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ABSTRACT
We are interested in using context to improve speech recog-
nition and speech understanding. Knowing what the user is
attending to visually helps us predict their utterances and
thus makes speech recognition easier. Eye gaze is one way
to access this signal, but is often unavailable (or expensive
to gather) at longer distances. In this paper we look at joint
eye-gaze and facial-pose information while users perform a
speech reading task. We hypothesize, and verify experimen-
tally, that the eyes lead, and then the face follows. Face
pose might not be as fast, or as accurate a signal of visual
attention as eye gaze, but based on experiments correlat-
ing eye gaze with speech recognition, we conclude that face
pose provides useful information to bias a recognizer toward
higher accuracy.

Categories and Subject Descriptors
I.2.7 [Natural Language Processing]: Speech recognition
and synthesis

General Terms
Evaluation
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1. MOTIVATION
Several research groups have demonstrated improved speech

recognition with access to a user’s eye-gaze information [1,
6]. But eye-gaze information is difficult to obtain at a dis-
tance. In this paper we wish to demonstrate the utility of
face-pose information as a proxy for eye-gaze information.

Eye gaze information will always be the better source of
information. The fovea is highly specialized for gathering
information, and is the portion of the eye with the highest
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spatial resolution. It is certainly possible to glimpse infor-
mation from the corner of one’s eye, but that is probably
not how most people read information.

The system we envision combines a screen with speech
recognition. Explicit pointing will always be valuable, using
gestures, touch or a pointing device. This paper deals with
eye-gaze and face-pose information because one must look at
an object before you can point at it. This information makes
the recognizer’s job easier because intent and visual history
are both important contextual information for a recognizer.

Our hypothesis is that the orientation of the face, or its
pose, is a proxy or an approximation of eye gaze. While
one can certainly gaze in a wide range of directions without
moving one’s head, the natural action appears to be that
the eyes move first, and then the head follows. We wish
to characterize the temporal course of the head-pose signal,
and its accuracy. Both the eye-gaze and the face-pose signals
function as a spotlight, effectively selecting certain words on
the screen and potentially biasing the speech recognizer’s
language model (LM).

2. EXPERIMENTAL SETUP
We collected joint data using a Tobii REX for eye-gaze

data, and a Microsoft Kinect for face-pose data. Users were
asked to read text at random locations on a large screen,
thus insuring that the user was focused on the task at hand.

Our two sensors have conflicting requirements. The eye-
gaze hardware works best with close distances so it can cap-
ture an image of the user’s eyes with high resolution, while
the face-pose software wants to see more of the body so it can
reliably detect the user and identify the face. We wanted to
collect simultaneous eye-gaze and face-pose data, so we had
a narrow range of user-to-screen distances so as to satisfy
the requirements of both devices.

Figure 1 depicts our overall experiment setup. A large
(132cm diagonal) display shows text to the user, who stands
at a distance of 74cm from a 40 dots per inch (dpi) screen. A
Kinect is mounted above the display and looks down on the
user, and a REX is mounted at the bottom of the display
and looks up at the user’s eyes. The user’s speech utterances
were collected with a headset-mounted noise-cancelling mi-
crophone but are not analyzed in this paper. Instead, we
compare the relation between eye gaze and face pose in our
data with data from a previous experiment that examined
the relationship between eye-gaze and speech-recognition
performance.



Figure 1: Our basic experimental setup. A user sees
a blank screen, and then seeks and reads text placed
at random on the screen.

2.1 Tobii REX Eye Tracker
The Tobii REX is an inexpensive eye-tracking sensor that

detects infrared glints using a small camera. The specifi-
cations for the REX state that it is useful for screen-to-eye
distances between 40 and 90cm. In our setup, we got posi-
tion updates at about 30Hz in pixel coordinates. We used
the vendor-supplied software to calibrate the eye-gaze cal-
culations for each user. Our display was larger than their
specification allowed, and we were at the limit of their depth
range. Thus the calibration software often complained that
it was not able to get a good look at all of the points used for
calibration. But since we are mostly interested in temporal
information, as opposed to precise pixel locations, this was
judged to be sufficient for our purposes.

2.2 Microsoft Kinect
The Microsoft Kinect, on the other hand, is a general

device for collecting body skeleton information. The Face-
Tracking toolkit that is part of the Developer’s Toolkit (ver-
sion 1.8) uses depth and color image data to track one or
more faces. Kinect includes a full body tracker, and a spe-
cial mode in the Kinect for Windows device that only needs
the user’s upper body for tracking. In this near-range mode
the Kinect has a practical range from 80cm to 250cm. The
Kinect software returns the location of a face, in meters rel-
ative to the camera location, and the 3-D pose of the face
as angles relative to the camera coordinate system. The
camera has a vertical field of view of 43◦ We also received
face-pose information at a rate of about 30Hz.

The Kinect provides head positions and angles, and does
not include any provision for calibration. We needed to
transform these positions and angles into screen coordinates.
The ultimate solution is a two-camera approach suggested
by Huang [3]. Instead, we implemented a simpler solution
by putting the camera on the same plane as the screen, thus
reducing parallax effects, and then using an affine transform
to perform the final mapping into screen coordinates. To
effect this transformation we asked the user to turn their
head towards 8 different points around the outskirts of the
display. We used the face-pose information provided by the
Kinect, and simple geometric transformations to transform
the raw Kinect data into the camera’s imaging plane (which
was slightly tilted with respect to the display.) We then
found an optimum affine transform that transformed the

points in the camera plane to pixels in the computer’s world.
Again, this transformation is not general, but was deemed
sufficiently accurate for this paper’s purposes.

2.3 Automatic Speech Recognition
We use a state-of-the-art large vocabulary speech recog-

nizer in our experiments [2, 6]. The acoustic models incor-
porate the latest advances in context-dependent deep neu-
ral networks (DNN) for estimating senone likelihoods. The
language model (LM) is a general-purpose backoff 4-gram
model with a vocabulary of about 400K words. This generic
LM (GLM) was trained on a wide variety of sources ranging
from transcribed speech from deployed ASR applications,
such as voice search, to text from a diverse set of web re-
sources. The GLM was not tailored or adapted to the tasks
of our study.

To study the potential benefit of context information for
speech recognition we performed LM adaptation experiments
in an N-best rescoring framework [5]. We generated lists of
the 100 best hypotheses for each utterances, using the GLM.
The baseline word error rate was 43.8%. The best achievable
(oracle) error rate, by rescoring the 100 best hypothesis, was
22.5%.

Besides the generic LM, we also investigated a second,
stronger baseline system in which we derive an utterance-
specific bigram LM from the full-screen contents, irrespec-
tive of eye-gaze information. This LM is restrictive since
there are roughly one thousand words on a single page. The
utterance-specific whole-page LM was combined with the
GLM via log-linear score combination at the utterance level.
This corresponds to a log-linear interpolation of the two LMs
[4], but without normalizing the combined probability dis-
tribution. We estimated the linear weights for GLM and
utterance-specific LM log probabilities on one half of the
test speakers and applied to the other half, in a jack-knifing
experiment. The N-best hypotheses were rescored with the
combined LM and the new 1-best hypotheses extracted.

Finally, we built context-dependent utterance-specific LMs,
based on the estimated location of the user’s attention before
and during the time of each utterance. To build the context-
conditioned LM, we collected words appearing on the screen
at the appropriate times and locations. We then found bi-
grams by sorting the word locations into reading order, and
combining words into bigrams if they are on the same line
and adjacent to each other. From the bigrams thus collected,
another utterance-specific LM was estimated, and combined
with both baseline LMs (GLM and whole-page LM) via log-
linear score combination, again using jack-knifing for weight
estimation.

2.4 Display Experiment
Before collecting speech we asked 6 users to calibrate them-

selves for both the eye gaze and face trackers. In addition
to helping us map angles to pixels on the screen, this cali-
bration procedure allowed us to get basic information about
the static performance of the system and our users. Users
were aware that we were tracking both their head pose and
eye gaze, but were not aware of our specific hypothesis.

After calibration we asked each user to perform 20 to 30
speech-reading trials. Before each trial, users were told to
look at the center of the screen, where a circle was fixed.
Then after a few seconds a short text utterance (a few words
from a news headline) with a 6mm high font was displayed



somewhere at random on the screen. This appeared sud-
denly so there was an orienting response by the user. We
also added a short 2cm arrow to the center circle to indicate
the direction of the text. We did not enforce a specific gaze
location at the start of an experiment. And there was likely
both head and eye movement as the user prepared for each
trial. The utterance starts some number of seconds after the
text appears, and we are interested in the time till the eye
gaze and face pose estimates are stable.

3. RESULTS
We would like to relate eye gaze and face pose to speech-

recognition performance. This is difficult for a number of
reasons, including task and cognitive issues, but also due
to simple physical effects. We assume a user absorbs in-
formation from within a visual spotlight that moves over
time. In addition the sensors have their own physical lim-
itations, which we can model as (Gaussian) noise added to
each measurement. Finally, there is some function that re-
lates the probability of a user’s comfortable head positions
to their desired eye-pose direction. This probability function
is certainly related to physical considerations like maintain-
ing comfortable positions, while not shaking the head too
much, or too fast. We model the spotlight size as a sum
of independent factors: fovea size, eye-tracking error, and if
necessary comfortable head-eye orientations.

We compare eye-gaze and face-pose information in three
ways. Most simply, we look at the basic sensor error and can
quantify the “noise.” Secondarily, we look at the time delay
between eye gaze and face pose information. Finally, we
translate these numbers into a perplexity measure by which
we can characterize speech-recognition performance.

3.1 Noise
As part of our calibration procedure, we asked users to

stare at a moving dot on the screen. When the dot is not
moving, and the user’s head is still, we can use the eye-gaze
and face-pose information to estimate the inherent noise in
the sensor. For the eye gaze, at this screen size the variance
was 652 pixels. While for the face pose, again given the
geometry we used in this study, the variance of the sensor
noise was 582 pixels. These numbers are important as we
look at the optimum spotlight when adjusting the speech
recognizer’s language model.

3.2 Temporal Characteristics
The temporal patterns of eye gaze and face pose are cer-

tainly different. We hypothesize that eyes are faster to orient
and then the face catches up. Here we only investigate the
delay between eye-gaze and face-pose orientation; the full
spectral–temporal relationship between these two signals is
beyond the scope of this paper.

We asked subjects to read aloud text phrases we put at
random locations onto an otherwise blank screen. Users were
told that they could look at the center of the screen for an
indication of where the string had appeared, but most users
were actively scanning during the experiment.

Since the text was relatively small given the distance (0.5◦

visual height), users need to orient their eyes onto the text to
perform the task. We also observed that users turned their
heads toward the text. Thus we characterized the user’s
eye and facial orientation in terms of their average location
when reading the text, and measured the distance to this av-

Figure 2: Normalized distance to the text for eye-
gaze and face-pose signals during one trial.

Figure 3: Distribution of the time delay between the
eye-gaze fixation on the text and the eventual face
orientation to the neutral position.

erage location over time. Before the spoken utterance, the
distance should be much larger than it is during the utter-
ance. Figure 2 shows an example of this behavior, quantified
by the normalized distances from the final average fixation
point. We can look for the time of orientation by correlation
of the sensor signal with a unit step that goes from +1 to -1
at a variable point in time. With this simple correlation we
could estimate the orientation time.1

Because of the random nature of the task, and the user’s
eye-gaze and head orientation, we found 20 trials where we
got a clear signal from both sensors. A histogram of the dif-
ference in orientation time between the two sensors is shown
in Figure 3. In most cases, the head trailed the eyes by
0.3 seconds. But there were still cases where the head was
pointed in the right location before the text appeared, and
then eyes had to move to catch up to the head pose.

1We also looked at using logistic regression to model the
data, but found that noise in the data made it hard to pre-
cisely estimate the transition time.



3.3 Perplexity
In a previous study [6] we used a desktop display to mea-

sure the effect of eye gaze on speech-recognition performance
and LM perplexity during a speech-reading task. The dis-
play had a diagonal of 24”, 77 dpi, 17 pixels per line of
text, eye-tracking noise with variance 9.62 pixels, and the
user sat 30” from the screen. Figure 4 shows speech recog-
nition difficulty for this reading task when using eye-gaze
information to adjust the recognizer’s language model. Dif-
ficulty is expressed in terms of perplexity, which is a measure
of how good the language model is at predicting the next
word, given the words it has already seen. Lower perplexity
means the language model thinks fewer words are possible,
thus reducing the complexity of the speech recognizer’s task,
and increasing performance. But too small a spotlight re-
moves needed information. Thus the optimum spotlight size
was 200 pixels, and reduced the speech-recognition error by
about 20%. We would like to know how face-pose informa-
tion might translate into this domain.

To make the speech-recognizer’s job easier, our spotlight
should be as small as possible, including all necessary words
on the screen, in spite of any sensor errors. In the eye-
tracking case there are two components to the spotlight: a
cognitive/reading effect and the sensor noise. The same idea
holds for face-pose data, but there is also a component that
corresponds to the short-term discrepancy between face pose
and eye-gaze as the eyes and head adjust to a new task. We
do not have an estimate of this variable, except as shown in
Section 3.2 that there is a 0.3 second delay.

We use the eye-tracking ASR experiment to guage the
impact of using face pose to bias a recognizer. The noise
due to the face sensor is higher, but overall has a small
effect on the overall perplexity. The spotlight in the desktop
display has a radius of 200 pixels, or approximately 5◦ of
arc. The face-sensor noise was 582 pixels on a larger display,
suggesting a noise of approximately 3◦ degrees. Overall,
this represents less than a factor of two increase in potential
spotlight size. This certainly affects perplexity, but as can
be seen in Figure 4 the modified perplexity is higher, but still
an improvement over the whole-screen perplexity. Thus face
pose adds information to the speech recognizer, and, based
on the prior study, has the potential to improve recognition
accuracy. We hope to verify this in a future experiment
that uses the face-pose signal directly for biasing the speech
recognizer.

Figure 4: LM perplexity as a function of spotlight
radius for the desktop screen, independent of modal-
ity.

4. CONCLUSIONS
We demonstrated the viability of face-pose information

as a proxy for eye-gaze information. Eye-gaze information
reduces the difficulty of the recognition task by a factor of
two, in terms of language model perplexity. While eye gaze
usually preceeds face orientation and current face sensors
are not as accurate as eye trackers, face-pose information
has the potential to also significantly reduce LM perplexity.

We have quantified eye-gaze and face-pose information in
a joint experiment, where we jointly measure both signals
from a single user. While face pose can not tell the whole
story, it has similar errors, and a slight delay from the eye-
gaze signal. This resulting perplexity reduction is important
because it directly impacts speech-recognition performance.
Speech recognition will be challenging in the large-display
scenarios we envision because of multiple users, reverberent
environments, and large microphone-to-user distances.

We need to perform further studies to quantify the ef-
fect that face pose information has on the visual spotlight
needed for language modeling. This study shows that the er-
rors are manageable, and suggest that there is a significant
reduction in perplexity when using face-pose information.
By this study we demonstrated the value of these new more
ASR experiments using face-pose information.

5. REFERENCES
[1] N. J. Cooke and M. Russell. Gaze-contingent automatic

speech recognition. In Signal Processing, pages 369–380,
2008.

[2] L. Deng, J. Li, J.-T. Huang, K. Yao, D. Yu, F. Seide,
M. Seltzer, G. Zweig, X. He, and J. Williams. Recent
advances in deep learning for speech research at
microsoft. In Proceedings of the 2013 IEEE
International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), 2013.

[3] J.-B. Huang, Q. Cai, Z. Liu, N. Ahuja, and Z. Zhang.
Towards accurate and robust cross-ratio based gaze
trackers through learning from simulation. In
Proceedings of the Symposium on Eye Tracking
Research and Applications, ETRA ’14, pages 75–82,
New York, NY, USA, 2014. ACM.

[4] D. Klakow. Log-linear interpolation of language models.
In Proceedings of the International Conference on
Spoken-Language Processing (ICSLP), page 1695, 1998.

[5] M. Ostendorf, A. Kannan, S. Austin, O. Kimball,
R. Schwartz, and J. R. Rohlicek. Integration of diverse
recognition methodologies through reevaluation of
n-best sentence hypotheses. In Proceedings of the
workshop on Speech and Natural Language (HLT ’91),
pages 83–87. Association for Computational
Linguistics, 1991.

[6] M. Slaney, R. Rajen, A. Stolcke, and P. Parthasarathy.
Gaze enhanced speech recognition. In Proceedings of
IEEE International Conference onAcoustics, Speech
and Signal Processing (ICASSP), 2014.


