reduce the memory

requirements.

We confirmed our approach by numerical and exper-

imental simulations on a wide range of theoretical and real

databases. Most interestingly, and to our surprise,

choosing w so that one gets a binary split at each projection

turns out to be near-optimum. This led us to think harder
about the connection between probabilistic approaches

such as LSH and deterministic approaches such as k-d
trees. In the simplest case, the differences are not that

great (a local decision versus a global projection).

Many papers have been written claiming results that are

superior to those obtained using LSH. As we discovered,

and thus the motivation for this work, it is hard to find the

Fig. 21. Computational query costs for k-d trees. Three sets of data

(5-, 10-, and 20-dimensional uniform random) were used to measure

k-d tree performance. The solid lines show the number of candidates

checked for normal (axis-aligned) k-d trees and the dashed lines

show the RP variant. (This is not a good example of the power of RP

trees because there is no local structure to exploitVthe data are full

dimensional.) Even for a relatively low-dimensional data set with

20 dimensions, we are still forced to evaluate the distance to each

point. (The d ¼ 20 curve nearly equals 10 000 for all values of k.)
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best parameter values using exhaustive search, especially in
the large databases that we find interesting. In this paper,

we do not claim that LSH is the best solution. Instead, we

hope that this paper, the analysis, and the optimization

algorithm we describe will be a good starting point for

anybody who wants to find nearest neighbors, using

random or deterministic algorithms. h
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