
0 Malcolm Slaney
Apple Computer, Inc.

During the last few years, microcomputers have become powerful and inexpensive
enough so that every technical person has access to significant computer power on
his or her desk.’ These machines have changed the way many facets of business and
research are conducted because users can easily interact with the computer.

Spreadsheets are a common example of how a relatively simple computer
program has enhanced personal productivity by allowing users to harness the avail-
able computer power. Spreadsheet programs allow the user to develop a model and
ask many “what-if” questions, thus gaining a better understanding of the system
being modeled. High-level languages and spreadsheets do not make the most effi-
cient use of the machine’s computational power, but their speed and ease of use make
them valuable to users.

A similar revolution is now possible in the world of signal processing. Recently
it has become possible to combine a powerful mathematical program with a word
processor and thus create interactive scientific documents. An interactive document
includes text and a computer model so that it.is easier for readers to understand the

‘This chapter is an expanded version of [l].

173

malcolm
Slaney, "Interactive Signal Processing Documents," in Symbolic and Knowledge-Based Signal Processing, Oppenheim/Nawah eds., (c) 1992. Electronically reproduced by permission of Prentice Hall, Upper Saddle River, New Jersey.

174 Interactive Signal Processing Documents Chap. 5

material. These documents can be read like a normal technical paper, but since the
document includes computer models, the reader can ask it questions. In this way,
the material is learned much more quickly. I believe that interactive documents will
eventually change publishing as much as did Gutenberg’s invention of movable type.
This chapter will describe the important features of an interactive document and why
it helps make research and learning more efficient.

An important characteristic of an interactive signal processing document is the
ability of the reader to simulate, change, and inquire about properties of the system
being described. This chapter describes how a symbolic manipulation program can
be used to model a DSP system and present it to a reader in a highly interactive form.
Many programs have been written to aid portions of a DSP problem, but symbolic
math programs allow a system to be modeled at any number of levels. Symbolic
manipulation programs use their mathematical knowledge to automate common
mathematical operations such as manipulating polynomials, calculating integrals,
and finding limits. The resulting interactive signal processing document, or note-
book, can be a very efficient method to teach DSP concepts.

The ideas expressed in this chapter evolved as I wrote an electronic notebook
describing a cochlear model developed by R. F. lLyon [2]. This technical report began
as a modest notebook for my own use as I wrote a conventional paper. As the work
evolved, I realized that the examples in the notebook would also be useful to the
reader. The original notebook was not comprehensible to other readers, but by
combining the original paper with electronic models and interactive examples, a new
type of document was created.

This electronic notebook was created using Mathematics. As suggested in
Chapter 3, Mathematics notebooks exemplify many of the desirable characteristics
of a system for research in signal processing. The resulting document is a powerful
tool for research and development and an effective tool for teaching. Not only is
Mathematics an example of a tool for symbolic mathematics, but it includes elements
of hypermedia, interactive modeling, and literate programming. The ability to
perform symbolic manipulations is important for reasoning about the models, and
its other characteristics make it easier for readers to learn the material. How
Mathematics uses these ideas is discussed in Chapter 3 and section 5.2.

This chapter is not a review of a software product. That function has been ably
covered in many articles [3-51. Instead, Mathematics notebooks are used to illustrate
many useful features and as a framework to describe additional functionality. Some
of the needs of an interactive signal processing document are met by Mathematics
and related software, while others are not.

Figure 5.1 shows a portion of the type of interactive document this chapter
describes. In this case, an animation of wave motion in the cochlea is included as
part of the document. The reader can see the animation by clicking on the button
with a mouse. Most important, the animation is not just a pretty picture, or even
just a pretty animation. The computational model is defined elsewhere in the
document, but it is available to the user to change. The reader can modify the
parameters of the model and see how the animation changes. If the reader has a

Sec. 5.1 introduction 475

This animation shows a gray scale representation of the pressure in the cochlea due to a single
tone at 1 OOOHz. Darker and lighter regions correspond to pressures above and below the
average. The basilar membrane is shown along the horizontal center line.

In[42]:
ShcwCcchlearGrayScaleAnimationT10001;

B<
Membrane

Base of w Apex of
Cochlea Cochlea

The change in propagation speed means that the long-wave, or one-dimensional,
approximation is only valid in the early part of the wave’s travel. Near the response peak the
wavelength is short enough that energy can flow both down the cochlea and perpendicular to
the membrane, so a two-dimensional model is needed.

Figure 5.1 An electronic notebook combines many features to make it easier for
the reader. This example combines text, a mathematical model, graphics. and sound
with a user inrerfacc that helps guide the reader. One frame of a real Muthemufica
animation computed by R. F. Lyon showing fluid pressure in the cochlea (inner ear)
is shown here. The reader can press the button with the mouse and see an animated
representation of the fluid flow. The user can modify the frequency of the tone or
the parameters of the model and see how the animations change.

favorite model of the middle ear, it can be added to the model. It is important to
realize that, except for the buttons, this example is possible with commercially
available software. Examples of similar notebooks will be presented throughout this
chapter, and I hope it will encourage other researchers to build the necessary
software and prepare additional electronic notebooks.

Today, many signal processing problems are easily described using such an
interactive scientific notebook. Recent work described in other chapters of this book
demonstrates the ability to automatically reason at a high level about a signal
processing problem. In addition, personal computers are now powerful enough to
implement the digital signal processing algorithms with real data. The problem that
remains is, how can authors describing signal processing results take advantage of
these technologies to better interact with their readers? This question is the primary
focus of this chapter.

There are two concerns in the design of an interactive signal processing docu-
ment: the content and the form. Certainly the most important part of such a
document is the intellectual content. This chapter describes the techniques an author
can use to write an interactive document. The second concern, the form of an
interactive document. is set by the available tools. This chapter describes the ideal

176 Interactive Signal Processing Documents Chap. 5

tool and how the tools available today can be used to describe real signal processing
problems.

First, the form of an interactive signal processing document is discussed.
Section 5.2 describes some of the important properties of an electronic document
and some of the characteristics of an ideal tool for researching and teaching signal
processing. It is important that the system have powerful tools for modeling and also
that this power is easily available to casual readers. Section 5.3 describes the state
of DSP tools today. It describes conventional tools for DSP research and develop-
ment and explains the use of Mathematics to create signal processing notebooks, and
is illustrated with two Mathematics notebooks. The first example shows features of
Mathematics; the second notebook shows how Mathematics can be used for signal
processing research.

Given the tools that are currently available for writing an interactive signal
processing document, how should the intellectual content be structured? Section 5.4
presents some of the design issues that must be faced by an author of an electronic
document. All writing is difficult, and making it interactive adds another dimension.
Some problems become easier to explain, but the additional flexibility can be
difficult to manage. Finally, section 5.5 talks about research issues that should be
addressed in the future.

5.2 PROPERTIES OF AN INTERACTIVE DOCUMENT

Communicating results is an important part of research. While developing the
solution to a problem, it is often useful to share the results with colleagues. Later,
when the results are polished, the report will be copied and more widely distributed.

An important characteristic of an interactive system for signal processing is that
the work can be developed and documented in the same system. Results can be
discovered and easily presented to colleagues. If changes are necessary, they can be
made quickly without having to transfer the results between a symbolic math system
and a word processor. Most important, the reader has the same tools available and
can modify or extend the model as desired.

Signal processing is an ideal subject for an interactive document. It is hard to
imagine using a computer to teach a carpenter, for example, how to hammer a nail,
but computers are a necessary part of most signal processing work. Signal processing
researchers already use computers to calculate and simulate algorithms. An interac-
tive signal processing document can provide test data and an evaluation function so
students can design a filter and automatically verify that it meets the design goals.

An interactive system is the most effective means to teach and disseminate
signal processing results. Much is learned from passive documents, like books, but
the learning process is more effective when the reader can ask questions. With
interactive documents, readers effectively ask the document questions.

During the last ten years much effort has been expended to create interactive
learning environments. The results have been mixed. Perhaps the biggest impedi-

Sec. 5.2 Properties of an interactive Document 177

ment to their success has been their goal to create an all-encompassing environment.
This goal has brought with it the need for specialized and expensive computer
systems, which are only available to a small number of users.

Interactive notebooks are an important intermediate step between paper and
fully interactive environments. If written well a notebook can be printed on paper
and read without any special technology. But if the reader does have the appropriate
hardware and software, he or she will benefit from a much richer interaction.

This section describes the ideal properties of an interactive signal processing
document; the current state of the art will be described in section 5.3. A well-
designed interactive document will have several features. It will be an example of
hypermedia; the user will be able to explore the document, study the sections that
are new, and dig deeper into those that are at first not understood. It will be easy
to refer to other parts of the document where references are first explained. In
addition, computer models will allow the reader to ask questions and more easily
integrate the new material with what is already known. Finally, the algorithm must
be explained in a way that is easy for both a reader and a computer to understand.
This is known as Literate Programming, or the creation of a document that is both
a well-written program and a well-written paper.

The features of an interactive signal processing document as previously de-
scribed will be discussed in the remainder of this section. But, these features are only
part of a complete system. A researcher will also need drawing programs to create
graphics to explain the work and spelling checkers to help get the descriptions right.
These other components of a complete system are vital but are not discussed here.

5.24 Symbolic Manipulation

Perhaps the most important characteristic of an interactive signal processing docu-
ment is the ability to reason symbolically about a system or a design. Certainly, many
very important signal processing problems have been solved without symbolic ma-
nipulation programs, but their use allows much of the drudgery involved in the
mathematics to be automated. This makes it easier for the casual reader to verify
the results and to explore new ideas.

Many tools are good at numerical math. These tools might be used to calculate
the eigenvalues of a matrix or to design a filter with a specified pass-band. The
software might be supplied as a subroutine library that is used with a conventional
language (such as IMSL [6]) or as a complete environment with a customized
language and graphical output (such as MATLAB [7]).

There are many problems, however, where numerical answers do not provide
much insight into the solution. Numerically integrating an equation to discover that
the maximum transmission rate of a channel is 29 kbits/sec is useful, but an answer
in terms of the bandwidth of the system and the antenna gain provides more insight.
Symbolic math software allows the user to perform algebraic manipulations, do
symbolic calculus, and find the solutions to equations. In addition, symbolic math
packages include numerical routines to deal with problems that cannot be done

478 Interactive Signal Processing Documents Chap. 5

symbolically. This makes symbolic math packages a superset of numerical software,
but often this generality makes strictly numerical calculations slower.*

Although symbolic math tools can be used to perform numerical calculations
similar to those done by conventional programming tools, their real power is in
manipulating the algebraic expressions that describe the system’s behavior. An
introduction to Mathematics as it relates to our goals in this chapter, follows shortly.

A symbolic system allows a filter to be studied in many different forms. For
example, an expression that makes clear the poles and zeros of a filter can be
expanded into the direct-form polynomial often used in a digital filter. This is how
it can be done with Mathematics (Note: Mathematics uses In and Out to represent
what the user typed and Mathematics’s response):

In[L]:=Expand[(z-b/2-l/ZI)(z-2/2+2/21)(z+2/2)]

Out[L]=q - $ + 23

The filter’s characteristics can then be shown graphically in any number of forms.
This chapter shows several examples: the magnitude of the frequency response,
pole-zero plots, and rubber sheet diagrams of the filter’s z-domain response.

A symbolic math package allows a user to reason about a system in ways that
are not possible with conventional tools. One question that came up when preparing
this chapter is: where did the algorithm for designing a second-order digital filter with
a given center frequency and bandwidth come from? A reader, unsure about the
source of an algorithm in a paper, might want to do a bit of exploration. There will
be false starts, but eventually the user should be able to find the correct answer. Note
that a symbolic manipulation program does not answer the question automatically,
but it does provide some of the necessary mathematical knowledge and expertise to
allow the question to be answered.

Symbolic math programs do not normally contain domain-specific knowledge
about fields such as DSP, but they can be easily extended. One such knowledge base
for use with Mathematics is described in Chapter 3; their packages allow Mathemat-
ica to perform Fourier, Laplace, and z-transforms [8]. It is easy to add other
packages containing, for example, knowledge about acoustics or speech synthesis.

Other types of common DSP operation that are difficult with symbolic math
programs’ are the algorithm optimization built into ADE [9] and described in
Chapter 2, and the morphological algorithm manipulation described by Richardson
in Chapter 4. ADE allows a user to describe a signal processing algorithm in such
a way that ADE can reason about the design, try alternate implementations of the
algorithm, and show an equivalent design that is more efficient. Symbolic math
programs will often rearrange an equation to put it in a standard form for display

‘On the other hand; a symbolic package can evaluate a definite integral by first performing
symbolic integration and then substituting the numerical limits. This might be faster than numerically
evaluating the integrand and summing the results.

Sec. 5.2 Properties of an Interactive Document q79

to the user, but the standard form is defined more by mathematical convention than
by computational complexity. Thus, a calculation might produce the result

ax + b + cx*

which will be displayed to the user as

cx* + ax + b

yet a potentially more efficient computational form is

(cx + a)x + b

As far as I know, there is no symbolic math program that allows users to specify the
relative costs of different representations, let alone suggest the changes that might
be made to optimize the algorithm as is done in AIDE.

52.2 Hypermedia

At one time, information was passed from generation to generation via the story
teller. This was inherently an interactive process, but it also limited the speed at
which information could be conveyed. By the middle ages, publishing was well
established. This increased the rate at which information could be disseminated, but
it lost its interactive nature.

Most papers and books are designed to be read in a linear fashion. (Dictionar-
ies and encyclopedias are examples of works that are meant to be accessed ran-
domly.) The order of presentation is determined by the author, and the reader is
expected to make the best of it. Some browsing is possible, but the paper medium
makes this inconvenient. The reader is a passive part of the learning process.

Readers have questions to be answered. Often readers do not have the same
goals as the original author and might want to skip around in the material. Sometimes
they will look in the index for the subject in which they are interested and then work
backwards until they understand enough to solve their problem. This sometimes
involves just paging back through a few pages of material, but at other times the
necessary preliminary information spans many chapters of the book, often with
intervening material the reader does not need to understand to solve the problem
at hand.

Hypermedia is often described as a solution to this problem [lo]. Using a
computer, the reader can browse through a document and then quickly move to
other sections based on what is read. Thus, if a reader encounters a new concept,
it might be accompanied by a button on the screen that will display more detailed
information. In this way, the reader can fashion his or her own path through the
material.

Hypermedia has many forms, but they all represent enhancements of the paper
world. There are four hypermedia features of an electronic notebook that will be
considered here. The simplest is using multiple media: sound, animations, and other
ways of presenting information that are hard to print on paper. Second, the notebook

480 Interactive Signal Processing Documents Chap. 5

can be easily changed by the reader, to emphasize the points that are more interest-
ing, or to add additional notes. Third, the most traditional form of hypermedia is
represented by links, or the ability to move quickly from one topic to another in the
paper. Finally, an electronic notebook has many functional links based on the
mathematical definitions and algorithms in the paper. Each of these ideas will be
considered in turn.

Multimedia

Hypermedia can mean the use of more than one type of media in a document.
There are many examples of papers that would be much more effective by adding
audio and visual demonstrations. Why should a paper on sound perception not
include audio examples so readers can make their own judgments about what is
heard? A paper on speech coding should have audio examples so the results are
meaningful to readers not familiar with intelligibility scores. A paper on acoustics
is more readable with simple animations showing the propagation modes. A discus-
sion of video compression algorithms should include a sequence of images so the
reader can modify the algorithms and see how their changes affect performance.

Modifiable

An electronic notebook can be easily changed. Users can rearrange the report
to make the presentation more natural for their background. In addition, users can
add their own material. Since there does not have to be any difference in appearance
between the original text and the “margin” notes, the document becomes personal-
ized for the reader.

Links

The most conventional form of hypermedia allows the reader to browse
through a document in any desired order. In its ideal form, the reader should be able
to follow ideas anywhere they might go within a hypermedia document. But this
leads to a multidimensional web of links that is difficult to organize on paper.

Instead, an electronic notebook has a hierarchical organization which can then
be flattened when rendered on paper. Text, equations, output, and graphs are
grouped into sections, and the entire paper organized into a hierarchy. Most papers
have a tree-like structure, but the electronic version of a paper’s most detailed
sections can be hidden from the user so as to make the presentation easier to follow.
These hidden sections can be easily opened by the user and can be used to hide details
of the presentation, attempts that did not work, or test code that is not strictly
necessary for the presentation.

Most writing efforts include unpublished examples that were used to test and
refine the material in the paper. This material is probably not interesting to most
readers, but in some cases it is. Inquisitive readers might want to know where a

S’ec. 5.2 Properties of an Interactive Document 181

derivation came from or would like to double check a result. For instance, an
interactive signal processing document that I wrote describing the classic algorithms
for filter design includes many examples that were used to test the algorithms in the
paper. Some of these examples are interesting to the casual reader and are shown
in the main body of the paper. Other examples were used to explore more difficult
cases or to compare my solution to published designs. These examples are hidden,
yet still available to the interested reader. The purpose of writing is to communicate
a result to the reader. Allowing the reader to peek behind the scenes, so to speak,
is beneficial to the’ communication process.

On top of this hierarchy, a separate set of links is represented by the functions
and algorithms that are defined. This set of links might take the form of a help facility
to make it easier for the user to understand the paper. Since the help facility includes
information about any function defined in the paper, it is a very simple form of
hypermedia. A user can select any function name in the paper, select help, and read
a short description of the function. When more information is needed about a
function, the system can take the reader to the point in the paper where the function
is first defined.

Smart links

The links defined by the functions in an interactive notebook are not just
navigational aids. Instead, these functions have mathematical meaning, and their
links often include dependencies on other mathematical definitions. For example,
my report describing a cochlea model includes a relatively simple model of the outer
and middle ears. This model is used when showing the neural firings due to a
particular sound. But if a reader has a better model, it can be substituted in the report
and the new graphs can be computed.

Thus; a scientific notebook extends the hypermedia concept because a function
is not just a collection of symbols, but, more important, has a mathematical meaning.
Using a function in a notebook not only implies a link back to the original definition,
but its usage implies a specific mathematical operation. These “smart links” are an
important part of an interactive signal processing notebook.

52.3 Interactive Models

An interactive signal processing document extends the hypermedia concept by
casting each of the new results as an equation or computer model with which the user
can interact. Since the system includes a computation engine, readers can change
the model and see the effect. The results are shown graphically. By controlling the
parameters of the model or system, the user can gain a better understanding of how
it works.

This book describes several tools for signal processing research and develop-
ment. Just as an interactive system for signal processing is a useful research tool, such
a system can also be valuable to a reader trying to understand the results. A good

f82 Interactive Signal Processing Documents Chap. 5

instructor or piece of writing should guide the student to the same conclusions that
were reached by the research. Hopefully, the learning process will be more efficient
than the original research, but the same tool’s are useful in both cases.

An interactive signal processing document contains equations and computer
models that the reader can manipulate. In some cases, the reader will be content to
change the parameters of a model and see how the results change. Other readers
might want to study the model from a different angle. Perhaps due to a different
background, the reader will want to analyze the system response in the time domain
instead of a frequency domain approach more natural to the original author. With
a symbolic math package, readers can apply the appropriate transformation and
study the result in their preferred domain.

Users should be able to interact with a signal processing document in two ways.
First, a mathematical model can be modified to extend it into the reader’s own
domain. For example, a reader of a paper on reconstruction theory might want to
try the algorithm using data from his or her own research problems. This makes the
solution described in the notebook more realistic to the reader.

A second, more important, aid to learning is direct manipulation. In many
systems, the behavior is controlled by a numerical parameter. A paper describing
such a system will probably include an equation describing the system’s behavior as
a function of this parameter. But the user would have a much better feel for the
behavior of the system if there was a knob (or slider) that could be manipulated with
a mouse and would immediately vary the system’s output. A simple example of this
behavior in an interactive signal processing document is shown in Figure 5.2.

A prototype of a system like this is distributed with version 1.0 of the NeXT
workstation software. Unfortunately, many problems cannot be recomputed at rates
fast enough to be interactive. Designing a simulation that can be solved with easily
accessible hardware is a problem that is addressed in section 5.4.

Most symbolic math packages are interactive. An electronic notebook is
unique, though, because the writer can guide the reader by suggesting areas to

HZ

loo0 2000 3ooo 4000

-10
-20
-30
-40
-50
-60
-70
-80

-10
-20
-30
-40
-SO
-60
-70
-80

HZ

loo0 2000 3OOO 4OfN

Figure 5.2 Animated Figures. Two samples are shown of a proposed scheme for allowing
the reader to modify a figure in an interactive signal processing document. As the reader uses
a mouse to change the position of the slider, the order of the band-pass filter is changed and
a new response curve is calculated.

Sec. 5.2 Properties of an Interactive Document

explore. The notebook should encourage the reader to try new ideas. The symbolic
math package can show the result as an equation, a figure, or even an animation.

It is unfortunate that a Mathematics notebook does not support direct graph-
ical manipulation like that shown in Figure 5.2. Currently, notebooks have to be
carefully written so that the reader does not have to understand much of Mathemut-
icu to know what parts of an expression to change. A graphical control, such as a
slider, would make it possible for users, both novice and experienced users, to
directly control an electronic notebook in a very intuitive fashion. Even the ability
in a notebook to place a mousable button that would perform some action would
be useful. An example of this capability is shown in Figure 5.1.

5.24 Literate Programning

Documenting a computer model or a signal processing algorithm is a useful way
to transfer knowledge about a new result. Conventionally, this has been done using
a simplified form of a language like Algol or Fortran. It is difficult within the
constraints of these languages to eloquently express the ideas that went into the
model.

An alternate style of expressing an algorithm is known as Literate Program-
ming. Denning’s introduction to Van Wyk’s column on Literate Programming
says [ll]:

A literate program contains not only the needed statements in a programming language,
but also a precise problem statement, a summary of trade-offs between the running time
and space, or between running time and programming time, and suggestions on how
to modify the program. Program code segments are inserted in the text at points logical
to the intellectual development of the algorithm. A literate program pays careful
attention to lucidity of presentation and presents all arguments needed to understand
why the program will actually work as intended.

The combination of an interactive computer model and literate programming
is a very powerful tool for learning. Before a reader can intelligently change a model,
the description must be read and understood. Expecting the reader to understand
the program from just the embedded comments is not very practical. Instead, a
literate program should include graphics, examples, and even interactive controls.
All these techniques will help the reader to better understand the results.

Changing the focus of the programming effort can have a great benefit. A
computer language is designed to make it easy to implement algorithms, not to
explain material to another reader. Comments and sometimes even pictures are
added to a program to describe an algorithm, but the text of the program is still
one-dimensional. In a literate program the primary goal should be to describe an
algorithm for a reader, but to do it in such a way that the computer can also
understand it. This is especially true when describing highly mathematical material
such as signal processing algorithms.

184 Interactive Signal Processing Documents Chap. 5

5.3 DSP TOOLS

Unfortunately, there is no software that possesses all the features needed to build
the interactive signal processing document described in section 5.2. Most conven-
tional tools for signal processing are libraries or environments that are designed for
programmers. Although these tools are powerful, they are difficult for casual readers
to use.

There are many programs that can perform symbolic manipulations, and one
of them, Muthemuticu, has an electronic notebook interface. Muthemuticu and its
notebooks come closest to the ideal interactive signal processing environment de-
scribed here. Using a symbolic math program to do signal processing problems is not
new (MACSYMA, the grandfather of all symbolic math programs, has built-in
support for Fourier and Laplace transforms), but adding a notebook interface allows
an author to make the DSP knowledge more accessible to a reader.

It is not possible to describe all the tools designed to help solve DSP problems.
This section describes several of the conventional tools and then describes the use
of Muthemuticu to research and teach signal processing ideas. The purpose of this
chapter is to discuss the use of a symbolic manipulation program to describe in an
interactive manner the solution of a signal processing problem. To provide some
context, several conventional tools will first be reviewed.

5.3.1 ConventIonal Tools

Perhaps the most commonly used tools for signal processing are subroutine libraries.
The two best-known libraries for signal processing are IMSL [6] and the IEEE Signal
Processing Library [12]. These libraries include code to perform many common
signal processing operations in a user’s program. The user must still do much of the
programming, but the difficult numerical work is handled by these subroutine
libraries. Much research has gone into these algorithms and they represent a signif-
icant step in the use of structured programming techniques. The routines in these
libraries, especially in IMSL, are highly optimized, and their numerical stability is
well documented. Most of the work required to use these libraries consists of reading
in the data and putting it in the proper form for the appropriate subroutine.

Subroutine libraries eventually led to complete programming environments for
signal processing. SRL (the Signal Representation Language) [13] and SPLICE [14,
151 are two examples of specialized programming environments- for signal process-
ing. These systems are built on top of the Lisp programming language, and use
object-oriented techniques to make it easy for researchers to extend the environ-
ment. Two extensions for computing sine wave signals in SRL are shown in Fig-
ure 5.3.

Systems such as SRL and SPLICE are very powerful, but their nonstandard
programming methodology (object-oriented Lisp) requires much effort to learn. In
a sense, these tools are programmer friendly but not necessarily user friendly. This
has limited their success.

Sec. 5.3 DSP Tools 485

(defsigtypesine-wave-signal-type
:a-kind-ofbasic-signal-type
:parameters (ncycleslengthphase)
:findersignal-sine-wave
:init (setq-my dimensions (list length))
:fetch ((i) (sin(*3.1415922.0ncycles (/ilength)))))

(defsigtypesine-wave-with-zero-phase-signal-type
:a-kind-ofsine-wave-signal-type
:parameters (ncycleslength)
:finder’signal-sine-wave-with-zero-phase
:init(setq-myphaseO.O))

Figure 5.3 Two examples of signal definitions in Kopec’s Signal Representation
Language(SRL).Thefirstexample,sine-wave-signal-type,definesthe
scheme to calculate a sine wave with ncycles in length samples. The second
example, sine-wave-with-zero-phase-signal-type, further re-
fines this signal type to include a default phase of 0 degrees. The rest of the
behavior of the sine-wave-with-zero-phase is inherited from the sig-
nal’sparents, sine-wave-signal-type and basic-signal-type.

As the number of people wanting to solve signal processing problems has
grown, the need for systems that do not require any programming has also increased.
These environments include a large number of specialized signal processing al-
gorithms that can be applied in a cookbook fashion to solve a problem. With a
high-level tool the language becomes more specialized, making it easier to express
some algorithms. A drawback of such specialization is that concepts that do not fit
within the tool’s model are much harder to program.

MATLAB is another example of a specialized signal processing environment [7].
MATLAB includes a large number of routines for linear algebra and signal processing
which can be used interactively or combined by the user into new functions. MATLAB
also includes functions to import data and to plot the results. A large number of
common signal processing operations are part of MATLAB'S libraries, and it is easy
to add new functions. MATLAB provides a simple command line interface for the user
and a single window for graphics.

An even more specialized tool that can be used for image processing is Adobe’s
Photoshop [16]. Photoshop is designed to make it easy to perform many common
operations on images and see the results immediately. This tool is very powerful but
is not programmable.

Other tools have been designed to deal with specific signal processing prob-
lems. For example, there are tools for speech analysis, all sorts of filter designs, and
even VLSI layout for signal processing algorithms. The price paid for this power is
the limited domain. For example, it would be difficult to design a filter using one
of the filter design programs and then use the results in one of the speech analysis
tools.

186 Interactive Signal Processing Documents Chap. 5

5.3.2 About Mathematics

Muthemuticu is an example of a system for creating interactive scientific documents
[17]. It is first and foremost a program for doing mathematics on a computer. The
program allows a user to pose both symbolic and numerical mathematics questions.
Thus, a user can symbolically integrate an expression, and then find its numerical
solution over any domain. Muthemuticu includes a programming language to allow
more complicated models to be described and graphical functions to allow the user
to visualize the results more easily. When mathematical definitions, graphics, and
words are all combined, the resulting document is called a notebook,\-Muthematica
is available for most of the popular scientific and personal computers, but the
notebook feature is only currently available on the Apple Macintosh and the NeXT
Machine. Notebook support for other machines has been promised.

Like its predecessors (MACSYMA, SMP, Maple, Reduce, etc.), Mathematics
includes many facilities for doing symbolic mathematics and numerical calculations.
The fact that these systems can easily work with polynomial equations makes them
useful, for example, when designing filters. A family of filters can be designed and
then analyzed for their behavior at DC. This section will talk about some of the
features of Muthematica and how it can be used to create an interactive signal
processing document.

The Muthemutica system is divided into two halves. The user interacts with
a front end while a back-end kernel provides the computational engine. The front
end is unique for each type of machine, defines the behavior due to typed commands
and mouse actions, and provides an interface to the host’s window system. The back
end is relatively machine independent and does all the calculations.

One useful feature of Muthematica is that the user interface (front end) and
the kernel (back end) do not have to be on the same machine. Thus, a user can
interact with a relatively inexpensive graphics machine on the desktop, while a more
powerful shared back-end machine does all the calculations. The communications
between the front end and the back end can be carried out over a serial line or a
network connection.

On some machines, the Muthematicu front end allows the user to create what
is called a notebook. A Mathematics notebook is much like a scientist’s notebook
since it can contain data and thoughts about work in progress. However, these
notebooks are unique in that they also contain computer models and even anima-
tions. The ability to create a live mathematical notebook is probably the feature that
most distinguishes Muthematica from other systems.

Notebooks contain text, equations, and graphics. When a problem is first
proposed, the notebook will reflect the steps actually used to carry out the calcula-
tion. It might contain false starts and notes understood only by the author. As the
theory and calculations are refined, the notebook becomes more polished. Eventu-
ally, the notebook is cleaned up and the necessary text written so it can be distributed
to colleagues. The finished.notebook will contain explanatory text, symbolic and
numerical models, and graphs and animations to explain the system and its solution.

Sec. 5.3 DSP Tools

Figures 5.4 and 5.5, my own technical report [2], and a recent book by Gray [181
are examples of notebooks in their polished form.

A notebook showing some of the capabilities of Mathematics is shown in Fig-
ure 5.4. Muthemutica can be used as a calculator, even with arbitrary precision, but
its real power comes from the symbolic functions. Equations can be integrated and
differentiated, and algebraic manipulations can be performed to put the result into
a simpler form. The results can be plotted to help understand how the system works.
A second, more complete example showing the use of Mathematicu in a signal
processing application is shown in Figure 5.5.

The signal processing example in Figure 5.5 uses a special data structure to
represent each filter. Ratios of polynomials are supported by Muthemuticu, but then
any filter operation that needed the location of the poles and zeros would have to
factor a polynomial with floating point coefficients. This can be done but is prone
to errors and is time consuming.

Instead of representing filters as ratios of polynomials, the filter design func-
tions shown here use a special structure that contains the gain, zero locations, and
pole locations. This structure is called a GZP (Gain, Zeros, and Poles). The GZP
structure is represented in Muthemuticu as a three-element list with the zeros and
poles each being represented as a list of points in the complex plane. Choosing the
appropriate data structure to model a system is important both for computational
efficiency and for literate programming. One advantage a symbolic environment has
over a purely numeric system such as MAT-LAB is that arrays and lists can be combined
in arbitrary ways to represent the data at hand.

Both the GZP and ratio of polynomial representations of filters have their
advantages. The GZP is used in Figure 5.5 because it is more accurate (roots of
polynomials are already known) and it is easy to transform a filter from the GZP
form to a ratio of polynomials. Consider the following filter design. The call to
ChebychevLp returns an eighth-order filter ,with a 1 dB pass-band ripple. The gain
of this filter has been adjusted so that it has unity gain at IX. Here, the GZP
structure returned by the C heb yc hevLp function, the Laplace domain representa-
tion, and finally an expanded version are shown.

In[m]: =
ChebychevLp[B, L]

Out[L] =
.01720755

{---- ------, {} -

~o~/20

{-0.0350082-0.99b4S21,-0.099b95-0.844?521,
-O.l,49204-0.5644441, -0.275998-0.2982061,
-O.~?S998+0.29020bI,-O.L49204 +O.S644441,
-0.099b9S+0.8447521,-0.03S0082+0.99b4521}}

488 Interactive Signal Processing Documents Chap. 5

Malhematica Introduction

This notebook is a short introduction to the features
of Mathematics. In the two notebooks accompanying this
chapter, the Mathematics input is shown in a bold face
Courier font and the Mathematics output is shown
in a normal Courier font. See Wolfram’s Mathematics
book for more examples.

Numerical Calculations

Mathematics can be used like a calculator to do numerical
arithmetic. Here is Pi calculated to 50 decimal places.

M [Pi, SO]

3.14159265358979323846264338327950288419716

93993751

Or Mathematics can bc used to numerically integrate
an expression which can’t be integrated symbolically.

HIntsgrate [Sin [Sin [xl], {x, 0, 1.011

0.4306061031206906045

Polynomial Manipulation

Manipulating algebraic expressions is easy for Mathematics.
Here are some examples. First we multiply out the terms
of an expression.

Expand [(x + 1) (x + 2) (x + 3) -3 (x + 4)]

216 + 594 x + 639 x2 + 350 x' + 104 x4 + 16 x5

+ x 6

We can then factor this equation to find the original
expression.

Factor [216 + 594.x + 639*x-2 + 35O*x"3 +
104*x-4 + 16*x-5 + x-61

(1 + xl (2 + x) (3 + x)3 (4 + x)

Solve [216 + 594.x + 639.x-2 + 350*x-3 +

104*x-4 + 16*x*5 + x-6 - = 0, x]

((x -> -11, !x -> -21, (x -> -41,

{x -> -3),(x -> -3), (x -> -3))

Here is a graph showing the behavior of this function
as x varies between -5 and 0.

Plot[(x + 1)(x + 2)(x + 3)-3(x + 4),1x,-5,OIlr

Calculus

Mathematics knows a lot about calculus. After reading
in Mathemutica’s integration rules, we can easily find the
integral of x/(1 -x3).

<<IntegralTable&3.m;
Integrate [x/(1-x-3), xl

1 + 2 x
- (Sqrt (31 ArcTan [---------I)

Sqrt [31

Log [l - xl Log 11 + x + x21
---___--__--- + _-___-----_______

3 6

Now let’s differentiate this result and see if we get the
original expression.

Simplify [D [- (3- (l/2) *ArcTan [(l +
24x) / 3- (l/2)1/
3 - Log (1 - xl/3 +
Log I1 + x + x*21/6, x I]

X
-_-___
1 - x3

We can also find the series expansion of an expression.

Serha [ESQ [xl COP [4x], (x, 0, 6) I

15 x2 47 x3 161 x4
1 tx - ------ - ------ + ---__-- +

2 6 24

1121 x5 11 x6
7 - -_____ _ _-____ + O[X]

120 16

Figure 5.4 An example of a Muthctnaticu notebook showing elementary numerical, symbolic
manipulation, graphing, analysis, and programming features.

Sec. 5.3 DSP Tools

_;.- .

da9

Solving Equations

Mathematics can be used to solve simultaneous equations.
Here is a simple example.

Solve [(x^3 + yA3 =* 1. x + Y == 2).(x, Yll

6 - Sqrt [-6)
((x -> _-____-_--_-____

6

12 + 2 Sqrt (-61
y -, ---_-__________-_)

12

6 + Sqrt f-61
(x -> -d-i -----_- -----

6

12 - 2 Sqrt f-61

Y -’ --_---------_----))

12

Graphics

Mathematics can graphically show you the results of your
calculations. Here is a plot showing the previous two
equations. Note: there are no solutions for real values of
x and y.

Plot [((l - xL.3) A (l/3), 2 - Jc),

b. -2, 211

4 ”

Data Analysis

Mathematics can be used to analyze the results of
your experiments. Let’s create a sample data set by adding
random noise (uniform between 0 and 1) to
a sine wave.

data = Table [N [Sin [l/25] +
Random tl

ListPlot [data] ;

log lx Y”2 zl
1 , 11, 20011; 2 log[xl log [yl

log [X/Y1

-(loglxl log[yl)

Now let’s fit the data to a constant term (to get the mean
of the random variable) and a sine and cosine of the
appropriate frequency. Note that the term multiplying the
cosine in the result is small compared to the factor
multiplying the sine.

Fit [data,(l, Sin [x/251, Cos [x/2511,x1

0.499471 - 0.0565294 cos (-‘-I +
25

0.944494 Sin C-x-1
25

Programming by Example

Rules can be added to Mathematics to specialize it for your
own problem domain. Here is an alternate definition of
factorial. The first rule defines the stop condition. The second
rule is the basic recursion to solve the problem.

Fact [O] = 1

Fact [x-l I = x Fact [x - 11

Fact [6]

720

Here is an example of defining rules for simplifying
logarithms in Mathematics.

log [a- b-1 : = log [al log [bl

log [x yA2 21

loCllx1 log[y21 log[zl

Now we can tell Mathematics about powers

log Ix-^n-I : = n log [xl

Figure 5.4 (continued)

log [zl

490 Interactive Signal Processing Documents Chap. 5

Signal Processing Example

This notebook is an example of using Mathematics to describe
continuous filter design. This notebook is fully functional. It
includes some Mathematics notation, but readers who are not
Mathematics users should have no problem understanding the
notebook by just reading the text. See lJVolfram88]. for an
explanation of the special notation used by Mathematics.
Thanks to Ray DeCarlo at Purdue University for providing the
original motivation to write this notebook.

There are a number of design techniques for high-order filter
design. This notebook will show how to design a Chebychev
low-pass filter, and then how to transform the original lowpass
poles into a bandpass filter. Section 1 of this example defines a
number of functions used to work with filter polynomials.
Section 2 describes the techniques to design Chebychev
lowpass filters with a comer frequency of I radian per second
(rps), and Section 3 shows how to transform these generic
lowpass filters into bandpass filters with arbitrary passbands.

1 Continuous Filter Functions

Continuous-time filters are described using polynomials of
complex frequency s. A filter’s response function is evaluated
along the imaginary axis by making the substitution s->I w (or
jo in conventional EE notation.) The following function is
used to evaluate the complex response of a filter radians.
Additional functions compute the gain, magnitude, and phase
response of the filter. The expression filter can be an arbitrary
function of the complex frequency s.

FilterGain[filter-, w-1 t=
ReplaceAll[filter, P --> I WI;

FilterMag [filter-, w-1 : =
Abs[FilterGain[filter,w]]

FilterPhase [filter-, w-1 : =
Arg[FilterGain[filter,w]]

FilterDb [filter-, w-1 : =
20 Log[lO,FilterMag[filter,w]]

The following function is used to display the
frequency response of a continuous filter. (The
plot starts at 0.01 Hz to avoid any problems with
filters that have a zero at DC.)

FreqReaponoe[filter-, roaxf-,
oPta_:Ol :=

Block[(reeponoe),
reeponoe I N[FilterDb[filter, 2 Pi f]]l
Plot[reoponee,{f,.01,maxf),

Axedabel->{" Hz","dB"),
PlotLabel->WReeponoe**,
OPtall t

We define a similar function for displaying the frequency
response of a filter as a function of radian frequency (o or
radians per second, rps).

Pre~ReaponmeRadiana[filter-, IIUBXW-,
OmL: 01 I-

Block[{reoponse),
reqonse -

N[PilterDb[filter,w]] J
Plot [reapomo, {w, .Ol,maxw) ,

AxesLabel-a(" RPS", "dB"),
PlotLabel->"Reaponee",

opto11i

Note that for each of these functions there is a third optional
argument that allows additional options to be set. We use this
feature to pass special parameters to the Plot function. The
frequency response of a fourth-order filter is shown below.

FreqRe~poneeRadiano I.197 0*2/
((0.09 - 1.31 4 e)(0.09 + 1.31 + a)

(.12-1.m + e) I.12 + 1.81 + 8)),4]i

I-=----- Response

The AdjustGain function is used to modify a filter
so ‘that it has unity gain at any desired frequency.

AdjuetGain[filter-,f-] X-
filter/FilterMag[filter,f]

Higher order filters could be designed with Mathematics using
either rational polynomials or lists of poles and zeros. Rational
polynomials would be nice because all intermediate results
would look like filters. Unfortunately, we sometimes need to
talk about individual poles and zeros, for example when doing
partial-fraction expansions. This is difficult if the filter is
described as a polynomial. If a filter is described by its poles,
zeros, and gain, we can always regenerate the polynomial.

A list of polynomial roots is turned into a polynomial in s
using this Mathemkica expression.

PoIynoinialFraraRoota [roote-J I -
If[Length[rootm] -I 0,

1,
Firat[&gly[Timeo,

MaP1~6418,rootal I I I
PolyncmialFromRooto[(4,2,1)]

t-4 + 5) (-2 + 5) (-1 + s)

Figure 5.5 A sample notebook shows the use of Mathematics to design and document a filter
design paper.

Sec. 5.3 DSP Tools

In this notebook we use a list to keep track of the zeros, poles,
and gain of a filter. Functions that transform filters will take as
input a list of these three items and return a similar structure.
We abbreviate the name of this structure to just GZP (Gain,
Zeros, and Poles). The following function is then used to take
one of these lists and transform it into a filter in the s domain.
Note that we have used the pattern matching facilities of
hfathematica to pick out the three elements of the
input list.

PiltsrFromGZP [(gain-, zeros-,

polen~~l I-
gain*Po]ynauialFrota [zeroz] /

PolynaaialFrcznRooto [polezl //N
FilterFromGZP[(2.4, (4,2,1),

(12,10,73]1

2.4 (-4. + s) C-2.+ s) (-1. + s)
-----------------_-_______________

(-12. + s) (-10. t 5) (-7. + s)

2 Chebychev Filters

The simplest high-order filters to design are the Butterworth
and the Chebychev. The poles of a Butterworth low-pass filter
are arrayed so that the filter’s response is flat through most of
its passband. As the frequency approaches the corner
frequency, the gain quickly falls off. In some cases this
characteristic is an advantage because the gain between DC
and the corner frequency is nearly flat.

For a given stopband or transition band specification, filters
with a much smaller variation in gain in the passband can be
designed using the Chebychev polynomials. Chebychev filters
do not have a flat response in the passband, but, as in
Butterworth filters, the passband error can be made arbitrarily
small.

The poles of the Chebychev polynomials are given
by the following expression [Daryanani76]. This expression is
a function of the desired order of the polynomial (n) and the
maximum error (amax) in dB in the passband.

ChebychevPolee [n-, amax-] : =

Block [(a),
e = Sqrt [lO*(amax/lO)-11 ;
Table[Sin[Pi/2(1 + 2k)/n]

Sinh IArcSinh [l/e] /II] +
I Coo[Pi/2(1 + 2k)/n]

Cooh[ArcSinh[l/e]/n],
(k,n,ln - l]ll

The ChebychevPoles function returns the location of the poles
of a n-th order low-pass Chebychev filter with a cutoff
frequency of 1 rps and a maximum pass-band error of amax
dB.

ChabychsvPolso t6,1] //N

(-0.0469732 - 0.981705 I,

-0.128333 - 0.718658 I,

-0.175306 - 0.263047 I,

-0.175306 + 0.263047 I,

-0.128333 + 0.718658 I,

-0.0469732 + 0.981705 I)

As can be seen from the pole plot below, the roots of a
Chebychev polynomial fall on an ellipse. This plot shows the
roots as the maximum error in the passband is varied from
10-l’ (the ones that look most like a circle) to a passband error
of 1 dB (the rightmost arc).

PlotPoleS [Flattsn[Map[N[
ChebychevPoleo[l6,#]]&,
(10~-10,10~-4,.1,1l111~

.5

0.5

1

The next function computes a Chebychev low-pass filter and
returns a list with the gain, zeros, and poles. Note that a 0
Chebychev low-pass filter has only poles so the list of zeros is
empty. The resulting GZP list can be passed to the filter
transform routines to realize other types of filters (band-pass,
band-reject, and high-pass). In this filter design function the
gain at the corner frequency (1 rps) is adjusted so that it has a

Figure 5.5 (continued)

192 Interactive Signal Processing Documents Chap. 5

loss of runax. As will be seen in the plots to follow, this will
set the maximum gain of the filter (at the peaks in the
passband) to 0 dB.

ChebychevLptn-,amaxJ I=
Block[{poles, gain),

polso=ChebychevPoleatn, amaxl//N;
gain I FilterNag[

PolynomialFronRooto[polea],
l/ (2 Pi)l//Nt

gain I lO*(-amax/ l gain;
Retum[Igain, 0, polenlll

The following plot shows the magnitude and phase response
of an eighth-order Chebychev low-pass filter with a pass-band
error of 1 dB.

ft=FilterFromOZP[ChebychevLp[8,1]]~
Fre~eopommRadiana[ft,2,

PlotRange->I-lO,O)]r

dB Response
: RPS

0.5 1 1.5 2

-2.

- 4 --

- 6--

- 8--

-1 o-

Plot[FilterPha~e~ft,rl,~r,0,2),
&reoLabel-> (* PPS” , “Radians”) ,
PlotLabel->"Phaae Rengonee"1;

RPS

Chebychev filters can have an arbitrarily small error in the
passband but this does not come for free. The following plot
shows the gain at twice the corner frequency as a function of
pass-band error. In each case an eighth-order Chebychev low-

pass filter was designed. Note that if more error in the
passband can be tolerated then a much sharper cutoff can be
real&d.

Plot[FilterDb[
FilterFrorrGZP[Ch~chevLP~8,ell,21,

(0, .01,31,
AxeoLabetl-~(“Paoaband Error*,

"Gain at 2x90 (dB)*)];

Gain at 2rps (dB)

-6O+

3 Band-pass Filters

Section 2 showed how to design a generic Chebychev low-
pass filter. These low-pass filters can then be transformed into
low-pass, high-pass, band-pass, and band-reject filters with
arbitary cutoff frequencies. This section will show how to
transform a low-pass filter into a band-pass filter. We use the
gain, zero, pole structure to keep track of the filter parameters.

A low-pass filter is transformed into a band-pass by specifying
the location of the two comer frequencies. We make this
transform by substituting the following expression for s into
the normalized low-pass filter [Daryanani76]:

a2 + wo’
S.= -----------

BP

In these expressions B is the difference (in radians) between
the two edges of the passband and w0 is the geometric mean
of the frequencies at the edges of the passband. The function
BpTransform is used to transform a single root of the
normalized filter into two new roots due to the substitution
above. (The extra root at zero is ignored for now.)

BpTranofonQ [roots-, wO_, B-1 I=
N[Flatten[Map[(B # / 2 +
Sqrt [BA2#“2-4wOA2]/2, B # / 2 -
Sqrt [BA2#A2-4w0A21/21L, rootelll

BpTranPform [ButtexworthPolee 131,
2Pi sqrt[looo 20001,
2Pi 10001

(-1104.8 - 6450.39 I,

-2036.79 + 11891.8 I,

-3141.59 + 8311.87 I,

-3141.59 - 8311.87 I,

-1104.8 + 6450.39 I,

-2036.79 - 11891.8 I)

Figure 5.5 (continued)

Sec. 5.3 DSP Tools

The function LpToBp transforms each of the Roles and
zeros in the original low-pass filter according to the
BpTransfonn function. In addition, each zero in the
original low-pass filter contributes a pole at zero,
and, likewise, the original poles contribute a zero at DC.
The difference between the number of poles and zeros
tell us the number of roots at zero to add, and extra
factors of B to add to the gain.

LfXlbBp t(srain-, zeroa-, pulsar),
fpl-. bP2-I I-

Block[(wO, B, RootDiff,
BxceooPolea, BxceoaZeroa),

wo = 2 Pi sqrt [fpl fp21;

B = 2 Pi (fp2 - fpl)t
RootDiff - Length[zeroa] -

Lewthbolealr
IftRootDiff > 0.

BxcesaZeroa I RootDiff;
BxcesoPolea - 0,

ExceaaPolen - -RootDiff;
BxceaaZeros - 01 I

(gain/BARootDiff,
Join[BpTranaform[zeroo, w0, B],
Table[O,(Exce~oPoles)]],
Join[BpTranafoxm[polea, w0, B],
Teble[O, (ExceaaZeroa]]])]

This transform is applied to a third-order low-pass filter
to determine a sixth-order band-pass filter with a passband
between 1 kHzand2kHzandamaximum pass-band
error of 3dB.

LpToBp [ChebychevLp [3, 31, 1000,2000]
//N

10

(4.8443 10 , (O., 0.. 0.).

(-326.13 + 6478.28 I,

-612.013 - 12157.1 I,

-938.143 + 8836.1 I,
-938.143 - 8836.1 I,

-326.13 - 6478.28 I.

193

The frequency and phase response of this sixth-order
band-pass is shown below.

fit - PilterFraPOZP [LpToBp[
chebychevLp[3, 31, 1000, 200011r

PreqReoponoe[flt, 40001

dB Response

6 O--

HZ
0

Iwolfram88] S. Wolfram, Muthemutica (Redwood City,
Calif.: Addison-Wesley, 1988).

[Daryanani76] G. Daryanani, Principles of Active Network
Synthesis and Design, (New York: John Wiley and Sons,
1976).

Figure 5.5 (continued)

194 Interactive Signal Processing Documents Chap. 5

In[2]: =
FilterFromGZP[ChebychevLp[8,1]]

Out[2] =
.llbS3S287/
((0.350082+0.99645b1+s)(0.0350082-0.99645~1+s)

(0.099695-O.B4475l,I +s)(O.O9969S +0.8447531+s)
(0.149204 -0.564444 I+s)(O.149204 +0.564444 I+s)
(0.27S998+0.19820bI+s)(O,b75998 -0.2982061+s))

In[3]: =
Chop[ExpandDenominator[FilterFromGZP[ChebychevLp[8,~]]]]

Out[3]=
. Ol,S3Sl,87/

(0.02722b7+0.207345~ +0.44782bs2 +0.84b824s3 +
1.8369s' +L.bSSLbs' +2.42303sb +0.939821s' +ss)

-The Chop function is used here to drop the very small imaginary terms that are
caused by roundoff error in the floating point calculations.

One of the more useful features of a symbolic math system is that it can be
extended. Rules can be added or programs written to specialize the behavior of the
system. In Mathematics, rules are defined using a pattern matching language much
like Prolog. On the left-hand side of a rule the underscore character (-) indicates
a wildcard position where any quantity can be substituted. Furthermore, the under-
score character can be appended to a variable name to make a named wildcard
variable. The pattern matching capability built into Mathematics is very powerful.
The simple expression

foo[a-, b-r c-l

on the left side of a rule matches the function f oo called with three arguments. The
expression on the right-hand side of the rule will be used with the appropriate
substitutions whenever the variables a, b, and c are used. A more complicated
expression like

factorial[n-Integer]

matches any time the factorial function is called with an integer argument. The
m,atching expression can include arbitrary Mathematics notation. For example

diff[a-+b-1

can be used to pick apart a sum and define a new differentiation rule.
Mathematics notebooks also include the ability to display animations. This is

a useful as a way to show how simple parameter changes affect the solution, or to rotate
a three-dimensional graph around its origin so the reader can more easily perceive

Sec. 5.3 DSP Tools 195

its form. In my own work we have used Mathematics animations to show wave
propagation solutions.

Readers of this chapter can get a sense of the readability of a notebook from
the examples in Figures 5.4 and 5.5. A problem with Muthemuticu is that the
language is new and probably unfamiliar to many readers. Consequently, notebooks
should be written, much like mathematical papers, so that the general flow can be
understood by skipping the equations [19]. A brief description of unusual syntax
might be given the first time it is used. In this sense, a notebook is no different from
a normal paper.

Muthemuticu includes elements of all the important characteristics of a system
for creating and exploring interactive signal processing documents. First, Muthemut-
icu notebooks are organized hierarchically. Within a notebook, equations, para-
graphs, mathematical results, and graphics are each cells that can be grouped into
larger cells. Cells can be hidden (or closed) in such a way that only the first line of
a cell is visible. From this information the reader can decide whether the rest of the
cell needs further attention. The first line of large, grouped cells is typically used as
a section title.

The help system in Mufhemuticu is a simple example of hypermedia. A user
can select a function in a notebook and ask for more information. A new window
appears describing the usage of the function. These simple usage statements are
handy, but the original definition will include a more complete description of the
algorithm. The system would be even more useful if the user could ask about a
function and immediately move to the part of the notebook where the function is
first defined.

All of these features of a A4uthemuticu notebook would not be interesting if
notebooks could not be distributed. The essential information in a notebook is
conventional ASCII text, which is easily moved through the email and computer
networks. While only some computer systems support the complete notebook con-
cept, all Muthemuticu systems can understand the data and the mathematics con-
tained in a notebook. Thus, a reader with a version of Muthemuticu without the full
notebook capability can study the printed version and still try the examples.

One disadvantage of systems like Muthemuticu is that strictly numerical calcu-
lations are not efficient. Symbolic manipulation programs are designed to work with
any type of mathematical quantity. Thus, when performing a multiplication, the
terms could be symbols, arbitrary precision integers (bignums), high-precision float-
ing point numbers, or simple integers or floats in the machine’s native format. Of
these, only the native format calculations are fast. Still, a symbolic manipulation
program must check for all of these possibilities each time it does an operation, and
this type checking can be more expensive than the mathematical operation. Conven-
tional programming languages do not pay this penalty because all types are known
at compile time and the proper machine instructions generated ahead of time.

Finally, Mufhemuticu is a commercial product that not everybody will be able
to afford. Wolfram Research has put into the public domain a Muthemuticu notebook
reader. This notebook reader does not have any of Muthemuticu’s mathematical

196 Interactive Signal Processing Documents Chap. 5

ability, but it does allow people to view a notebook and play the animations on any
Macintosh computer. My own cochlear notebook [2] has been published on paper
and with a floppy disc containing the Muthemuticu notebook and the notebook
reader to allow the material to have the widest possible distribution.

5.4 DESIGN ISSUES

Sections 5.2 and 5.3 have described the form an interactive document might use to
describe a signal processing algorithm. How should the author structure his or her
writing to make the best use of the technology available to describe a signal process-
ing problem and its solution? There is no question that an interactive signal process-
ing document requires new skills from an author. Some of these skills are the subject
of this section.

The benefits of interactive signal processing documents described here do not
come for free. Certainly the design and writing of such a document takes more
thought and care than conventional papers do. When the interactive document is
done, there is no easy way to disseminate its electronic form. Both of these problems
should diminish as people become more familiar with this new medium for research
and publishing.

This section describes some of the factors that make an interactive signal
processing document a success. Certainly the biggest factor is writing the document
so that it invites the reader to interact with the material. Fortunately, this is easily
addressed by the author. Other factors, for example distribution and notation, are
more difficult. Each of these difficulties are addressed in the remainder of this
section.

5.4.1 How to Write an interactive Signal
Processing Document

Designing an interactive document is not easy, but the effort is worthwhile since
writing an interactive mathematical document becomes as much a learning experi-
ence as reading it. Teaching new material is often the best way to learn it. By
preparing an interactive document, one is forced to study the material as a reader,
and by having a tool such as Muthemuticu it is possible to explore more of the subject
area. In addition, when a common system is used to research and present a new
result, the effort in creating an interactive document is minimized.

Making a document interactive adds another dimension to the writing task. In
some ways this makes the task more difficult, but in other ways the task becomes
simpler. Just as a picture is worth a thousand words, an interactive example showing
how frequency response changes with pole location can be worth a thousand figures.

The interactive dimension might require extra work by the author of a signal
processing document. One can always use the tools described in this chapter to write
a conventional paper; it would not be any more or less efficient than using a word

Sec. 5.4 Design issues 697

processor. Fortunately, some of the interactive features described here make the
writing process easier. It is often easier to show a reader an interactive graphic than
it is to explain it in words. Other parts of an interactive signal processing document,
such as working models and simulations that would otherwise never leave the lab,
require more effort to polish and make ready for publication. As always, it is up to
the author to decide on the proper amount of effort to apply. A short note explaining
a new algorithm for a research group probably doesn’t need as much polish as an
undergraduate signal processing text.

One might think that this extra work would slow the rate of research. This is
not necessarily true. Preliminary signal processing ideas are already exchanged
within one’s research or development group as small code samples and in interactive
discussions. The point of this chapter is to describe the benefits of allowing a reader
to more easily benefit from this rich form of interaction.

There are four skills and practices that should be remembered when writing
an interactive signal processing document. They are:

1. Use good writing and graphics.
2. Iterate the design with real readers.
3. Guide readers to interactions.
4. Limit interactions to fit the reader and available computer power.

That good writing and graphics are important for an interactive document should
go without saying. It is especially important that the ideas expressed by Tufte [20]
should be applied to the interactive display and models. The remaining techniques
for designing an interactive signal processing document will be discussed next.

Adding an interactive component to a signal processing paper is not a panacea.
Just as there are bad papers, there will be bad notebooks. Fortunately the technology
encourages a closer collaboration between the author and the reader. A successful
interactive document will often go through several iterations. When first writing an
interactive document it is hard to know how much detail to include or what kinds
of models are useful to any particular reader. At successive stages, observation of
how readers interact with the document will help guide its evolution.

The key task is to design the interactive document so that the reader can profit
from the information and the changes can be shown at interactive rates. The first
part of this problem, inviting the reader to play with the model, is easily solved with
words. Telling the reader, “Here’s some equations, play around.with them,” will
only help the most motivated readers. Instead, the introduction of an interactive
document could guide the reader to those parts of the document that can be
modified, such as is done in this example [2]:

The best way to interact with this notebook is to read the description, study the
examples, and then modify an example to see how different parameters give different
results. For example, an appendix to this report describes digital filtering and provides

interactive Signal Processing Documents Chap. 5

functions to design first and second order filters. Much can be learned about digital
filtering by combining these filters and studying the resulting frequency response or
pole-zero plots.

Readers might also want to modify this model to better fit their own experience
or ideas. For example this notebook describes a relatively simple model of the effects
of the outer and middle ears on the sound. A reader might be interested in providing
a better model or removing the outer and middle ear filters completely and studying
the change in response. As another example, this report describes a simple Automatic
Gain Control (AGC) to compensate for the large range of sounds produced by humans.
This notebook explores several variations on the basic AGC but readers might want to
try their own.

Simple examples, spread liberally through the text, encourage the reader to
“kick the tires.” It is probably not important that every reader understand the details
of a filter design algorithm. But labeling a simple figure showing a Butterworth filter
response with the A4utlzemuticu text

makes it clear to casual readers that this is a low-pass filter with a cutoff frequency
of 1,000 Hz. If the LO 00 is changed to 2000, the cutoff frequency should change
by an octave. The reader might not appreciate exactly what an eighth-order filter
is but should see that the filter attenuates more quickly with higher order.

Readers also need to be guided toward those portions of the document that
are interactive. Not every part of a document can be changed in a meaningful way,
but those parts that can be changed or perform an action for the user (play a sound
or display an animation) should be marked. If the reader changes the title of the
paper it probably will not automatically change the contents. Highlighting the input
text in a special font or with graphics tells the reader which parts of the document
can be changed.

It is ‘easy for both the reader and the computer to be overwhelmed by an
interactive document. Without adequate guidance the reader might wander down
paths where there is no hope that any meaningful conclusion can be reached. In
addition, an all-encompassing simulation would model many details that are not
interesting to the reader. Limiting the domain over which the reader can change the
simulation helps control the amount of processing power that is needed to answer
a reader’s question. If the problem is well defined it might be possible to precompute
all of the interesting results and then use interpolation to display the correct simu-
lation result.

Figure 5.6(a) shows a simulation where the reader has too much freedom. In
this example, the reader can place the poles of a filter at any place on the s-plane
and see the resulting frequency response. This gives the reader too much freedom
and it is unlikely, for example, that the special properties of the classical filter design
techniques will be found. In addition, it will be hard to find an easily affordable

Sec. 5.4 Design issues a99

document reader that will have the computational horsepower to keep up with the
user’s requests.

Figure 5.6(b) shows a modified version of this example where the reader is
limited to studying the relationship between the Butter-worth and Chebychev filters.
By moving a knob that controls the eccentricity of the pole locations, the reader can
see the effect on the pass-band ripple and the filter attenuation rolloff. This is now
simple enough that even a dozen precomputed frequency responses would show the
concept to the reader, without the reader knowing that the computations were done
ahead of time. It would even be possible to precompute audio examples so that the
reader can listen to the effect of each filter.

I do not mean to say that a paper including an example like that shown in Fig-
ure 5.6(a) is not useful. There will always be readers who will understand the basics
of such an example and will want to explore the effect that quantization has on pole
location or any number of ideas that never occurred to the original author. It is up
to the author to carefully draw the line between guiding the reader and allowing the
reader to become lost in the details.

5.42 Problems with Interactive Signal
Processing Documents

Other parts of the problem are not as easy for the author to address. These problems
include choosing a system, publishing the electronic document, and picking a nota-
tion. Each of these’problems will be addressed in the remainder of this section. Other
issues, such as version control or keeping track of what has changed between
versions, and maintaining correctness in the face of changes by the reader, are
secondary problems and are not discussed ,here.

Choosing a system for writing an interactive signal processing document is not
easy; the’ideal system does not exist yet. I have used Muthemuticu for writing several
interactive signal processing documents. It has many of the desired characteristics
but is lacking in other areas. Muthemuticu would be a much better environment for
creating electronic DSP notebooks if it had better multimedia support, was more
efficient at strictly numerical calculations, and if it had better text formatting and
graphics support. Hopefully these and other problems will be addressed in future
releases of the software.

On the other hand, it is hard to believe that any one system will solve every-
body’s problems. Large, all-encompassing tools tend to be unwieldy and not solve
anybody’s problem very well. Instead it will probably be best if a user can mix a tool
for filter design from one vendor with a special-purpose accelerator from another
to make the most efficient research and learning environment.

Publishing notebooks and other forms of electronic documents is not easy.
Magazines and journals usually used to disseminate research results have evolved
efficient mechanisms and designs to effectively communicate the printed word. But

20000..

l

a ..

40000..

l

200 Interactive Signal Processing Documents Chap. 5

Select Location of Roots
(Complex S-Plane) j0

60000T

dB Response

e 0

I
-14000 -10000 -6000 -2000

J
-14000 -10000 -6000 -2000

-5..

-1 o-

-15..

-20..

(a)

Location of Roots
(Complex S-Plane) .

6000;

Select I

RPS

(W

Sec. 5.4 Design Issues 201

a single floppy, or other form of electronic media, can cost as much as the magazine
it accompanies.3

One of the more successful schemes for electronic publishing is based on the
international computer networks. Dongarra at Argonne Labs maintains an elec-
tronic mail system for distributing many large numerical software packages [21].
Users can send electronic requests to a special address and receive more information
or the software by return mail. Another scheme is to broadcast the software on one
of the computer bulletin boards. This is commonly done, for example, on the Usenet
bulletin board comp.sources [22].

Unfortunately, not everybody has access to the computer networks. Instead,
electronic material is often made available on floppy disks that can be read on a user’s
own computer. For instance, my own report on the implementation of a cochlear
model [2] was published as a technical report so it could be accompanied by a floppy
disk containing the Mathematics notebook. A recent issue of the Communications
of the ACM [lo] included an advertisement for floppy disks containing hypermedia
examples.

An additional problem is that an electronic document is not as convenient as
a magazine or a book. Curling up with a computer will probably never have the same
appeal as curling up with a good book, but the next generations of portable comput-
ers should make this easier. For example, my own notebook was designed so that
it can be read as a normal paper but without all the benefits of an electronic
document.

Finally, there is the issue of notation. Within any one technical area,
for example, signal processing or high-energy physics, the notation is well estab-
lished, but it often differs widely between areas. Even a concept as simple as an
integral is written in many different ways with marks to indicate different flavors of
integration.

Mathematics solves this problem by defining a new language based on the
ASCII alphabet. Wolfram has exchanged the rich notation that scientists and math-

‘There are more and more examples of printed works accompanied by electronic media. Often
books on microcomputer programming include a floppy disc with programming examples [for example,
Programming with MacApp by David Wilson]. develop, a magazine that Apple publishes for its software
developers, includes a CD-ROM with every issue. Each CD-ROM contains the complete text for all the
issues of the magazine published to date and source code. According to the editor, the magazine and
the CD-ROM each cost approximately $2 in 1990. The Mathematics Journnf distributes a floppy disk
with source code with each issue, but the articles are written like a conventional paper accompanied by
source code.

Hgure 5.6 Two examples are shown of interactive signal processing models. The first
example (a) allows the user to pick any location for the filter poles. It probably provides too
much freedom for most users to gain any useful insight. The second example (b) allows the
user to change the eccentricity of the pole locations and compare the Butterworth and Cheby-
chev methods. Each figure shows the locations of the poles in the upper left quadrant of the
s-plane, the magnitude of the response in the same quadrant., and the conventional frequency
response.

202 Interactive Signal Processing Documents Chap. 5

ematicians have evolved through the ages for a very precise functional notation. For
example, one writes

Laplace[f[tll t, s]

to represent the Laplace transform of a function of t in terms of the complex vari-
able s.

Other programs, such as Milo, by a company called Paracomp, use a more
conventional mathematical notation, but their knowledge of mathematics is limited.
A research system called CuminoReaf [23] gives authors an interactive interface to
a writing program and symbolic algebra programs. The result is a nicely formatted
paper document without the hypermedia and interactive features that are part of an
electronic notebook. Perhaps the best solution is to allow users of symbolic math
programs to define graphical templates, which are used when the system wants to
translate its internal representation into something to be.displayed to the reader.

5.5 RESEARCH ISSUES

Electronic notebooks are possible today and the resulting document, for example
[2], can successfully communicate a signal processing idea. Currently available
software, however, limits the topics that can be covered readily. A notebook on filter
design is relatively straightforward. Graphics and animations can show most of the
ideas, but a notebook on audio compression would be frustrating without the ability
to include high-quality audio examples in the notebook.

Some needs of future electronic notebooks go without saying. There will
always be a need for more computational horsepower to enable more realistic models
to be built. Higher quality audio and easier ways to integrate video will allow more
signal processing topics to be described.

Other needs, such as providing instructional directions and tuning the human
interface, are difficult issues. It is important that an electronic notebook encourage
the user to interact with the material by making it easy for the reader to navigate
through the notebook and ask reasonable questions.

Before concluding, two areas of future work are worth noting. These ideas have
been alluded to in other parts of this chapter but they are worth repeating. First,
more’ powerful symbolic tools will make it easier for researchers and readers to
explore difficult signal processing problems. Second, there are many software engi-
neering problems in designing a system that allow users to move between different
types of simulations and include the necessary tools for a complete system.

Several improvements to the mathematical symbolic manipulation world
would be nice to see. More powerful symbolic tools will allow more difficult DSP
problems to be solved without resorting to brute force. Allowing the user to specify
the cost of mathematical operations and then automatically optimize an algorithm
as is done with ADE would make it easier to realize the solution to a DSP problem
using the available hardware. Finally, better support for strictly numerical calcula-

Chap. 5 References 203

tions will allow a system to be designed and the resulting algorithm applied to real
data. All of these improvements would make it easier to write an interactive note-
book to describe the solution to a signal processing problem.

The remaining problem is one of software engineering. Symbolically manipu-
lating mathematical symbols is only part of the problem. An author of an interactive
signal processing document will need other tools. Tools such as text formatters,
spelling checkers, and drawing programs are needed but probably not within the
domain of expertise of most people designing signal processing environments. A
software component system is one solution to this problem.

I would like to thank a number of people for help with this chapter. Theo Gray,
Nancy Blachman, and Paul Abbott at Wolfram Research have been invaluable in
helping me master Mathematics. They were very understanding when I tried to use
Mathematics in ways that were never envisioned. I would also like to thank Richard
F. Lyon, Robert Hon, Neenie Billawala, Monica Ertel, Pam Lau, and Nancy Tague
for their help in producing the notebook [2] that led to this chapter. Finally, Richard
Lyon, Michele Covell, Richard Fateman, Brian Evans, James McClellan, Norm
Carter, and Dennis Arnon have all made many useful comments about the ideas
expressed in this chapter.

[l] M. Slaney, “Interactive Signal Processing Documents,” IEEE ASSP Magazine, 7 (1990),
S-20.

[2] M. Slaney, “Lyon’s Cochlear Model,” Apple Computer Technical Report #13, Corpo-
rate Library, 20525 Mariani Avenue, Cupertino, Calif. (1988).

[3] “Enter Mathematics ,” MacUser (November 1988), 199-216.
[4] J. Barwise, “Computers and Mathematics,” Notices of the American Math Monthly, 35

(1988) 1333-49.
[5] R. J. Fateman, “A Review of Mathematics ,” Journal of Symbolic Computation, to

appear.
[6] ZMSL Library Reference Manual, IMSL Inc., Houston, Tex. (1980).
[7] MATLAB for Macintosh Computers, The MathWorks, Inc., 24 Prime Park Way, South

Natick, Mass. (1989).
[8] B. Evans and J. H. McClellan, “SymbolicTransforms with Application to Signal Process-

ing,” Mathematics Journal, 1 (Fall 1990), 70-80.
[9] M. Covell, “An Algorithm Design Environment for Signal Processing,” RLE Technical

Report 549, Cambridge, Mass. : MIT, 1989.
[lo] Special Issue on Hypertext, in Comm. of the ACM (July 1988).

204 Interactive Signal Processing Documents Chap. 5

[ll] P. J. Denning, “Announcing Literate Programming,” &mm. of the ACM, 30 (1987),
593.

[la] Programs for Digital Signal Processing (New York: IEEE Press, 1979).
[13] G. Kopec, “The Signal Representation Language SRL,” IEEE Trans. on ASSP, ASSP-

33 (1985), 921-32.
[14] C. S. Myers, “Signal Representation for Symbolic and Numerical Processing,” RLE

Technical Report 521, Cambridge, Mass.: MIT, 1986.

[15] W. Dove, C. S. Myers, and E. E. Milios, “An Object-Oriented Signal Processing
Environment: The Knowledge-Based Signal Processing Package,” RLE Technical Re-
port 502, Cambridge, Mass.: MIT, 1984.

[16] Photoshop User’s Guide, Adobe Systems, Inc., Mountain View, Calif. (1990).
[17] S. Wolfram, Mathematics: A System for Doing Mathematics by Computer (Redwood

City, Calif.: Addison-Wesley, 1988).
[18] T. W. Gray and J. Glynn, Exploring Mathematics with Mathematics (Redwood City,

Calif.: Addison-Wesley, 1991).
[19] D. E. Knuth, T. Larrabee, and P. M. Roberts, “Mathematical Writing,” MAA Notes

No. 14, The Mathematical Association of America (1989).
[20] E. R. Tufte, Envisioning Information (Cheshire, Conn.: Graphics Press, 1990).
[21] J. J. Dongarra and E. Grosse, “Distribution of Mathematical Software via Electronic

Mail,” Comm. of the ACM, 30 (1987), 403-07.

[22] J. S. Quarterman and J. C. Hoskins, “Notable Computer Networks,” Comm. of the
ACM, 29 (1986), 932-71.

[23] D. Arnon, R. Beach, K. McIsaac, and C. Waldspurger, “CaminoReal: An Interactive
Mathematical Notebook,” in Proceedings of the international Conference on Electronic
Publishing, Document Manipulation and Typography, ed. J. C. van Vliet (New York:
Cambridge University Press, 1988).

ND KN
SIGNAL B

EDITORS

Alan V. Oppenheim
Massachusetts Institute of Technology

S. Hamid Nawab
Boston University

Prentice Hall

Englewood Cliffs, New Jersey 07632

