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“The purpose of computing is insight, not numbers.”

 

Richard Hamming

 

Homo sapiens

 

 is considered to be, above all else, a visually oriented species, with the
other senses viewed more as supporting players than as star performers. This “bias” in per-
ceived sensory function has had the historical consequence of casting the auditory modality
into the “back seat” of both experimental and computational neuroscience for many decades
— or so it would appear.

In actuality, auditory neuroscience has been at the vanguard of both disciplines for many
years. Important scientific landmarks include:
(1) the first biological application of Fourier’s theorem [5]
(2) the first systematic application of electrical recording technology in sensory neurophysi-

ology [8]
(3) the original use of micro-electrodes for recording the electrical activity of single neurons

[2] 
(4) the initial application of computer technology for presenting experimental signals [3]
(5) the original utilization of computers to collect and analyze neurophysiological data [4]
(6) the first application of entirely digital technology for signal presentation, data collection

and analysis [6][7]
(7) the first apparent application of non-linear modeling to behavioral function [1]

As we start the twenty-first century (and the third millennium) the dawn of a new scien-
tific era is approaching, one that melds traditional experimental and descriptive methodology
with the emerging power of computational and quantitative approaches. The current volume
serves to define the shape, texture and scope of this important, new field of scientific inquiry,
as well as to delineate its likely technological contribution to such fields as telephony, auto-
matic speech recognition, hearing prostheses, speech synthesis, high-quality voice/audio
reproduction and transmission.

The volume is divided into nine sections, each focusing on a specific topic germane to
computational hearing.

The first section discusses computational approaches to the physiology of the auditory
periphery, ranging from the cochlea (the chapter by Gebeshuber and Rattay) to the auditory
nerve (Stankovic) and up through the ventral cochlear nucleus (Kalluri and Delgutte).

The second section applies computational approaches to two areas germane to process-
ing in the cochlea. Irino and Unoki describe a model for spectral analysis based on gam-
machirp filtering, while Bruce and colleagues describe models for processing of sound by
cochlear implants used in the profoundly hearing-impairing.

The third section of the book focuses on the localization of sound from a variety of dif-
ferent perspectives. Brungart describes a model for the perception of auditory distance,
while Ito and Akagi apply sophisticated computational techniques to the problem of sound
localization in general. Hartung and Sterbing, in their chapter, use physiological data to pre-
dict behavioral performance.
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The following section discusses one particular model system — the echolocating bat —
as a means of melding computational approaches to behavior and physiology. Wotton and
colleagues consider the cues used for computation of elevation, while Müller and Schnitzler
discuss the concept of “acoustic flow” in bats. 

Section five focuses on pitch perception from the behavioral (Akeroyd and Summerfield)
and physiological (Cai and colleagues) perspectives.

Temporal processing and periodicity analysis has been a controversial area of research
for over a century. The sixth section focuses on several issues germane to this topic. The first
two chapters (by Heil, and by Bleeck and Langner) focus on the importance of the waveform
envelope (particularly at the beginning of a signal) for evoking neural excitation. Unoki and
Akagi, in their chapter, model the perceptual phenomenon of “co-modulation masking
release,” a topic of intense behavioral research over the past two decades. Finally, Cariani
discusses the importance of neural networks specialized for extracting timing cues in the
perception of pitch and timbre. 

The seventh section contains a paper by Miller and colleagues that examines the relation-
ship between the thalamic and cortical regions of the auditory pathway, using dynamic sig-
nals to deduce the interconnections between these parts of the brain.

Auditory scene analysis, the ability to pick out specific “objects” from a background
based on acoustic cues, has been a topic of keen investigation over the past decade. Bau-
mann describes a model for identification and segregation of musical tones. Denham pro-
poses a model of cortical activity (and inhibition) as the basis for some of the segregation
ability observed in human listeners. Meyer and colleagues examine the ability of listeners to
segregate two streams of speech as an example of auditory scene analysis.

Much of the interest in auditory computational models pertains to their utility for speech
processing. The final section of the book examines three different approaches to speech pro-
cessing using auditory models. Strope and Alwan are concerned with potential robustness of
the speech signal in noisy environments based on pitch-relevant, amplitude-modulation
cues. Tian and colleagues apply a model of the auditory periphery for robust speech recogni-
tion by computer, while Kawahara uses an auditory-inspired model to create realistic talking
voices. 

This volume is based on a NATO Advanced Study Institute, held at Il Ciocco, in the
mountains of Tuscany, between July 1–12, 1998. Over a hundred scientists, representing 17
countries in Europe, North America and Asia, participated in the meeting (for further details,
see http://www.icsi.berkeley.edu/real/comhear). The ASI’s intent was to provide a rigorous,
scientific overview of auditory function in concert with a critical examination of specific
strategic issues that potentially hold the key to understanding how the brain portrays the
world in terms of sound. As far we know, this was the first scientific meeting to specifically
focus on melding computational approaches with the traditional venues of auditory neuro-
science and psychoacoustics.

We would like to express our appreciation and gratitude to the ASI Faculty (Jont Allen,
Jens Blauert, Ellen Covey, Dan Ellis, Ted Evans, Phil Green, Hynek Hermansky, Gerald
Langner, Roy Patterson, Christoph Schreiner, Shihab Shamma, Jim Simmons, Quentin Sum-
merfield, Marianne Vater, Jeff Winer and Eric Young) for their excellent lectures and to all of
the other participants for helping to make the meeting an outstanding success. 

 We would also like to express our appreciation to NATO, which provided the lion’s
share of funding required to support the meeting through its Office of Scientific and Envi-
ronmental Affairs. A particular debt of gratitude is owed to Dr. L. Veiga da Cunha, then-
director of the Advanced Study Institute Program at NATO, for his help and guidance. We
are also grateful to the Turkish and Portuguese divisions of NATO for providing additional
financial support to defray the travel expenses of participants from their respective countries.
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The ASI also received generous financial support from the (U.S.) Office of Naval Research
and the (U.S.) Air Force Office of Scientific Research, for which we are deeply appreciative.
We thank, in particular, Dr. Harold Hawkins of ONR and Dr. John Tangney of AFOSR for
their efforts in supporting the ASI. We are also grateful for the support of the (U.S.) National
Science Foundation which subsidized the travel of several of the younger American scien-
tists. We thank Ms. Rosa Knox and Dr. Robert Metcalfe of that foundation’s Graduate Edu-
cation and Research Development office for their support and assistance. We also thank
Barbara and Tilo Kester of International Transfer of Science and Technology (Brussels) who
work closely with NATO to provide the infrastructure support for Advanced Study Institutes.
The Kesters suggested Il Ciocco in Tuscany as the site most ideal for the purposes of the ASI
and helped to coordinate our initial contacts with the hotel and conference center. We are
especially grateful to Bruno Gianassi and his staff at Il Ciocco, who continually went
beyond the call of duty to insure that everything ran smoothly during the course of the meet-
ing.

Finally, we would like to express our deepest appreciation to the authors for taking the
time to prepare their chapters for this volume, as well to thank them for their patience and
understanding during the lengthy preparation of the book.
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PHYSIOLOGY OF THE AUDITORY PERIPHERY

 

Steven Greenberg
International Computer Science Institute

1947 Center Street, Berkeley, CA 94704, USA

 

The auditory periphery, encompassing the outer, middle and inner ears, as well as the
auditory nerve and ventral cochlear nucleus, has been the focus of intensive scientific inves-
tigation over the past half century. Much of the motivation for this research effort derives
from an interest in the anatomical, physiological and biochemical bases of hearing impair-
ment and potential methods for its amelioration (cf. the chapter by Bruce and colleagues on
cochlear-implant research in this volume). Another reason for this interest lies in the fact that
the auditory periphery is the “final common pathway” prior to anatomical and physiological
diversification characteristic of the central auditory nervous system.

Despite the abundance of studies performed, many questions pertaining to the function
of the auditory periphery remain unresolved. The papers in this section address three sepa-
rate functional issues using quantitative methods.

Gebeshuber and Rattay use a computational model of the cochlea to investigate the ori-
gins of the audibility curve for human listeners. The conventional wisdom cites the middle
ear as the primary basis for maximum sensitivity in the region between 2.5 and 5 kHz as
well as for the steep decline in audibility below 400 Hz [4]. The authors suggest that other
factors, such as firing-interval statistics of the auditory nerve, combined with temporal reso-
lution of neuronal spiking due to Brownian motion in the cochlea proper, may also play an
important role in the pattern of audibility observed. The authors also point out that the inner-
vation density of auditory-nerve fibers projecting onto inner hair cells is highly correlated
with the threshold sensitivity function; they propose that Brownian motion and stochastic
resonance may underlie the extraordinary sensitivity of human listeners in the mid-fre-
quency range of the spectrum. Damage to this functional component of the cochlea may
account for certain types of hearing loss.

The chapter by Stankovic addresses another important issue in coding of acoustic sig-
nals. It has been known for many years that the input-output (I/O) function of auditory-nerve
fibers can be approximated with a saturating form of non-linearity and a fixed threshold [6].
At very low sound-pressure levels the discharge rate of a fiber is governed by spontaneous
activity. This discharge level is essentially the same as in the absence of sound. Some fibers
exhibit very high levels of spontaneous activity (120 spikes/s), while others fire infrequently
(<1 spike/s). The wide range of spontaneous activity may have functional implications, as
the low- and medium spontaneous rate (<10 spikes/s) fibers generally have higher thresholds
(by ca. 10-20 dB SPL) [1][3] and phase-lock with greater precision to low-frequency signals
[2] than their high-spontaneous-rate counterparts. Moreover, there is evidence that at least
some of the low-SR fibers exhibit a very broad dynamic range of response, with the saturat-
ing component of the I/O curve exhibiting a gently sloping character in contrast to the hard-
limiting form of saturation observed in high-SR fibers [7]. 

In order to provide a more systematic means of characterizing the diversity of auditory-
nerve rate–intensity functions, Stankovic develops a sophisticated means of selecting param-
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eters for the equations used to fit a model’s output with the empirical data derived from sin-
gle-unit recordings from the cat auditory nerve. The method provides a simple, clear means
with which to fit such I/O functions for a wide range of auditory-nerve fibers and thereby
provides insight into the potential functional significance of the diversity associated with
rate-intensity functions in the same experimental animal.

The auditory nerve projects to the ventral cochlear nucleus, the first site of manifest func-
tional and anatomical specialization in the auditory pathway. In contrast to auditory-nerve
fibers, which fire continuously during the coarse of stimulation, certain cell types in the ven-
tral cochlear nucleus fire primarily at stimulus onset, and otherwise substantially reduce
their firing rate or cease activity entirely [5]. Kalluri and Delgutte perform a modeling study
of the onset units in the ventral cochlear nucleus, focusing specifically on the nature of audi-
tory-nerve input impinging on such cells and the magnitude of synaptic strength binding the
different neuronal cell types. In addition, they model certain properties of the onset (Octo-
pus) cell membrane and show that certain specific properties of these cells’ responses can be
modeled on the basis of such parameters. The significance of their model pertains to the ele-
gant manner in which it is able to deduce specific anatomical and physiological properties
(cf. [5]) on the basis of a relatively sparse initial data set. It is notoriously difficult to obtain
empirical data pertaining to cell-membrane characteristics and anatomical connectivity.
Using a quantitative model to infer the relevant parameters can serve as an effective means
of providing initial hypotheses about the anatomy and physiology which can subsequently
be verified (or modified) during the course of focal investigations.

Together, the three chapters in this section provide a representative sample of how com-
putational methods can advance the scientific study of the anatomy and physiology of the
auditory periphery. 
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1.    Introduction

 

The human hearing threshold curve for pure tones is a nonlinear function of frequency
(Figure 1). The minimum sound pressure required for an audible sensation to occur is fre-
quency dependent and spans approximately five orders of magnitude. In the highly sensitive
region of the spectrum between 2 and 5 kHz an intensity as low as 10

 

-12

 

 W/m

 

2

 

 is sufficient
to evoke an audible sensation. 

The current modeling study investigates the efficiency with which the mechanical stage
of transduction in the inner ear is transformed into a neural form (i.e., mechano–electric
transduction) for low-intensity sinusoidal signals across a range of frequencies. Our goal is
to gain insight into the basic physiological properties that underlie the human hearing thresh-
old curve.

The inner hair cells (Figure 2) play a key role in mechano-electric transduction. In the
human inner ear are three rows of outer hair cells (OHCs) and one row of inner hair cells
(IHCs). A primary function of the OHCs is to amplify the magnitude of low-intensity signals
[1][16][24]. IHCs serve as the primary (if not the sole) conduit of frequency-selective infor-
mation to the brain via their innervation of the auditory nerve. Deflection of the hair cell ste-
reocilia modulates the probability of the cell’s transduction channels opening and closing
and is responsible for the voltage fluctuations observed within the cell. Such fluctuations
provide a low-pass filtered “image” of the stereociliary displacement (along with additional
stochastic components resulting from channel gating). In the “active” zones, at the base of
the cell, sufficient depolarization of the receptor potential results in Ca

 

2+

 

-induced neu-
rotransmitter release. This transmitter release, if of sufficient magnitude, results in depolar-
ization of proximal auditory-nerve fibers, resulting in the generation of action potentials that
are propagated into the auditory brainstem.

The transduction mechanism is so sensitive that displacements resulting from stereocili-
ary Brownian motion contribute significantly to the spontaneous discharge activity observed
in highly sensitive (i.e., high spontaneous rate) auditory-nerve fibers [8][10][31]. Acousti-
cally generated displacements less than the thermal motion of the stereocilia are sufficient to
cause an audible sensation. The Brownian motion in this instance enhances the detection of
weak signals via a mechanism known as “stochastic resonance” [9][10][31]. Stochastic reso-
nance is based on nonlinear statistical dynamics through which information flow in a multi-
state system (such as the transduction channel of the inner hair cell or the all-or-none process
of spike generation) is enhanced by the presence of optimized random noise [23]. 
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Figure 3 shows the number of auditory-nerve fibers innervating an “average” IHC of a
normal human cochlea. The innervation density varies as a function of cochlear-frequency
position in a manner comparable to the hearing threshold curve (Figure 1). In the mid-fre-
quency region the innervation density reaches a maximum of ca. 15 fibers per IHC. About
sixty percent of these fibers are highly sensitive and exhibit relatively high rates of spontane-
ous activity (18–120 spikes/s).

The highly sensitive nerve fibers change their spiking patterns for low- and mid-fre-
quency signals close to the threshold of hearing as follows: the first sign of influence on the
firing of many spontaneously active fibers by a pure tone is phase-locking of the spikes [28]
[29]. This may occur at an intensity far below that required to evoke an increase in mean fir-
ing rate [12]. This phase-locking effect does not occur for high-frequency signals as a conse-
quence of the jitter associated with interspike times. Afferent fibers may respond differently
each time a stimulus of a given amplitude is presented since fluctuations in excitability and
latency are directly associated with fluctuations in the membrane resting potential [3].

Endogenous noise in the resting neural membrane potential of nerve fibers decreases
with increasing diameter. The noise is on the order of 1 mV root-mean-square (r.m.s.) for
myelinated fibers of small diameter and less than 1 mV for larger-diameter myelinated fibers
[4]. The mean inner diameter of central axons of human auditory-nerve fibers has an unimo-
dal distribution and ranges between 2.7 and 3.1 

 

µ

 

m (with the exception of smaller fibers at
the base of the cochlea) [30].

Figure 1   Region of human audibility (i.e., the range between the threshold of hearing and of pain). The inten-
sity is scaled in dB, while the sound pressure is shown in Pascals. Note that the range of pressure
variation covers 7 orders of magnitude. Adapted from [33].
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2.    Materials and Methods

 

2.1  Brownian Motion

 

The IHC stereocilia are interconnected by tip-links and horizontal links, and act like stiff
rods capable of pivoting around their insertion point into the cuticular plate (Figure 2). The
Brownian motion of the stereociliary tips is calculated using a reduced version of the stereo-
cilia linear chain model [31]. The r.m.s. value of the modeled intrinsic bundle noise is ca. 2
nm, which is in accordance with experimental data [2]. The small amplitude of the fluctua-

 

Figure 2   

 

Schematic illustration of an inner hair cell. Endolymphatic fluid motion caused by the movement of
the middle ear ossicles induces displacement of the stereocilia of the auditory receptor cell. The ste-
reocilia of an inner hair cell are interconnected by links (elastic protein filaments). The open-close
kinetics of transduction channels located close to the top of each stereocilium depend on stereocili-
ary deflection (Figure 4). Even in the resting state the transduction channel open probability is about
15%. Due to potential gradients, ion currents (mainly potassium) enter the cell through the trans-
duction channels and leave through ion channels in the cell body membrane, resulting in a resting
potential of ca. –40 mV in the unstimulated hair cell and potential changes of several mV following
stereociliary displacement. A potential change as low as 0.1 mV may cause neurotransmitter release
and thereby evoke a spike in an auditory-nerve fiber. Note the tapering of the bottom portion of the
stereocilia endings. In humans the inner hair cell stereocilia are arranged in a 20 by 3 matrix, with
20 short, 20 intermediate-length and 20 long elements. Each stereocilium behaves like a rigid rod
pivoting around its insertion point into the cuticular plate.
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tions due to Brownian motion can be appreciated by comparing them to the dimensions of a
single stereocilium (ca. 0.2 µm in diameter) or to the bundle’s displacement-response relation-
ship (Figure 4). In vestibular hair cells of the frog, viscous drag acting on th

 

e bundle limits
Brownian motion to relatively low frequencies (200–800 Hz) [2]. However, theoretical consid-
erations suggest a corner frequency of ca. 4 kHz for thermal fluctuations in mammalian hair
cells [31], which implies that stochastic resonance may also be effective in the mid-frequency
range of audition.

The overall displacement of the hair bundle in response to low-intensity signals is the sum
of the bundle movements resulting from Brownian motion as well as from the signal-induced
displacement. The signal-to-noise ratio is defined as the ratio of the r.m.s. magnitude of the sig-
nal and the r.m.s. level of the stereociliary deflections attributable to Brownian motion. Our
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Figure 3   Innervation density per inner hair cell in a normal human cochlea (adapted from [7]). Sixty percent

of the afferent nerve fibers are highly sensitive. The transformation from normalized distance, d, to
the characteristic frequency, f, of the nerve fiber obeys the following relation in the human:
f=200(102d-0.7) [13].
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Figure 4   

 

The relation of a 300-ms trace of simulated Brownian motion (low-pass filtered, 2 nm r.m.s. white
noise) to a cell’s displacement-response behavior. This function relates the probability of transduc-
tion channels being open (left y-axis) to the hair bundle displacement (x-axis). Note that in this spe-
cific case the transduction-channel, resting-open probability is 0.2. Adapted from [18].
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simulation investigates the effects of signal-to-noise ratio (whose normalized range is between 0
and 1 — equivalent to stimulation of the hair bundle with an amplitude between 0 and 2.12 nm
r.m.s.). The frequency of the stimulating, deterministic signals ranges between 0.2 and 20 kHz.
Figure 5 shows a 20-ms time series of hair-bundle displacements resulting from Brownian motion.

 

2.2  Endogenous Transduction Channel Noise

 

The receptor potential fluctuations in the IHC are calculated using a model for the mechano–
electrical transduction in inner hair cells [25]. The model uses equivalent electric circuits for cell
membrane and cytoplasm (i.e., RC components and batteries). The kinetics of the transduction
channels are modeled as Markov processes without memory: whether the channel stays open or
closed depends only on its current open probability and not on the length of time the channel has
already been open or closed.

 

For displacements in the range of a few nm, the relation between the stereociliary displace-
ment and the open probability of the transduction channels is linear (Figure 4) [22]. For zero dis-
placement the open probability of the transduction channel is about 0.15. For small displacements
to the lateral side the transduction channel open probability increases, resulting in an influx of
potassium ions. This influx causes a depolarization of the receptor potential from its resting state
(ca. –40 mV). Displacement to the medial side decreases the open probability, resulting in fewer
potassium ions entering the cell and a concomitant hyperpolarization of the membrane potential.
Since the model’s inner-hair-cell membrane time constant, 

 

τ,

 

 equals 0.255 ms [25], the IHC poten-
tial can be thought of as a low-pass-filtered version of the stereociliary displacement pattern com-
bined with additional noise resulting from the stochastic components in channel gating (Figure 5). 

10

0

0                4                8               12              16             20
                                     Time (ms)

0
0.1

Figure 5   Modeled mechanical and electrical fluctuations due to Brownian motion: the intracellular receptor
potential changes (bottom trace) are a low-pass filtered version of stereociliary displacements (top
trace) with an additional amount of noise resulting from transduction channel kinetics.
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2.3  Jitter in the Spiking Times: Refractory Period

 

The spike-generation process is modeled in the following way. Whenever the voltage
fluctuations of the IHC exceed a threshold of 0.1 mV (a value sufficient for neurotransmitter
release in hair cells [15]), a spike may be generated in an afferent fiber. Because of the sto-
chastic nature of spike generation the probability for spiking is adjusted to obtain a mean
spontaneous discharge rate of ca. 100 spikes/s in the resting state [27]. Jitter in the firing pat-
tern is modeled by a single-sided, normally distributed time shift whose standard deviation is
50 µs. Since the absolute refractory period of an auditory-nerve fiber is ca. 0.8 ms (in the cat
[19]), the time constant of the exponentially decaying threshold curve is set to 0.25 ms and
the maximum value for the height is set to 2 mV (Figure 6). 

The spike rate associated with a just-supra-threshold signal does not exceed the sponta-
neous rate of 100 spikes/s. However, nerve impulses become increasingly phase-locked to
the acoustic signal as the signal level increases [10][11][12][14][28][29].

Figure 6   Simulated receptor potential changes and resulting firing behavior. The noise in the voltage fluctua-
tions evoked by a weak 500-Hz signal alone (thin line, hypothetical case without Brownian motion) is
a consequence of the endogenous transduction channel noise. Only in one instance (marked by a
dashed arrow at 13.5 ms) are the fluctuations large enough to reach the threshold of spiking at 0.1 mV.
The compound fluctuations caused by the same sinusoidal signal, the endogenous transduction
channel noise and the thermal fluctuations with a signal-to-noise ratio of 0.2 show the enhancing
effect of the noise: Seven spikes may occur within 20 ms among associated auditory-nerve fibers.
The recovery behavior after spiking is modeled by an exponential decay of the threshold curve. As
soon as the voltage fluctuations exceed threshold a new spike can occur.
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3.    Results

 

In this section we present an analysis of the frequency information encoded in the inter-
spike interval histograms (ISIHs) of simulated auditory-nerve firing patterns induced by
low-intensity, sinusoidal hair bundle deflections.

When the histogram binwidth is precisely half the period of the stimulating signal,
phase-locking of the interspike times can be readily observed in the ISIHs as an up-down-
up-down pattern. The distribution of spikes is non-uniform across time, being concentrated
in a restricted portion of the stimulus cycle. This phase-locked behavior is manifested in the
interspike interval histogram in the form of modes associated with intervals that are integral
multiples of the stimulus period. The maximum interspike time considered in our model is
20 ms. Figure 7 shows ISIHs for stereociliary displacements at 1 kHz. With increasing SNR,
the spikes tend to occur increasingly in the first half of the stimulus period (i.e., the phase-
locking effect becomes increasingly apparent). A means to assess the information contained
in the ISIH is to measure the ratio of spikes occurring during the positive half-wave of the
stimulating signal relative to the total number of spikes. This ratio is a measure of the propor-
tion of informative spikes

 

,

 

 and has been used as a metric of phase-locking performance [28]. 
With decreasing signal frequency the number of bins (and therefore the fine structure

information) associated with the ISIH decreases (Figure 8). Although the number of infor-
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Figure 7   

 

ISIHs for a 1-kHz signal at several signal-to-noise ratios. With increasing SNR, the proportion of
spikes in a specific half of the signal period increases relative to the other half. Signal duration is 1s.
The model’s output represents the activity of 12 highly sensitive nerve fibers. Histogram binwidth is
0.5 ms.
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mative spikes is still greater than 50% for a 200-Hz signal with an SNR of 0.2, the number of
events in each bin tend to decrease exponentially as occurs when the SNR is 0. The fine
structure in the histogram, with valleys associated with integral multiples of the negative
half-wave of the stimulating signal, is lost.

In a previous study we had analyzed the information contained in the ISIHs with artificial
neural networks [9] [26]. In the mid-frequency range the neural net accurately detected the
signal more than 75% of the time for signal-to-noise ratios as low as 0.1. Taking into consid-
eration the parallel information transfer from several IHCs to the central nervous system con-
siderably reduces the signal duration required to accurately detect the presence of a signal.

The information contained in the ISIHs is evaluated by calculating the number of infor-
mative spikes over a range of frequencies and signal-to-noise ratios. The resulting frequency-
response-efficiency tuning curves are illustrated in Figure 9. The curves for low SNRs may
be thought of as analogous to human hearing threshold curves for pure tones, as they reflect
the combined effects of stereociliary Brownian motion, endogenous hair cell noise, the sto-
chastic nature of neurotransmitter release and the innervation density of primary auditory
afferents in various frequency bands. Note that this simulation study models threshold curves
as they are reflected in the transduction of small sinusoidal displacements of the stereocilia.
Furthermore, any possible effect of inhibitory efferent innervation of afferent nerve fibers
(see e.g. [5] [6]) on the spiking pattern is neglected due to an absence of experimental data.
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ISIHs for a 200-Hz signal at several signal-to-noise ratios. Signal presentation time is 1s. 5 highly
sensitive nerve fibers, binwidth is 2.5 ms.
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At 1 kHz

 

 (

 

the frequency which can be encoded and decoded optimally under the present
conditions

 

) a reversal of the shape of the curve appears at very low signal-to-noise ratios.
When the signal level increases, the curves invert and become sharper. This effect corre-
sponds to experimental results observed in noise-induced tuning-curve changes in mechan-
oreceptors of the rat foot [17]. Modeling the transduction channel kinetics as a Markov
process results in a frequency-dependent peak-to-peak receptor potential. For low and high
frequencies, the sub-threshold deterministic stimuli elicit voltage changes further from
threshold than ones evoked by mid-frequency stimuli. Therefore, the optimal noise level is
also frequency-dependent and the inversion of the tuning curve for low SNR stimuli is
directly related to the threshold shift (cf. Figure 9 in [17]).

The 2-kHz case is comparable to the 1-kHz case. Increasing the SNR increases the num-
ber of informative spikes from approximately (but just higher than) chance level for an SNR
of 0.1 to over 70% for an SNR of 1.

For high-frequency signals the jitter in the nerve firing pattern destroys the fine structure
in the ISIH. However, statistics of the discharge pattern over a longer period would still con-
tain some temporal information germane to 5 kHz, at least for signal-to-noise ratios close to
one. For signals in the range of 10–20 kHz, increasing the signal does not further increase
the number of informative spikes since the jitter completely destroys the phase-locking
information. Therefore, the psychophysical hearing threshold data for the high-frequency
portion of the spectrum cannot be attributed to phase-locking. This means that for high-fre-
quency signals frequency information must be coded in a different way. The increase in
spike rate is the most likely candidate for providing this information.
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Figure 9  Frequency-response efficiency tuning curves for a multicellular model of peripheral auditory coding,
(i.e. normalized number of informative spikes for several frequencies and signal-to-noise ratios). For
an SNR of 0 there is no signal present and half of the spikes are phase-locked at chance level (i.e. the
normalized number of informative spikes is 0.5). For frequencies between 0.2 kHz and 2 kHz, the
phase-locking effect increases with increasing SNR (i.e., the normalized number of informative
spikes increases well above 0.5). In the 5 kHz case there is virtually no apparent phase-locking. The
10 kHz and 20 kHz cases show no effect of phase-locking at all. In such instances only the normal-
ized number of informative spikes for an SNR of 1 is presented. For high signal-to-noise ratios the
curves are V-shaped. When the signal is reduced in amplitude and the influence of noise increases,
the curves broaden and eventually invert at 1 kHz. Stimulus duration for each data point is 1s. For
information concerning frequency-dependent innervation density cf. Figure 3.
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4.    Discussion

In this study we have shown that a compound model of coding efficiency of inner hair
cells at the threshold of hearing accounts for certain properties of the psychophysically mea-
sured human hearing threshold curve (Figure 1). Through the mechanism of stochastic reso-
nance the Brownian motion of IHC stereocilia makes otherwise undetectable low-intensity
signals audible. The jitter in auditory-nerve fiber spike times accounts for the steep slope in
the threshold curve at high frequencies. In the low-frequency portion of the spectrum the
long interspike times prevent detection of the signal, especially at low signal-to-noise ratios.

Changes in hair-bundle morphology also affect the pattern of thermal fluctuations of the
stereocilia and therefore exert some influence on spontaneous activity in auditory-nerve
fibers. In milder instances of acoustic trauma, morphological changes are only found in the
rootlets of the stereocilia (which appear less dense in electron micrographs) [21]. In more
severe instances of trauma (typically resulting in permanent damage) kinks or fractures at
the rootlet of the stereocilia, and the packed actin filaments (which impart the stereocilia
with their rigidity) are depolymerized [20] [32]. Within the IHC tuft the damage to the tall,
outer row of stereocilia is often selective; the shorter rows may remain ultrastructurally nor-
mal even when the tallest row is completely missing. Moreover, the tip links remain intact on
the shorter stereocilia, suggesting that such IHCs may be capable of transduction, but with
reduced sensitivity. Auditory-nerve fibers associated with such IHCs exhibit much lower
rates of spontaneous activity [21]. Following acoustic overstimulation, tuning curves with
elevated “tips” and “tails” are associated with significant decreases in mean spontaneous dis-
charge rate, whereas tuning curves with elevated tips but hypersensitive tails are associated
with a clear elevation of the mean spontaneous rates [21]. Our model, in which altered
Brownian motion patterns of the stereocilia lead to changes in the spiking pattern, may help
to account for the occurrence of such pathological spiking patterns. However, one should
bear in mind that in hearing loss of cochlear origin there are other noise-induced changes,
such as different steady-state Ca2+ concentrations, that are the result of altered Ca2+ pump
kinetics. Such changes may also be responsible for the pathological spiking patterns.

Future studies of the coding efficiency of inner hair cells at the threshold of hearing
should take into consideration the possibility that Brownian motion of the stereocilia
changes along the tonotopic axis and may be tuned in such a way as to enhance the audibil-
ity of specific frequencies. Such studies should also carefully consider the potential signifi-
cance of the adaptation process of mammalian-transduction-channel kinetics, as well as the
stochastic-resonance phenomena that have recently been demonstrated in transduction chan-
nels [18] and in calcium-activated potassium channels in the basolateral IHC membrane
(Jaramillo, personal communication).
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1.    Introduction

In many areas of computational hearing, selection of mathematical models is typically
based on predictive power and physiological plausibility. Many of these models have a rela-
tively large number of parameters, many of which are physiologically interpretable. A vital
issue in establishing utility of a model is whether parameters can be reliably estimated from
available experimental data. Traditionally, this has been addressed by studying the sensitiv-
ity of model outputs to variations in individual parameters. Such analyses have been per-
formed using iterative simulations, which are computationally intensive — especially for
models with a large number of parameters — and often offer little insight.

A method has been recently developed [11][1] to quantify the ability to estimate parame-
ters in models that use a least-square-error criterion and a nonlinear parameterization. (A lin-
ear parameterization constitutes a special case that was solved earlier, e.g. [3]). This chapter
describes an application of the so-called component-wise condition numbers for nonlinear
least-squares problems to a commonly employed model in computational hearing: the model
of auditory-nerve fiber (ANF) rate–level curves proposed by Sachs and coworkers [7][8].
The model was applied to responses from cat ANFs to tones at the fiber’s characteristic fre-
quency (CF). When compared with common practice, the subset selection method has clear
advantages in evaluating model-parameters in nonlinearly parameterized problems that use
the minimum least-squares criterion. 

2.    Background

Parameter evaluation is a key step in establishing the validity of a mathematical model.

The n-dimensional estimate of the (unknown) parameter vector ξ is chosen to minimize

the discrepancy between model predictions y( ) and actual measurements y (both N-dimen-

sional). This optimization problem is affected by both the model structure and the error crite-

rion, r(ξ)=y( )-y. Very often, models are nonlinear functions of the parameters and the error

measure, known as the “error-criterion value” is the sum of squared residual errors,

. In such cases, estimation procedures usually involve iterative methods.

The most frequently used such method is Gauss-Newton iterated linearized least squares.

A major concern in nonlinear least-squares estimation is that the measurements may not
be rich enough to adequately reflect the individual effects of all parameters. This property —
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referred to as ill-conditioning — may manifest itself in a slow convergence of the Gauss–
Newton procedure. (Note that this ill-conditioning is intrinsic to the problem at hand —
because it arises from the mismatch between the model detail and the measurement richness
— and is not influenced by the numerical method.) A promising strategy for overcoming this
problem is the subset-selection method [11][1], which partitions model parameters into: (1)
well-conditioned ones (i.e., those that are likely to be estimated reliably from the given mea-
surements), and (2) ill-conditioned ones (i.e., those whose estimates are likely to be unreli-
able, and whose presence makes the estimation problem very sensitive).

An efficient solution is to fix the ill-conditioned parameters at prior estimates (deter-
mined from e.g., physiological reasoning), and to solve a reduced-order problem containing
only the well-conditioned parameters. While this procedure can introduce bias, the bias is
often more than compensated for by the improvement in estimation of the remaining param-
eters.

2.1  Case Illustration: Failure of the Iterative Procedure

As an introduction to the subset-selection method we first illustrate a case where a tradi-
tionally used iterative procedure fails in unambiguously determining parameters from the
data [1]. Since the Gauss-Newton method involves iterated linearization of the original non-
linear problem around the current best guess for parameter values, the N  n gradient (or
Jacobian) matrix J(ξ)= ∂r(ξ) / ∂ξ is a key mathematical object. It is used for determination of
the Gauss-Newton direction in parameter space during the iterative procedure, and for
(approximate) calculation of the matrix of second derivatives (Hessian) which is — for small
residual error, r(ξ) — well approximated with H = J(ξ)' J(ξ) (where prime denotes the trans-
pose). The eigenvalues of H correspond to the curvature of the error criterion in the direc-
tions of associated eigenvectors. If H (which is positive semidefinite by definition) happens
to be singular, with exactly one of its eigenvalues equal to zero, this is equivalent to J having
only n-1 independent columns. Then the iteration step can be varied in the direction of the
eigenvector corresponding to the zero eigenvalue of H without affecting the error criterion
(except possibly in the higher order terms). In parameter estimation, this implies that param-
eters cannot be determined unambiguously from the data. An inability to unambiguously
estimate parameters from data may exist even if the model predictions fit the measurements
exactly; this inability involves second partials of the error-criterion function V, not the func-
tion V itself. In practice, H is usually not exactly singular, but it may be nearly singular. This
corresponds to near indeterminacy of parameters, and also complicates the estimation pro-
cess.

Nearness to singularity is often characterized by the condition number, κ, which is the
ratio of the largest (σ1) and smallest (σn) singular values of J(ξ): κ = σ1/ σn. We refer to the
condition number as the maximal ratio of singular values to make the term more intuitive. If
some singular values of J are exceedingly small (making κ very large), the error criterion
varies very slowly in the corresponding direction and, consequently, the parameter vector is
poorly determined in that direction. A high maximal ratio of singular values can also result
in a large number of iterations required for convergence of the Gauss-Newton algorithm. 

The subset selection algorithm [11][1] determines which parameter axes lie closest to the
ill-conditioned directions of the Hessian, and fixes these parameters to prior estimates.
Assuming that there are ρ well-conditioned parameters (and n-ρ ill-conditioned ones), the
parameter estimation is based on the reduced Jacobian, Jρ. Since a combinatorial search to
obtain a Hessian with the minimal condition (given ρ) is computationally prohibitive, it is

××××
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replaced in the subset-selection algorithm [11][1] with the determination of a permutation
matrix (from the QR decomposition) that yields the ρ-dimensional set of good parameters.

2.2  Multiparameter Computational Model of Auditory-nerve Rate–level Curves

A common way to characterize responses from ANFs is to plot the discharge rate of
action potentials as a function of increasing sound level. These “rate–level curves” are
monotonic for cat ANFs whose characteristic frequency (CF) is > 9 kHz [5]. Shapes of the
monotonic rate–level curves span a continuum ([7][12]) that ranges from “flat saturation”
(where the firing rate saturates at high sound levels) through “sloping saturation” (where the
firing rate continues to grow, albeit slowly, even at the highest tested sound levels) to
“straight” rate–level curves (where firing rate continues to grow steeply even at the highest
tested sound levels).

A computational model that successfully fits a wide range of monotonic experimental
rate–level curves was developed by Sachs and coworkers [7][8], and has since been com-
monly employed in the field of computational hearing (reviewed by [2]). As noted by the
authors, the model can be viewed “strictly as phenomenological curve-fitting” [8]. However,
the original authors, as well as later investigators (e.g., [9]) who analyzed an expanded ver-
sion of the model (e.g., [10]), noted that some aspects of the model may be related to the
underlying motion of the basilar-membrane and hair-cell transduction. Nevertheless, before
parameter estimates of this (or any other) model are analyzed for their potential physiologi-
cal significance, it is critical to identify which parameters can be reliably estimated from the
data. The subset selection method is an invaluable tool in accomplishing this goal. 

The computational model of rate–level curves assumes that the dependence of firing rate,
R, on sound-pressure level at the tympanic membrane, P, can be described as:

(1)

where RSP is spontaneous rate of firing (spikes/s), RM is the maximal range of firing (satura-
tion rate — spontaneous rate) in spikes/s, θE is the sound pressure (dynes/cm2) at which
driven rate reaches 1/2 of its maximal value, and θI is the sound pressure (dynes/cm2) of the
“compression threshold”; α, β and γ are dimensionless exponents that are set to α =1/3, β =2
and γ =1.77 in the original model [7][8].

This chapter provides an analysis of parameter estimation for both the original rate–level
curve model [7][8] that depends on four parameters [RM, RSP, θE, θI], as well as the most
general form of the model that depends on seven parameters [RM, RSP, θE, θI, α, β, γ].

3.    Methods

3.1  Auditory-nerve Fiber Recording

Rate–level curves were recorded from cat auditory-nerve fibers in response to tones at
the fibers’ characteristic frequency. Details of the stimulation paradigm and recording set-up
are provided in [4]. The rate–level curves analyzed in this study are those in the absence of
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efferent stimulation of Guinan and Stankovic [4] that are averages of repeated measurements
( 2 for a given fiber, so to decrease inherent noise in the data). All (total of 53) but one of
these rate–level curves had monotonic growth of firing rate with sound level. 

3.2  Subset Selection Method

The subset selection algorithm [11] [1]: (1) identifies a direction in a parameter space
along which the error-criterion function does not change, (2) identifies which parameter(s)
are most closely aligned with this direction, and (3) fixes these parameters to prior estimates.
Key steps of the subset-selection algorithm for nonlinear least-squares parameter estimation
[11][1] can be summarized as follows:
• Given an initial parameter-vector estimate ξ0, compute the singular value decomposition

of the Jacobian J(ξ0), yielding J=U S V', where U and V are unitary matrices, and S is a
diagonal matrix with non-negative entries.

• Determine ρ such that the first ρ singular values of J (i.e., diagonal entries of S) are
much larger than the remaining n-ρ ones. This decision is somewhat subjective; the
main aim is to pick ρ as large as possible, while maintaining the maximal ratio of singu-
lar values (of the reduced-order problem) sufficiently small. For the model analyzed
here, ρ was selected to meet two criteria: (1) the maximal ratio of singular values is

<106, and (2) the smallest of the ρ singular values is more than twice as large as the larg-
est of the n-ρ singular values; the latter criterion prevented artificial splitting — that was
occasionally imposed by the former criterion - of similar singular values.

• Make the partition V=[Vρ Vn-ρ ], with Vρ denoting the first ρ columns of V.
• Determine a permutation matrix P by constructing a QR decomposition with column

pivoting, i.e., determine Vρ’P = Q R, where Q is an orthogonal matrix, and the first ρ
columns of R form an upper triangular matrix.

• Use the matrix P to reorder the parameter vector ; the first ρ parameters in 
should be estimated, while the remaining n-ρ should be fixed to prior estimates.

• Solve the reduced nonlinear least-squares problem involving ρ parameters. 

3.3  Covariance Method

In addition to using the subset-selection algorithm to analyze the rate–level curve model,
we also used the more standard “covariance method.” In this method standard deviations of
parameters were estimated through calculation of the diagonal entries of the covariance
matrix C=(J’J)-1 ([6]). This estimation procedure assumes that the actual optimization prob-
lem is locally well approximated by its linearized version. The standard deviations were
used to construct an n-dimensional polyhedron in parameter space centered around the point
in parameter space representing the optimized solution, with each side equal to twice the
parameter standard deviation in the corresponding direction. For each of the vertices of the
polyhedron (which are extremal points in the parameter space) we calculated the corre-
sponding rate–level curve. The envelopes of a family of rate–level curves thus generated rep-
resent the uncertainty in the fit, which we refer to as the “separation of the envelopes of fit.”

4.    Results

The results are described in terms of the interplay of three quantities, which are different
(and complementary) measures of the goodness of the fit:

≥≥≥≥

ξ̃ Pξ= ξ̃
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(1) The maximal ratio of singular values, κ, which characterizes geometry of the Hessian
matrix at optimized parameters, and is a critical feature of the subset-selection method.
In general, very large maximal ratios of singular values are associated with the presence
of severely ill-conditioned parameters. In contrast, small maximal ratios of singular val-
ues imply that all parameters can be estimated with similar precision because curvatures
of the error-criterion function are comparable in all directions in the parameter space;

(2) The separation of the envelopes of the fit, which is assessed through the covariance
method (as described in the Methods section) and represented by dashed lines in Figure
1;

(3) The error-criterion value, which characterizes how close the measured values are to pre-
dictions generated by the model, where model parameters are determined in the optimi-
zation procedure. Mathematically, the error-criterion value is the sum of squared residual
errors, as defined in the Background section.

All parameter values presented in this section are results of a nonlinear least-squares
optimization procedure, and thus may correspond to local minima. The optimization proce-
dure was restarted with different starting points whenever existence of another local mini-
mum was suspected based on (1) a poor fit (characterized by a large error-criterion value,
i.e., the sum of squares of errors), or (2) unusual parameter estimates. Therefore, it is hoped
that our results are close to the global minima.

4.1  Four-Parameter Auditory-Nerve Rate–Level Curve Model

Analysis of the original four-parameter rate–level curve model [7][8] by the subset-
selection method showed that — for rate–level curves with sloping saturation (total of 37) —
all four parameters of the model [RM, RSP, θE, θI] were well conditioned, and therefore could
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Figure 1   Four-parameter fit [RM, RSP, θE, θI] to rate–level curves with sloping saturation from two different
auditory-nerve fibers (α, β, γ are fixed to α = 1/3, β = 2, γ = 1.77). Circles: original data. Solid line:
fit determined by a nonlinear least-squares optimization procedure. Dashed lines (almost overlap-
ping the solid line): uncertainty in the fit, as determined from the covariance method (details pro-
vided in the text).  κ: maximal ratio of singular values. A: Fiber 20-47. Stimulus: tone at CF=3.55
kHz. Estimated parameters: RM = 265.9+0.8 spikes/s, RSP = 0.0+0.3 spikes/s, θE = 54.78+0.07 dB
SPL, θI = 62.0+0.3 dB SPL. Error-criterion value = 467.4. Singular values: [1.98*104, 1.66*103,
3.44, 1.23]. B: Fiber 22-44. Stimulus: tone at CF = 12.6 kHz. Estimated parameters: RM =
254.6+0.7 spikes/s, RSP = 0+0.4 spikes/s, θE = 37.99+0.08 dB SPL, θI = 43.4+0.2 dB SPL. Error-
criterion value = 544.1. Singular values: [1.38*105, 1.52*104, 3.66, 1.36].
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be reliably estimated from experimental data. Examples from two fibers are shown in Figure
1. For both fibers, the subset selection method identified a relatively small spread in singular
values (e.g., singular values for the fiber in Figure 1A were [1.98*104, 1.66*103, 3.44, 1.23].
These results were concordant with the outcome of the covariance method, which found the
separation of the envelopes of the fit to be very small (dashed lines in Figure 1 almost over-
lap the solid line). Of note is that our data set did not have clear examples of straight rate
level curves; the curves that may have appeared to be straight — based on a quick visual
inspection — were found to have steeply sloping saturations.
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Figure 2   Four-parameter fits [RM, RSP, θE, θI ] (A, C) and 3-parameter fits [RM, RSP, θE] (B, D) to rate–level
curves with flat saturation from two different auditory-nerve fibers. Symbols as in Figure 1. A, B:
Fiber 21-57. Stimulus: tone at CF = 5.9 kHz. A: Estimated parameters: RM = 215.2+1.0 spikes/s,
RSP = 30.7+0.5 spikes/s, θE = 29.28+0.08 dB SPL, θI=92.2+67.7-92.2 dB SPL. Error-criterion
value = 930.2. Singular values: [2.64*105, 5.05, 1.37, 4.89*10-4]. B: Estimated parameters: RM =
215.2+0.6 spikes/s, RSP = 30.7+0.5 spikes/s, θE = 29.28+0.07 dB SPL, θI fixed to 92 dB SPL.
Error-criterion value = 930.2. C, D: Fiber 20-32. Stimulus: tone at CF = 25.7 kHz. C: Estimated
parameters: RM = 180.3+1.3 spikes/s, RSP = 56.9+0.4 spikes/s, θE=34.9+0.1 dB SPL,
θI=86.2+50.8-86.2 dB SPL. Error-criterion value = 1566.4. Singular values: [1.16*105, 4.88, 1.52,
7.07*10-3]. D: Estimated parameters: RM = 180.3+0.5 spikes/s, RSP = 56.9+0.4 spikes/s, θE =
34.93+0.08 dB SPL, θI fixed to 86 dB SPL. Error-criterion value = 1566.4.



K. M. Stankovic / Model of Auditory-Nerve Fiber Rate–Level Curves 23        

In contrast to the rate–level curves with sloping saturation, all 4 parameters were not well
conditioned for rate–level curves with flat saturation (total of 16); θI was the ill-conditioned
parameter, and therefore had to be fixed to a prior estimate to improve model performance.
This is illustrated in Figure 2 for two auditory-nerve fibers. For both fibers the smallest sin-
gular values encountered in optimizations were substantially (i.e., 3-4 orders of magnitude)
smaller than the first proximal singular value. Consequently, the maximal ratio of singular
values was very large (Figure 2-A, C). The subset selection method identified θI as the ill-
conditioned parameter associated with the smallest singular values. By fixing θI to a sound
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Figure 3   Seven-parameter fit [RM, RSP, θE, θI,,, α, β, γ]. (A, C, E) and reduced-order fit (B, D, F) to rate–level
curves from three different auditory-nerve fibers. Figure layout as in Figure 2. A, B: Fiber 20-47
(same as in Figure 1-A). A: Estimated parameters: RM =875.2+657.3 spikes/s, RSP=0+0.4 spikes/s,
θE=57.5+3.2-5.1 dB SPL, θI =53.3+0.39-0.40 dB SPL, α=0.53+0.05, β=1.83+0.14, γ=2.28+0.16.
Error-criterion value=245.0. Singular values: [2.62*105, 2.43*104, 458.0, 32.7, 18.0, 2.76,
1.52*10-3].   Ill-conditioned parameter: RM. B: Estimated parameters: RSP =0+0.4 spikes/s,
θE =54.3+0.9-1.0 dB SPL, θI =58.5+0.2 dB SPL,  α=0.49+0.01, β=1.84+0.04, γ=2.09+0.09. RM
fixed to 300 spikes/s. Error-criterion value=292.3. C, D: Fiber 21-51. Stimulus: tone at CF=1.26
kHz. C: Estimated parameters RM=429.9+297.8 spikes/s, RSP=53.6 + 0.5 spikes/s, θE=41.5+3.3-5.3
dB SPL, θI =38.76+0.02 dB SPL, α=0.60+0.07, β=1.66+0.18, γ=2.45+0.28. Error-criterion
value=280.2. Singular values: [3.02*106, 1.87*105, 727.0, 29.4, 14.3, 2.27, 3.36*10-3]. Ill-condi-
tioned parameters: RM, RSP. D: Estimated parameters: θE =39.8+0.1 dB SPL, θI =42.71+0.01 dB
SPL, α=0.61+0.02, β=1.62+0.06, γ=2.27+0.05. RM fixed to 200, and RSP fixed to 53.6. Error-crite-
rion value=281.5. E, F: Fiber 22-44 (same as in Figure 1-B). E: Estimated parameters:
RM=252.5+6.7 spikes/s, RSP=0+0.5spikes/s, θE=31.9+4.8-11.4 dB SPL, θI=36.5+6.7*10-4 dB SPL,
α =1.00+1.03, β=0.76+0.47, γ=2.31+0.53. Error-criterion value=463.3. Singular values: [5.37*107,
3.53*105, 259.0, 24.5, 3.29, 1.93, 0.15]. Ill-conditioned parameters: [RM, RSP, α, γ].   F: Estimated
parameters: θE=31.9+0.04dB SPL, θI =36.5+1.3*10-4 dB SPL, β=0.76+0.005. RM, RSP, α, γ set to
the estimates from E. Error-criterion value=463.3.
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level in the saturating region of rate–level curves, the 3-parameter model so derived demon-
strated a substantial reduction in the maximal ratio of singular values (Figure 2-B, D).
Results of the covariance method were similar: θI was identified as the parameter with the
largest standard deviation (see caption of Figure 2) and, by fixing θI, the separation of the
envelopes of the fit significantly decreased (e.g., compare dashed lines in Figure 2A and 2B).

4.2  Seven-parameter Auditory-Nerve Rate–Level Curve Model

It is interesting to consider what happens to the performance of the rate–level curve
model when it is expressed in its most general form with 7 parameters (model (1)). As
expected, by increasing the dimension of the search space the closeness of the fit improved,
as evidenced by a decrease in the error-criterion value. For example, for fiber 20-47, the
error-criterion value of 467.4 in the 4-parameter model (Figure1A) decreased to 245.0 in the
seven-parameter model (Figure 3A). Similarly, for fiber 22-44, the error-criterion value
decreased from 544.1 (Figure 1B) to 463.3 (Figure 3E).

However, this improvement in the error-criterion value is deceptive because it is accom-
panied by a substantial increase in the spread of singular values of the Jacobian, leading to a
substantial increase (by several orders of magnitude) in the maximal ratio of singular values,
κ. For example, for fiber 20-47, κ increased from 1.6*104 in the 4-parameter model (Figure
1A) to 1.7*108 in the 7-parameter model (Figure 3A). Similarly, for fiber 22-44, κ increased
from 1.0*105 (Figure 1B) to 3.6*108 (Figure 3E). This increase in the maximal ratio of sin-
gular value implied the presence of ill-conditioned parameters.

For the seven-parameter model, the number of ill-conditioned parameters varied from
zero to four, depending on a data set. Figure 3 illustrates this point on examples from three
fibers. For fiber 20-47 (Figure 3A,B), RM was identified as the ill-conditioned parameter,
with the unreliable (and nonphysiological) estimate of 875 spikes/s. For that fiber, the corre-
sponding singular values were [2.62*105, 2.43*104, 458.0, 32.7, 18.0, 2.76,1.52*10-3]. After
RM was fixed to a physiologically plausible value of 300 spikes/s (given the overall trend in
the data), model performance improved as evidenced by a substantial decrease in the maxi-
mal ratio of singular values.   For this fiber, the covariance method gave similar results: RM
was associated with the largest parameter uncertainty (875.2+657.3). In addition, by fixing
RM, the separation of the envelopes of the fit substantially decreased, and standard deviations
of other parameters also decreased.

Although for most data the subset-selection method allowed easy estimation of ill-condi-
tioned parameters — based on a large gap between the smallest singular value and the next
closest singular value (e.g., fiber 20-47 in Figure 3-A, B, also fibers 21-57 and 20-32 in Fig-
ure 2) — for other data this estimation was less obvious. For example, for fiber 22-44 (Fig-
ure 3E, F) the gap between the smallest singular values was relatively small, so that the ill-
conditioned parameters were identified based on the overall large spread (>106) in singular
values. Consequently, based on our criteria for the well-conditioned parameters (see section
3.2), the subset-selection method identified 4 ill-conditioned parameters [RM, RSP, α, γ]. For
comparison, the covariance method found that only two of those parameters (α, γ) were
associated with relatively large standard deviations. 

Another example that illustrates a difficulty when imposing rigid (and somewhat arbi-
trary) criteria to identify well-conditioned parameters using the subset-selection method is
fiber 21-51 (Figure 3C, D). As a consequence of using the criterion that the maximal ratio of
singular values be <106, two ill-conditioned parameters, RM and RSP were identified. How-
ever, based on the singular values of [3.02*106, 1.87*105, 727.0, 29.4,14.3, 2.27, 3.36*10-3],
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it is clear that the gap between the sixth and seventh singular values is much larger than the
gap between the fifth and sixth singular values. Therefore, if a different criterion for identifi-
cation of well-conditioned parameters had been used (e.g., that the maximal ratio of singular
values be < 1.4*106), only one ill-conditioned parameter, RM, would have been identified.
For comparison, the covariance method found that only one parameter, RM, had very large
standard deviation.

Interestingly, the ill-conditioned parameters of the 7-parameter model were not limited to
only α, β and γ, i.e., to the parameters that were fixed in the 4-parameter model. On the con-
trary, the most common ill-conditioned parameter of the 7-parameter model was RM (e.g.,
Figure 3A, C, E), which was always well-conditioned in the in the 4-parameter model.

5.    Discussion

This chapter illustrates the usefulness of the subset selection method for model-parame-
ter identification in nonlinearly parametrized problems that use the minimum least-squares
criterion [11][1]. The method has been used before in electrical engineering (for applications
in electrical machines and in remote sensing), but here we illustrate that it is also applicable
in computational neuroscience. 

For the original computational model of auditory-nerve [7][8], there is a systematic dif-
ference between the number of ill-conditioned parameters depending on the type of satura-
tion — curves with sloping saturation have no, and those with flat saturation have one ill-
conditioned parameter (θI). This result is not surprising, since θI is a measure of the onset of
sloping saturation, which is ill-defined for rate–level curves with flat saturation. Specifically,
θI describes a “compressive threshold” for pressure mapping that allows transformation of a
regular sigmoid with flat saturation into a sigmoid with sloping saturation; for rate–level
curves with flat saturation θI could be at any sound level in the saturating region. It is reas-
suring that Sachs et al.[8] — using iterative procedures to explore model sensitivities to one
parameter at a time — arrived at the same conclusion as we did that the largest parameter
uncertainty is associated with θI for rate–level curves with flat saturation.

We further demonstrated that the generalized 7-parameter model is typically overparam-
etrized. For a vast majority of fibers, it was not possible to reliably estimate all 7 parameters
from the data. By identifying ill-conditioned parameters, and fixing them to physiologically-
reasonable estimates, it was possible to significantly improve estimation of well-conditioned
parameters. However, it is worth noting that the number of ill-conditioned parameters is a
direct consequence of the numerical value adopted as a criterion for the acceptable spread in
singular values. Such a value is needed so that all data are treated in a uniform fashion. How-
ever, it may not be straightforward to select this number so that results agree with intuition
for all cases (e.g., Figure 3C).    

The fact that the number of ill-conditioned parameters varied from 0 to 4, and that any
parameter (except θE) could be ill-conditioned, suggests that a single model is not applicable
to all data. Instead, it may be advisable to consider a whole family of models (with up to 7
parameters), and to use the method presented here to identify the most suitable model for a
given data set. An important member of the family is certainly the standard 4-parameter
model that performs well for sloping saturations, and needs to have one parameter (θI)
restricted for flat saturations. The main advantages of the proposed method are that it can
detect overparametrization in a systematic way, and that it can handle more complicated
cases when sets of parameters need to be fixed to prior estimates, instead of being deter-
mined through optimization. 
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We have shown that results of the subset selection method are typically consistent with
the covariance method; ill-conditioned parameters (determined by the subset selection
method) tend to be associated with large standard deviations of parameters (determined by
the covariance method). It is certainly advisable to use either of the two methods to assess
quality of parameter estimates obtained through least-squares optimization procedures. The
goal in both methods is to determine the subset of well-conditioned parameters that can be
reliably estimated from the data. They also identify ill-conditioned parameters whose param-
eter estimates are unreliable, and whose presence interferes with estimation of other parame-
ters (that may be well-conditioned in a reduced order model). However, the subset selection
method is numerically more robust than the covariance method since the covariance method
requires inversion of a matrix that may be close to singular.

A limitation of the current form of the subset selection method is that, for each direction
in the parameter space along which the error-criterion function does not change (i.e., a “bad”
direction), a single parameter that is most aligned with that direction is identified as ill-con-
ditioned. An improvement entails identifying and constraining combinations of parameters
that are most aligned with “bad” directions; this would amount to reparameterizing the
model.

6.    Conclusions

The subset-selection method is a powerful technique that allows improved parameter
estimation in multiparameter nonlinear models. It is worth emphasizing that the sole atten-
tion to the error-criterion value may be misleading when evaluating model performance — a
decrease in the error-criterion value may be associated with a substantial increase of the
maximal ratio of singular values, which renders some parameter estimates unreliable. When
compared with the common practice of performing sensitivity analyses using iterative simu-
lations to determine parameter uncertainty, the subset selection method offers a distinct
advantage — it determines the subset of parameters that can be reliably estimated from the
data, thus improving numerical conditioning of the optimization problem. Although we pre-
sented here only one application of the subset selection method in computational neuro-
science, it is certainly relevant whenever models with nonlinear parametrizations and a least-
squares-error criterion are used.
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1.    Introduction

Onset neurons are characterized by their preferential response to onset transients in
acoustic signals. These neurons have long been of interest to auditory scientists because of
the importance of onset transients for the perception of speech and music, as well as for
sound localization and stream segregation [6][43][48].

Onset units are found throughout the central auditory system, beginning with the ventral
cochlear nucleus (VCN) [17]. VCN onset units are particularly interesting from a modeling
perspective because their response properties differ sharply from those of their auditory-
nerve (AN) inputs. Intracellular labeling of physiologically characterized cells shows that
VCN onset units form a heterogeneous group in that they are morphologically associated
with several anatomical classes, including stellate cells, bushy cells and octopus cells [31]
[34][40][41]. Given this heterogeneity, it is not surprising that current knowledge of the neu-
ronal characteristics associated with onset unit responses is still very much incomplete. In
particular, there is no universally accepted scheme for classifying onset units into subtypes
based on their response properties nor for associating physiological subtypes with anatomi-
cal cell types [5][13][35][36]. A long-term goal of our research is to determine the neuronal
properties underlying the responses of different subtypes of onset units to acoustic stimula-
tion and thereby clarify the correspondence between cell types and physiological subtypes of
onset units. As a first step towards that goal, this chapter describes a mathematical model
used to identify a minimum set of neuronal characteristics required to obtain key response
properties common to all VCN onset units.

Two types of models have been used for investigating the underlying mechanisms of
onset unit response patterns. One approach has been to construct a detailed biophysical
model, including active membrane channels [38], and electro-anatomical characteristics of
the cell body and dendritic tree [7][25]. Such models point to the importance of fast mem-
brane dynamics and weakly excitatory synapses requiring coincidence of many inputs to
obtain onset response patterns to tonal signals. However, at present there is insufficient infor-
mation pertaining to ion channels and synaptic distributions in most VCN neurons to ade-
quately constrain these biophysical models. A further difficulty is that different parameters
would be required for each of the different cell types that give rise to onset response proper-
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ties. Because of the drawbacks associated with detailed biophysical models, we have devel-
oped a very general phenomenological model that contains the essential elements without
attempting to model detailed biophysical properties specific to a given neuronal class.

Previous phenomenological models of onset units [2][9] have suggested the need for a
high-pass filtering mechanism such as depolarization block, threshold accommodation, or
receptor desensitization that would decrease the probability of discharge during sustained
depolarization. However, these models only examined in detail the neuronal responses to a
limited set of stimuli. We extend the results of these earlier models by investigating a rela-
tively large set of stimuli and neuronal response characteristics. A major result of our study
is that three separate response properties are identified that strongly constrain the model. If
these properties are correctly predicted then the model is successful in predicting responses
to a broader range of stimuli. This chapter focuses on these three crucial, physiological prop-
erties:

(1) The onset peri-stimulus time (PST) histogram for high-frequency tone bursts consisting
of a prominent peak followed by little or no response during the on-going part of the
stimulus [32]. This property contrasts with the sustained response patterns of auditory-
nerve inputs.

(2) Entrainment of spike discharges to low-frequency (< 1 kHz) tones [35] (i.e., the occur-
rence of one spike on every cycle of the stimulus). AN-fibers rarely entrain, in that multi-
ple tone cycles typically occur between successive spikes.

(3) Similar thresholds for broadband noise and characteristic frequency (CF) tones [46].
Again, this property contrasts with that of AN fibers, where CF tone thresholds are
always significantly lower than noise thresholds.

Our model of a VCN onset cell is based on an integrate-to-threshold point neuron whose
inputs are AN fibers acting via excitatory synapses. We use a two-part strategy for identify-
ing model characteristics necessary for obtaining realistic onset response properties. First,
the dynamic properties of the cell membrane are fit to intracellular measurements of voltage
responses to current injections in octopus cells (which are the cells most convincingly asso-
ciated with VCN onset-responding neurons [31][34][40]). Second, synaptic and input prop-
erties of the model (specifically synaptic strength, number of independent AN inputs, and
CF distribution of these inputs) are constrained by the three response properties enumerated
above.

2.    Methods

2.1  Model of Auditory-Nerve Fibers

AN-fiber responses were computed using a model that simulates the primary features of
temporal discharge patterns for tones and noise [8]. The model includes the following fea-
tures.

(1) The bandpass tuning of an AN fiber is modeled as a linear gammatone filter [18].
(2) A second-order, low-pass filter with a 1.1 kHz cutoff frequency models the reduction of

synchronization to high-frequency tones.
(3) Adaptation is described using a model of the inner-hair-cell synapse [45].
(4) To describe the statistical properties of discharge patterns, the spike train is modeled as a

non-stationary renewal process whose instantaneous probability of discharge is the prod-
uct of a component representing excitatory drive from the hair cells and a component
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representing refractory properties of the fiber [19]. Spikes for each AN fiber are pro-
duced using a set of independent random number generators.

2.2  Point-Neuron Model of VCN Onset Cells

Figure 1A illustrates a schematic representation of the model onset neuron. The model is
deterministic. We divide it into two components, input and membrane dynamics. All of the
model parameters are listed in Table 1.

2.2.1  Input

The model contains only excitatory synapses that are driven by spikes from AN fibers. A
spike causes a smooth transient increase in conductance of the corresponding synapse. The
duration of the conductance change is 500 microseconds for all synapses. Synaptic strength
(or magnitude of conductance change) is the same for all synapses. For illustrative purposes
synaptic strength is normalized to the unitary synaptic strength (defined as the threshold
strength of a synapse such that an isolated input spike gives rise to an output spike).

The number of independent AN inputs to the model neuron is also a parameter. We
examine values of this parameter between 1 and 128. The distribution of CFs of the AN
inputs is described by a Gaussian-like density function (Figure 1B). The function is symmet-
ric about the CF of the model onset unit on a log-frequency axis. In all figures, the CF of the
model onset unit is 6 kHz. The total frequency range spanned by the inputs is a parameter of
the model.

Figure 1   The model for an onset responding neuron. A. Schematic of the integrate-to-threshold point-neuron
model. B. The distribution of characteristic frequencies (CFs) of auditory nerve (AN) inputs to the
model neuron. In this case the total CF range of the AN inputs is 2/3 of an octave.
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2.2.2  Membrane Dynamics and Refractoriness

The dynamic properties of the membrane are based on the two-factor model for mem-
brane electrical excitability first investigated by Hill and others [16][29][33]. In the model
(Figure 1A), the membrane voltage v(t) is the difference between an integrative factor e(t)
and an accommodation factor, θ(t). The integrative factor results from low-pass filtering
(temporally integrating) the summed synaptic inputs. The time constant of the integrative
factor, τm, is very short (< 1 ms), and is determined by the membrane capacitance. The
accommodation factor is itself a low-pass filtered version of the integrative factor. Since θ(t)
is subtracted from e(t), it effectively acts as a high-pass filter that emphasizes transients in
the synaptic inputs. The time constant, τθ, of the accommodation factor is longer than that of
the integrative factor, but is still very short. The accommodation factor results in a decrease
in membrane voltage during sustained depolarization. An accommodation gain, Ac, controls
the amount of accommodation relative to the integrative factor.

The neuron produces a spike discharge whenever the membrane voltage exceeds a fixed
threshold, θ0. For a fixed refractory period following a spike, the neuron cannot fire, and
both the integrative process and the accommodation process are undefined. Thus, no attempt
is made to model the spike waveform. At the end of the refractory period, the integrative pro-
cess is reset to zero, while the accommodation process resumes the value it had prior to the
spike.

3.    Results

3.1  Membrane Electrical Properties

Our model for membrane electrical excitability is based on properties of octopus cells
derived from in vitro experiments. We chose octopus cells because they are the most con-
vincingly identified onset responders in the VCN [13][31][34][40]. Parameters of the mem-
brane model were estimated using voltage responses of octopus cells to current injections.1

Only responses of the octopus cell to depolarizing current injections were used for esti-
mating parameters. Figure 2 shows responses of an octopus cell to step current injections of

Membrane parameters

Membrane time constant: τm = C/gn 0.39 ms

Accommodation time constant: τθ 0.67 ms

Accommodation gain: Ac 0.49

Absolute refractory period 0.75 ms

Synaptic and input parameters

Normalized synaptic strength 0.16*

Number of AN inputs 100*

CF range of AN inputs 2/3 octave*

Duration of synaptic conductance change 0.5 ms

Table 1. Summary of model parameters. Asterisk denotes that the parameter is varied in some illustrations.
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different amplitudes and model responses that best fit the data according to a least-squares-
error criterion [14].

The sub-threshold octopus cell response exhibits a rapid rise and a slower decline to a
constant steady-state level in the first 10 ms after the onset of the stimulus. A model with a
single dynamic process (i.e., with a single time constant) can fit either the rise or the fall of
the octopus cell response, but not both. At least two dynamic processes (i.e., with two time
constants) are required to concurrently capture both properties of the response. Figure 2
shows that our model successfully captures the main features of the octopus cell response;
the best-fit parameters are τm = 0.25 ms, τθ = 0.64 ms, and Ac = 0.62. The two dynamic pro-
cesses, membrane integration and accommodation, confer a very brief maximum in mem-
brane voltage for positive current injections that is reflected in the single spike elicited at
onset by supra-threshold current steps in the model and in octopus cells (not shown). The
model predicts spikes at the offset of large negative current injections; such spikes are also
observed in octopus cells.

There are some systematic deviations between model and data evident in the responses to
large current injections. In particular, the model underestimates the height of the initial peak
in the response and the rapidity of the early decline of the response (inset of Figure 2). At

Figure 2   Model and octopus cell responses to step current injections. Solid curves represent the model and
dashed curves indicate the octopus cell responses [14]. Inset shows the first 10 ms of the response.
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least one additional time constant in the accommodation factor is required to accurately
describe these properties of the octopus cell response.

We estimated model parameters using responses of five different octopus cells to current
injections. The residual variance of the best-fit model was always less than 7% of the total
variance of the data. The model parameters were similar across these five cells. In the fol-
lowing sections are described the model’s response to acoustic signals using the median
parameter values for the membrane model listed in Table 1.

3.2   Synaptic Strength and Number of Independent AN Inputs

We examined, in the model, the effect of synaptic strength and the number of indepen-
dent AN inputs on temporal discharge patterns in response to tone-burst stimulation. More
specifically, we looked at how the gross shape of the PST histogram associated with CF-tone
responses and the synchronization and entrainment to a low-frequency tone (600 Hz) vary
with these model parameters.

3.2.1  PST Histograms for Tones

A defining property of VCN onset units is the shape of their PST histograms of high-fre-
quency tone burst responses. These histograms have a prominent peak at stimulus onset, fol-
lowed by a low discharge rate during the steady-state portion of the stimulus over a wide
range of stimulus levels [4][5][13][35][46]. Figure 3 illustrates how PST histograms of CF
tone burst responses at 20 dB above threshold depend on synaptic strength and on the num-
ber of independent AN inputs to a model neuron.

As a reference, a PST histogram is shown for a 6-kHz (CF) tone burst response of an AN
input (Figure 3D), which has a sustained response with fast adaptation. The model response
has different PST histogram shapes depending on the number of inputs and synaptic strength
(Figure 3A, 3B, 3E, 3F). When the model exhibits weak synapses and many (100) indepen-
dent AN inputs, its PST histogram has an onset shape with no sustained activity (Figure 3A).
Increasing the synaptic strength moderately (Figure 3E) produces a PST histogram of the
model response that is more sustained, similar to the PST histogram of the AN input. When
the strength of synapses is moderate, but the number of AN inputs is reduced, the PST histo-
gram of the response is still of the onset variety, but with more sustained activity (Figure
3B). Figure 3C shows how the shape of PST histograms varies as a function of synaptic
strength and the number of independent AN inputs. We identify three types of model
responses (criteria shown in the caption of Figure 3): 
(1)  a region where there is little or no response,
(2)  a region where the PST histogram has an onset shape, and
(3)  a region where the PST histogram has a sustained shape. 

Although the shape of the PST histogram depends on both the number of independent
AN inputs and on synaptic strength, the latter is more important. In order to obtain the onset
form of PST histogram associated with high-frequency tone bursts, the synaptic strength
must be weak.

Spontaneous rate depends in a similar way on synaptic strength and the number of inde-
pendent AN inputs (with synaptic strength being more important). The model has a sponta-
neous rate magnitude (< 2 spikes/s) appropriate for an onset unit when the synaptic strength
is weak. These observations are similar to those associated with previous models of onset
neurons [23] [38].
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3.2.2  Phase-Locking to Low-Frequency Tones

VCN onset units phase-lock to low-frequency tones (< 1 kHz) with greater precision
than most other VCN units; their synchronization to such signals is also greater than that of
AN fibers [13][35]. These units also entrain to low-frequency tones below 1 kHz (i.e., they
discharge on every cycle of the tone). Entrainment is a singular property that is rarely (if
ever) observed in other types of VCN units. Our analysis shows how entrainment to a 600-
Hz tone burst (presented at 90 dB SPL) depends on synaptic strength and the number of
independent AN inputs associated with a model neuron (Figure 4).

For reference, an interspike-interval histogram and a period histogram of an AN fiber are
shown in Figure 4B. These histograms are similar to those observed in actual AN fibers. Fig-
ure 4A shows interval and period histograms for the model when it has 100 inputs and the
synapses are weak. The period histogram shows that the response is highly synchronized to
the stimulus. The single peak in the interval histogram at a duration associated with a single
stimulus period (1.7 ms) indicates that the response is entrained to the stimulus. There is a

Figure 3   PST histograms of high-frequency, CF tone burst responses as a function of synaptic strength and
number of independent AN inputs. A, B, E, and F: PST histograms of model responses for a synap-
tic strength and number of independent AN inputs indicated by arrows. Synaptic strength is indi-
cated by arrows (250 stimuli, bin width = 0.1 ms). D. PST histogram of a 6-kHz (CF) tone burst
response (50 dB SPL) of a model AN fiber (250 stimuli, bin width = 0.1 ms). Bars above the histo-
grams indicate duration of the stimulus. C. Variation of the shape of PST histograms of high-fre-
quency CF tone responses with a variable number of inputs and synaptic strength. Criterion for
classifying onset PST histograms was the same as used by Winter and Palmer [46] — the ratio of
onset rate to steady-state rate must be greater than 10, and the steady-state rate must be less than 50
spikes/s. It is assumed that the cell is unresponsive to CF tonal stimuli when the threshold is greater
than 70 dB SPL.
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qualitative change in response characteristics when the synaptic strength is increased (Figure
4D). The presence of two separate peaks in the period histogram indicates that the response
has multiple spikes in a stimulus period (i.e., hyper-entrainment). When both the synaptic
strength and the number of inputs are low, entrainment in the model is similar to entrainment
observed in the AN inputs (Figure 4E).

Figure 4C illustrates how entrainment varies in the model as a function of the synaptic
strength and the number of independent AN inputs. The parameter space is divided into four
regions according to how well the model response entrains to the tone (quantified by the
entrainment index [EI], defined in the caption of Figure 4): 

(1) no entrainment, 
(2) entrainment in the range of the AN model (0 < EI < 0.78), 
(3) entrainment greater than the AN model, which is the range we expect to be appropriate

for  onset units (EI > 0.78), and 
(4) hyper-entrainment (multiple spikes per cycle of the stimulus).

Entrainment occurs within the onset range when there are either few inputs with a high
synaptic strength or there are many weak AN inputs. Synchronization to low-frequency

Figure 4   Entrainment of the model neuron (CF = 6 kHz) to a 90 dB SPL, 600-Hz tone as a function of synap-
tic strength and number of independent AN inputs. A, D, and E: Interval histograms (20 stimuli, bin
width = 0.1 ms) and period histograms (64 bins) of the model with the number of inputs and synap-
tic strength indicated by arrows. B. Interval histogram (200 stimuli, bin width = 0.1 ms) and period
histogram (64 bins) for the response of a model AN fiber (CF = 6 kHz). C. Variation of entrainment
index (EI) with synaptic strength and number of inputs. EI is the ratio of the number of intervals
with a duration equal to a stimulus period divided by the total number of intervals. The different
symbols and shading delineate four separate regions according to qualitative differences in entrain-
ment: i) No entrainment (EI = 0), ii) range for model AN inputs (0 < EI < 0.78), iii) greater than
model AN inputs (EI > 0.78), and iv) hyper-entrainment (more than one spike per cycle).
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tones and the standard deviation of first-spike latency in high-frequency tone-burst responses
also show similar, but more weakly constrained dependence on synaptic strength and the
number of inputs.

Taken together, the results of Figures 3 and 4 show that the model must have relatively
weak synapses and many independent AN inputs (> 32) in order to exhibit both onset PST
histograms for high-frequency tones and entrainment to low-frequency tones. In this param-
eter range, the model also has a spontaneous rate, a standard deviation of first-spike latency
and synchronization indices characteristic of onset units. In the following figures, the num-
ber of inputs is 100 and the synaptic strength is 0.16. These values correspond to the region
of the parameter space (Figure 3C and 4C) where the model exhibits temporal response
characteristics typical of onset units.

3.3  CF Distribution of AN Inputs

Winter and Palmer [46] have found that the threshold for broadband noise (in dB SPL)
exceeds the CF-tone threshold by more than 15 dB in AN fibers and VCN chopper units but is
less than 15 dB among onset units. They propose that this particular response property can be
accounted for by assuming that onset units integrate their inputs across a broader frequency
range than do other VCN units or AN fibers. Their proposal is based on the difference

Figure 5   Broadband noise (bandwidth = 20 kHz) threshold and 6-kHz (CF) tone threshold as a function of
CF range of inputs. A. Rate versus level for broadband noise (solid) and CF tone (dashed) for a
model AN fiber. Horizontal bars show difference between broadband noise threshold and CF-tone
threshold. B and E. Same as in the model for the CF range of inputs indicated by arrow. C. Broad-
band noise threshold and CF tone threshold as a function of CF range of inputs. D. Difference
between broadband noise threshold and CF tone threshold (Θdiff) as a function of CF range of
inputs. Shaded area is the range for Θdiff in onset units with CFs near 6 kHz [46].
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between broadband noise energy and CF-tone energy integrated by a linear broadband filter
being less than the energy difference for a linear narrow band filter. We examined whether a
broad CF range of AN inputs to the model is required in order to obtain a difference in thresh-
old between broadband noise and CF tones in the range observed in onset units.

Figure 5 shows how the CF range of AN inputs in the model affects thresholds for broad-
band noise and CF tones. Serving as a reference point, Figure 5A shows rate versus level
curves for broadband noise and CF tones associated with an AN input from the model. The
rate-level curve for noise is shifted to higher stimulus levels relative to the rate-level curve
for tones. The difference in threshold between the tone and noise is 15 dB. Figure 5B shows
rate-level curves for the model when the CF range of AN inputs is 1/3 octave. Although the
curve for noise is displaced toward higher stimulus levels relative to the curve for tones (as
occurs in the AN model), the threshold difference is only 6 dB. Figure 5E shows rate–level
curves for the model when the CF range of AN inputs is 3 octaves. In this case the rate-level
curve for noise is shifted toward lower stimulus levels relative to the rate-level curve for
tones. The threshold for noise is actually 16 dB less than the threshold for tones.

Figure 5D shows that the difference between the broadband noise threshold and the CF-
tone threshold decreases monotonically as the CF range of the AN inputs increases from 1/3
octave to 3 octaves. Figure 5C shows the noise thresholds and the tone thresholds used to
compute the threshold differences. The threshold difference decreases as the CF range of AN
inputs increases because the noise threshold varies less than the tone threshold. These obser-
vations follow from the properties associated with the fast membrane dynamics as well as
from the large number of AN inputs acting via weak synapses that make the model response
dependent on coincident spikes on the inputs. The model responds more readily when there
are spikes associated with several inputs as compared to when there are only a few inputs.
The noise threshold does not vary much because the number of AN inputs responding to the
stimulus stays relatively constant as the CF range of inputs increases from 1/3 octave to 3
octaves. On the other hand, the tone threshold varies substantially because the number of

Figure 6   Entrainment to a 600-Hz tone as a function of the CF range of AN inputs for a model cell with a CF
of 6 kHz. The EI decreases with an increasing CF range of inputs. Shaded region (EI > 0.78) indi-
cates an entrainment greater than occurs in model AN fibers and corresponds to the similarly labeled
region in Figure 4.
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inputs that respond to the stimulus varies greatly as the CF range of inputs increases. When
the CF range of AN inputs is small, a tone evokes a large response in many of the model
inputs, thus leading to a low threshold. When the CF range of AN inputs is broad, only a few
model inputs respond to the tone, thus leading to a high threshold.

For all of the CF ranges of AN inputs examined, the model produced onset PST histo-
grams and low spontaneous rates. However, the fine-time structure of the discharge pattern
associated with low-frequency (entrainment and synchronization) and high-frequency tone
bursts (standard deviation of first-spike latency) varied as a function of the CF range of AN
inputs. Of these response properties, entrainment to low-frequency tones was the most sensi-
tive to the CF range of AN inputs.

Figure 6 shows that entrainment to a 90-dB SPL, 600-Hz tone decreases as the CF range
of AN inputs increases in the model. A major reason why entrainment decreases is that AN
fibers with different CFs have different response latencies introduced by the cochlear travel-
ling wave. Therefore, there is an increasing degree of desynchronization of spikes across the
tonotopically organized array of AN fibers as the CF range of inputs increases. Because the
model is highly sensitive to temporal coincidence of spikes from the array of AN fibers, this
desynchronization causes entrainment in the model to diminish.

These results show that the fine-time structure of discharge patterns, as well as the
thresholds associated with broadband noise and CF tones, constrain the CF range of AN
inputs to the model. The shaded regions of Figure 5D and Figure 6 indicate the range of
threshold difference and entrainment, respectively, for VCN onset units. In the model unit,
the CF range of AN inputs needs to be less than 1.5 octaves for both the threshold difference
and the entrainment to be within the range observed for onset units.

4.    Discussion

In this chapter, we have identified a minimum set of properties required for obtaining
onset discharge patterns in response to acoustic stimulation. Specifically, we have deter-
mined constraints on the nature of the AN inputs and associated synapses such that the
model exhibits responses characteristic of VCN onset units. Although several parameters
affect each of the onset response properties, some are especially important. A weak synaptic
strength is the most important determinant of an onset PST histogram for high-frequency
tone bursts. This finding is consistent with results from previous models of VCN bushy cells
and octopus cells [23][24][38]. We also have found that entrainment to low-frequency tones
is jointly determined by synaptic strength, number of inputs and the range of CFs spanned
by the inputs. In order to simultaneously produce onset PST histograms for high-frequency
tone bursts and entrainment to low-frequency tones, the model must have weak synapses and
many independent AN inputs (> 32) whose CFs span less than 1.5 octaves. The difference
between broadband noise threshold and CF tone threshold also depends greatly on the CF
range of AN inputs. Together, the threshold differential and entrainment constrain the CF
range of AN inputs to be at most 1.5 octaves in our model.

Model parameters that produce realistic onset responses are generally consistent with the
anatomical data. Specifically, the constraint of a large number of AN inputs giving rise to
weak synapses is consistent with anatomical observations from octopus cells and other
labeled onset responders that these cells have a large number of synapses, all of which are
small relative to the size of the cell [15][27][31][41]. On the other hand, the model predicts
that the CF range of inputs needs to be limited to 1.5 octaves, a property in apparent conflict
with the view that onset units receive AN inputs from a very wide CF range. This view is
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based on the observation that dendrites of octopus cells and other labeled onset units are ori-
ented perpendicularly to iso-frequency bands of incoming AN fibers and therefore must span
a wide range of CFs [15][22][41]. However, for a CF of 6 kHz, our 1.5 octave limit corre-
sponds to a substantial length (20%) of the basilar membrane according to the Liberman
cochlear frequency map for the cat [26]. Since the CF distribution of onset units is biased
toward high frequencies [46], this 20% of the basilar membrane length might actually repre-
sent an even more substantial proportion of the relevant array of AN inputs to the onset cell
population. A more rigorous test of our model prediction would require quantification of the
length of the basilar membrane innervated by AN inputs to labeled onset neurons.

Previous model-based investigations have focused on onset responses to sinusoidal sig-
nals. Synaptic strength was found to be the principal factor determining PST histogram
shape in response to high-frequency tone bursts in models of octopus and bushy cells [23]
[24][38][39]. Rothman and Young [39] have further shown that convergence of many inde-
pendent AN inputs is required for their model of VCN bushy cells to exhibit the exquisite
synchronization to low-frequency tones observed in onset units. Our findings are consistent
with these observations but show that entrainment imposes an even more powerful constraint
on the model. Evans [9] has shown, using a phenomenological model, that fast membrane
excitability and threshold accommodation together provide more faithful onset PST histo-
grams and a better match to the threshold differential between tonal and noise stimuli than
either property alone. Our own model results are in accord with those of Evans and further
show that the CF range of inputs is an important factor as well. Our results extend the find-
ings of previous studies by considering the model properties required to simultaneously
explain several onset-response properties. Specifically, we find that onset PST histograms
for high-frequency tone bursts, entrainment to low-frequency tones and the threshold differ-
ence between broadband noise and CF tones are particularly informative measures for con-
straining model parameters when considered together as a group.

In this chapter, we have shown how model responses depend on properties of AN inputs
and associated synapses for fixed membrane properties obtained by fitting the membrane
model to octopus cell responses to current injections. It is known that membrane electrical
properties differ among cells in the VCN [11][15][30][47]. Electrical properties may vary
across the heterogeneous onset population of neurons as well. Certain properties of the
model response patterns (e.g., the detailed features of PST histograms) vary with changes in
the cell’s membrane characteristics. However, the key response properties examined in this
chapter do not change significantly as long as parameters of the membrane model remain
within certain limits. Specifically, our conclusions regarding inputs and synapses remain
valid as long as the time constant of membrane excitability is small (< 1 ms) [20][21]. Fur-
thermore, in order to produce both onset PST histograms in response to high-frequency tone
bursts and entrainment to low-frequency tones, the model must have a strong and relatively
rapid accommodative threshold.

Although accommodation is a phenomenological concept, it could be instantiated by
incorporating voltage-gated ion channels into the model. Specifically, at least two kinds of
channels may be necessary to include. The transient maximum in membrane voltage
observed upon stimulation by a depolarizing, sub-threshold step current can be implemented
using an outward-rectifying ion channel that is active at voltages slightly above the resting
potential. The low-threshold potassium channel that is blocked by 4-aminopyridine is such a
channel. It is found in VCN bushy and octopus cells [12][15][28]. Accommodation, in the
form used in our model, also causes a transient decrease in membrane voltage at the onset of
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negative current steps and a transient peak in the membrane voltage at their offsets (as well
as spikes for sufficiently negative-going current injections). These aspects of the response to
negative current steps are also observed in octopus cells. Channels that rectify inward at
voltage levels below the resting potential can be used for implementing these membrane
properties. The hyperpolarization-activated channel that is blocked by Cs+ (a.k.a. Ih) and
found in principal cells of the medial nucleus of the trapezoid body and octopus cells of the
VCN [3][15] possesses such characteristics. A model for the octopus cell that includes the
sorts of channels described has been implemented; its responses to step-current injections
are qualitatively similar to data recorded from octopus cells [7].

Accommodation might also be implemented using other mechanisms, such as desensiti-
zation of synaptic receptors [44]. Although receptor desensitization may not be required to
account for octopus-cell-response properties (because membrane voltage shows accommo-
dation in the absence of synaptic inputs [12][15]), it may play a role in other onset respond-
ing classes of neurons.

When onset units were first studied, recurrent inhibition was proposed as a possible
mechanism for producing the onset-discharge pattern of response to tone bursts [13]. This
particular hypothesis lost much of its appeal as a consequence of intracellular recordings
from onset units failing to manifest sustained hyperpolarization in response to tonal stimula-
tion [37]. Recent work with iontophoretic injection of inhibitory transmitter antagonists [10]
has provided evidence that inhibition plays a role in shaping the response properties of a
subclass of onset units. Despite this recent evidence we have not included inhibitory inputs
in our model because too little is known about the origin of these inputs to develop a quanti-
tative model and because our primary focus is on response properties common to all types of
onset units.

Identifying which neuronal characteristics underlie responses to sound is part of the
more general problem of correlating cell structure with function. Understanding such rela-
tionships in one class of neurons may help understand its relation in other cell classes. For
example we have observed a trade-off between the CF range (and therefore latency spread)
of AN inputs and the ability of onset units to entrain to low-frequency tones. Recent evi-
dence suggests that cortical pyramidal cells are similar to VCN onset units in that they act as
coincidence detectors [1][42]. Thus, our trade-off may be an instance of a general constraint
(with potential counterparts among the pyramidal cells of the cortex) on the ability of neu-
rons to precisely follow successive transients in the stimulus when their inputs are desyn-
chronized.

In this study we have used a phenomenological model, rather than a detailed biophysical
model, to identify the characteristics underlying response patterns of onset units. In the con-
text of this book, which examines computational methods for studying audition, it is worth
noting our example of a phenomenological model of a neuron that yields useful results per-
taining to the mechanisms underlying neuronal signal processing.

5.    Conclusions

Using a simple functional model of a VCN cell, we have determined the characteristics
required for obtaining onset-response patterns to acoustic stimulation. We find that no single
neuronal property confers onset-response characteristics on a VCN neuron. Instead, a com-
bination of properties must be simultaneously present for the model to manifest all response
characteristics of onset units. Many independent AN inputs (> 32), weak synapses, fast
membrane dynamics, and a high-pass filtering process (such as an accommodative thresh-

,
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old) are all necessary for simulating onset response properties. The CF range of AN inputs
further affects the fine temporal structure of discharge as well as the threshold for tones and
noise. Together, these effects strongly constrain the entire set of model parameters. Our
results suggest three sets of data for characterizing the underlying neuronal features of an
onset unit: 

(1) PST histograms of high-frequency tone-burst responses, 
(2) entrainment to low-frequency tones, and 
(3) the differential response threshold of broadband noise and CF tones.
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Note

1.   In the original formulation of Hill [16], accommodation was implemented as an increase in the time-vary-
ing threshold. Because intracellular recordings from octopus cells show an accommodation of membrane
voltage in response to sustained current injections [12][14], we prefer to model accommodation as a
change in voltage, v(t), rather than as a change in threshold. Therefore a fixed threshold was used rather
than one of a time-varying nature. Because the difference between threshold and membrane voltage deter-
mines spiking, the two formulations are mathematically equivalent, but the current formulation is better
suited for comparison with intracellular data.
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We use computational modeling to build quantitative simulations that describes the audi-
tory system. Throughout this book, authors describe how models are built and are compared
to real auditory systems. Using these models, we gain insight into how the modeled auditory
system works, and thus are able to make predictions about how that system will perceive a
new sound.

In the auditory field, the most fervent computational modeling has been directed at the
periphery—often the cochlea. These cochlear models are important, not only because they
help to inform a debate about how the cochlea works, but also because they permit work that
uses the output of the cochlea. 

One of the most difficult problems in modeling is deciding what is the optimal level of
detail. Given a correct model, including more detail usually increases the accuracy of model
predictions; but also increases the computational burden. Furthermore, the effort needed to
model these details might be wasted if the user of the model does not care about these
details. Thus, a model of pitch perception based on inner-hair cell firing rates probably will
not care about the exact timing of each spike. 

Simplifying our models helps us to understand how the model will behave in new situa-
tions. Yet these simplifications can be misleading. For example, a simple model of the
cochlea based on Fourier analysis might omit the fact that the peak response for any one fre-
quency moves along the basilar membrane as the sound level changes. This simplification
might not affect the outcome of many masking simulations, but in other cases it could lead a
modeler to the wrong conclusion. 

Cochlear modelers work in three different areas: deciphering the cochlea, replicating the
cochlea’s behavior, and predicting how the periphery will respond to a prosthetic device’s
outputs. 

Scientists use the most sophisticated mathematics to create detailed mechanical models
of the tissues in the cochlea. This task is especially difficult because many tissues are con-
nected to each other and it is hard to separate their behaviors. How does the tectorial mem-
brane connect to the basilar membrane? Why does the bandwidth of a cochlear filter change
so dramatically with increasing sound level? Scientists have built many cochlear models to
answer these questions [1]. 

These detailed mechanical models are computationally intensive and provide more
details then we need to investigate in many auditory tasks. For much psychoacoustics
research the front-end of the auditory system is modeled with critical-band filters. Critical
bands are based on psychoacoustic measurements of an auditory filter’s characteristics. Lis-
teners hear, for example, a tone embedded in noise. The noise exists everywhere except at
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frequencies near the tone’s frequency. The model assumes that people can hear the tone
when the energy of the noise within any one auditory filter is less than a fixed fraction of the
energy in the tone. The width of the noise notch is a measurement of the auditory channel’s
bandwith, often expressed as the equivalent rectangular bandwidth.

The first chapter in this section describes the gammachirp, an extension to the gamma-
tone filter. The gammachirp was derived as an optimal time-frequency analyzer for audio
signals. Fitting nonlinear gammachirp filters that match critical-band data over a range of
sound levels is easy. Irino and Unoki describe a simple implementation of the gammachirp.
They combine a normal gammatone filter with an asymmetric low-pass filter, which changes
with level. The pair of filters closely approximates the desired gammachirp response, and
thus is a good model of the auditory periphery.

A third use for peripheral auditory models is to predict how humans will hear with pros-
thetic devices that compensate for hearing loss. In most cases, simple amplification—a hear-
ing aid—is sufficient. With profound hearing loss, electrodes threaded into the cochlea are
stimulated electrically, causing the auditory nerve to fire. Unlike that of a hearing aid, the
interaction of a cochlear implant with the wearer’s auditory system is hard to predict. 

Bruce and his colleagues refine a simple model of neural firing that predicts the sounds
perceived by a cochlear implant user. The simplest model predicts that the neuron always
fires when the intensity of the stimulating pulse is above a fixed threshold. Bruce’s model
predicts that the neuron’s probability of discharge grows slowly around the threshold. The
authors demonstrate that a probabilistic model of neural excitation is a more accurate predic-
tor of perceived loudness, both at the threshold of hearing and at the level at which loudness
becomes uncomfortable.

Computational models give us insights and predictions about the function of the auditory
system. These two chapters provide just two examples: one to simulate the cochlea and to
provide a tool for researchers investigating higher-level functions, the other to predict how a
prosthetic device will behave in a human patient. 
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1.    Introduction

A number of auditory models have been developed for telecommunications systems that
incorporate human auditory characteristics. Recent attempts do a good job, based on physio-
logical comparisons, simulating the peripheral auditory system (for a review, see [4]).   But,
unfortunately, none of these models have had as much success in speech recognition systems
as linear predictive analysis and the Fourier transforms. There are a number of reasons for
this dilemma. An obvious problem is that realistic, non-linear auditory models require com-
plex calculation that preclude real-time processing. However, this problem should be
resolved in the near future by fast digital signal processors. Another factor is that these mod-
els do not facilitate proper signal resynthesis, which is straightforward for both linear predic-
tive analysis and Fourier analysis because of their linearity. 

Linear auditory filterbanks or wavelet transforms have been used for signal resynthesis
[2][24], but they are unable to account for the dynamic characteristics of basilar-membrane
motion. Iterative procedures for reconstructing signals from cochleagrams (i.e., short-time
averaged amplitude responses of basilar membrane motion without phase information)
[6][23] are applicable to such non-linear filterbanks, but can not guarantee the precision of
the resynthesis because of local minima. Thus it is desirable to develop an adaptive auditory
filterbank that also provides a sound resynthesis procedure resulting in no perceptual distor-
tion. This paper shows that such an adaptive, analysis/synthesis filterbank is possible
through the implementation of a new “gammachirp” auditory filter [9].

The gammachirp function was analytically derived to have minimal uncertainty in a joint
time-scale representation [1][7][8]. The gammachirp auditory filter is an extension of the
popular gammatone filter (for a review, see [17]); it has an additional frequency modulation
term to produce an asymmetric amplitude spectrum. When the degree of asymmetry is asso-
ciated with the stimulus level, the gammachirp filter provides an excellent fit to 12 sets of
notched-noise masking data from three different studies [9]. The gammachirp has a much
simpler impulse response than recent physiological models on cochlear mechanics [4],
which do provide a good fit to human masking data. Moreover, the chirp term in the gam-
machirp is consistent with physiological observations on frequency-modulations or fre-
quency “glides” in measurements of the mechanical responses of the basilar membrane
[3][15][20].

The gammachirp filter has been implemented as a finite impulse response (FIR) filter
because the gammachirp is defined as a time-domain function. Including this filter in an
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BASED ON AN IIR GAMMACHIRP FILTER

Toshio Irino1 and Masashi Unoki1,2

1 ATR Human Information Processing Research Labs
2-2 Hikaridai Seika-cho Soraku-gun Kyoto, 619-02, Japan

2 Japan Advanced Institute of Science and Technology
1-1 Asahidai Tatsunokuchi Nomi Ishikawa, 923-1292, Japan



50 T. Irino and M. Unoki / Analysis–Synthesis Auditory Filterbank based  on Gammachirp

                             

auditory filterbank, however, poses problems. For simulations of the dynamic characteristics
of the cochlea the filter coefficients have to be recalculated and then convolved with the sig-
nal on a moment-by-moment basis. Unfortunately, the large number of FIR coefficients,
especially at low frequencies, precludes fast implementations. Moreover, the simulation
becomes unrealistic if the filter output is not calculated simultaneously with the update of the
filter coefficients. The calculation of the filter output and the update of the filter coefficients
need to be performed simultaneously. Therefore, the gammachirp filter should be imple-
mented with a small number of filter coefficients using an infinite impulse response (IIR) fil-
ter [10][11]. 

IIR implementations of modified gammatone filters have been developed to introduce
asymmetry into auditory filter shapes, i.e., the All-Pole Gammatone Filter (APGF) or One-
Zero Gammatone Filter (OZGF) [13][18][22]. The shapes of these filters, however, depend
on the sampling rate of the system [10] and have not been directly fitted to psychoacoustic
masking data. Moreover, it seems difficult to resynthesize signals from their output represen-
tations without uncontrollable errors since they did not provide a well-defined synthesis
scheme. These issues are the main topics of this paper. 

Section 2 describes an IIR implementation of the gammachirp. Section 2.1 shows the
definition and the Fourier transform of the gammachirp decomposed into a gammatone and
an asymmetric function. Section 2.2 explains the characteristics of the asymmetric function.
Section 2.3 shows that the asymmetric function can be implemented by an IIR “asymmetric
compensation filter.” Section 2.4 shows the approximation error in the amplitude spectrum
between the original gammachirp filter and the combination of a gammatone and an IIR
asymmetric compensation filter. Section 2.5 shows the stability of the inverse filter of the IIR
filter, which enables signal resynthesis using the procedure described in Section 3.3. Section
3 shows an implementation of the gammachirp filterbank. Section 3.1 shows an example of
an adaptive analysis filterbank controlled by the sound pressure level estimated at the output
of the filterbank. Section 3.2 shows another example of a filterbank based on physiological
constraints. Finally, Section 3.3 describes an adaptive, analysis/synthesis auditory filterbank
that has never been accomplished by conventional auditory models simulating basilar mem-
brane motion. 

2.    Implementation of the Gammachirp Filters

2.1  Definition and Fourier Transform of the Gammachirp

The complex impulse response of the gammachirp [7][8][9] is given as

 ,                     (1)

where time t > 0, a is the amplitude, n and b are parameters defining the envelope of the
gamma distribution, fr is the asymptotic frequency, c is a parameter for the frequency modu-
lation or the chirp rate, φ is the initial phase, ln t is a natural logarithm of time, and ERB (fr)
is the equivalent rectangular bandwidth of the auditory filter at fr. At moderate levels,
ERB(fr)=24.7 + 0.108fr in Hz [5]. When c = 0, the chirp term, cln t, vanishes and this equa-
tion represents the complex impulse response of the gammatone that has the envelope of a
gamma distribution function and its carrier is a sinusoid at frequency, fr [17]. Accordingly,
the gammachirp is an extension of the gammatone with a frequency-modulation term.

gc t( ) a= t
n 1–

2πbERB f r( )t–( ) j2π f rt jc t jφ+ln+( )expexp
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The Fourier transform of the gammachirp in Equation (1) is derived as follows.

                       

                           = 

                           = ,     (2)

                                    (3)

where  and . The first term  is a constant. The second
term is known as the Fourier spectrum of the gammatone, . The third term represents
an asymmetric function, , that is described in more detail in the next Section. If we
normalize the amplitude, the frequency response of the gammachirp can be represented as

. (4)

The amplitude spectrum is 

. (5)

Obviously, when c=0,  (= ) becomes unity and Equation (5) represents the
amplitude spectrum of the gammatone, . Figure 1 shows the amplitude spectra of (a)
a gammachirp filter , (b) a gammatone filter , and (c) an asymmetric func-
tion  with the chirp parameter c=-2. The amplitude of  is biased by about -
4 dB to normalize the peak of  to 0 dB. Since the amplitude spectrum of the gamm-
atone filter  is almost symmetric on a linear-frequency axis, the asymmetric function

 introduces spectral asymmetry and a peak frequency shift into the gammachirp
. 

The peak frequency fp in the amplitude spectrum is obtained analytically by setting the
derivative of Equation (4) to zero and solving the equation for the peak frequency. The result
is 

. (6)

Therefore, the size of the peak shift is proportional to the chirp parameter, c, and the ratio of
the envelope parameter, b ERB(fr), to n.
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2.2  Characteristics of the Gammachirp and the Asymmetric Function

To precisely describe the spectral characteristics of the gammachirp and the asymmetric
function Equation (4) is rewritten in a form that explicitly uses the relevant parameters, that
is,

 . (7)

The asymmetric function uses parameters b, c, and fr whereas the gammatone uses parame-
ters n, b, and fr.

Figure 2 shows the amplitude spectra of (a) the gammachirp  and (b)
the asymmetric function  when the values of the chirp parameter c are inte-
gers between -3 and 3. Several characteristics are derived from this figure and the equations
described above.

(a) Figure 2(a) shows that the filter slope of a gammachirp below the peak frequency is
shallower than the slope above it when the parameter c is negative. The situation is the
reverse when the parameter c is positive. The filter shape is symmetric when c is zero
because the chirp term is removed and the resulting function is identical to the standard gam-
matone function.
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Figure 1 Amplitude spectra of (a) a gammachirp filter , (b) a gammatone filter , and (c) an
asymmetric function , where n = 4, b = 1.019, c = -2, and fr = 2000 Hz.
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 (b) The asymmetric function  in Figure 2(b) is an all-pass filter when c =
0. Using Equation (2), 

. (8)

 is a high-pass filter when c>0, and a low-pass filter when c<0. The slope
and the range of the amplitude increase when the absolute value of c increases. The filter
shapes of the gammachirp in Figure 2(a) reflect these characteristics.

(c)  changes monotonically in frequency. Neither a peak nor a dip ever
occurs in this function.

(d) For an arbitrary frequency fl, the asymmetric function is restricted by

. (9)

(e) With Equation (2), the asymmetric function satisfies:

. (10)

(f) For arbitrary chirp parameters c1 and c2, the asymmetric function is multiplicative
with respect to c:

. (11)
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(g) Using Equations (7), (10), and (11), 

     = 

     =       (12)

Equation (12) states that a gammachirp with an arbitrary chirp parameter c1 is a product of a
gammachirp with a different chirp parameter c1 +c2, and an asymmetric function with the
difference between them of c2. This is because the asymmetric function  is an
exponential function of the parameter c. 

These characteristics are necessary conditions for designing the approximation filter in
the next section, and they act as a guide for establishing an analysis/synthesis filterbank in
Section 3.

2.3  Asymmetric Compensation Filter 

As shown by Equation (4), a gammachirp filter can be implemented by cascading a gam-
matone filter and an asymmetric filter. Since efficient implementations of the gammatone are
already known [17][22], this section concentrates on an approximation filter for the asym-
metric function described in the previous section. It is necessary to design a filter satisfying
the conditions (a) through (g) in the previous section. As a first step, a filter satisfying condi-
tion (d) is considered because its characteristic seem the most relevant for filter design pur-
poses. 

FIR filters cannot satisfy Equation (9) in the strict sense since they only have zeros and
no poles. They can, however, satisfy Equation (9) approximately if a linear-phase FIR filter
designed with the Remez algorithm is employed. Unfortunately, this is ineffective since the
number of coefficients is comparable to that of the original FIR gammachirp and, moreover,
the coefficients seem to require a table indexed with parameters b, c, and fr. The well-known
IIR Butterworth and Chebyshev filters cannot satisfy Equation (9) either. Consequently, a
new IIR filter has to be designed that is an explicit function of these parameters to satisfy this
condition.

IIR filters satisfying Equation (9) have the same numbers of poles and zeros symmetri-
cally located at fr+∆f and fr −∆f for a design frequency ∆f. This makes the magnitude, r, of
the corresponding poles and zeros equal. In addition, these magnitudes must be less than
unity for the IIR filters to be stable; this is known as the minimum-phase condition [16].
Since the bandwidth gets narrower when r gets closer to unity, r is negatively correlated with
the bandwidth parameter bERB(fr). Condition (b) implies that ∆f is proportional to c and is
positively correlated with bERB(fr). A cascaded second-order digital filter satisfying these
properties is 

(13)
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(16)

(17)

where p0, p1, and p2 are positive coefficients and fs is the sampling rate. The reason for cas-
cading filters with gradually located poles and zeros is to satisfy condition (c) approxi-
mately. This filter is referred to as an “asymmetric compensation” (AC) filter.

Figure 3 shows the amplitude spectra of this digital filter  (dashed lines) and the
asymmetric function  (solid lines) in Equation (5) as a function of the chirp parame-
ter, c. There were four cascaded filters. The amplitude was normalized at frequency fr, and
the values of p0, p1, and p2 were set, as described in the next section. The dashed lines are
very close to the solid lines when the frequency is less than 3000 Hz. Above 3000 Hz the dis-
parity gets larger. However, this does not cause serious errors, because the asymmetric com-
pensation filter is always accompanied by the gammatone filter, which is a band-pass filter. 

The results will show that four cascaded second-order filters provide a reasonable fit
when the parameter b is equal to or greater than unity and the chirp parameter c is between
–3 and 1. In this case, there are a total of 16 poles and zeros. Although it is possible to
improve the fit by increasing the number of cascaded filters, a reasonable number can be
determined by considering the trade-off between the number of coefficients and the degree
of fitting.
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2.4  Asymmetric Compensation Gammachirp

The asymmetric compensation filter cascaded with the gammatone filter approximates
the gammachirp filter. The amplitude spectrum of this filter is found by replacing 
with  in Equation (6), 

. (18)

This filter  is referred to as an “Asymmetric Compensation-gammachirp” or 
“AC-gammachirp” filter until the end of Section 2, so as to distinguish it from the original
gammachirp defined by Equation (1). 

2.4.1 Comparison in the Amplitude Spectrum 

Figure 4  shows the amplitude spectra of the gammachirp  in Equation (5) (solid
lines), the AC-gammachirp  in Equation (14) (dashed lines), and the gammatone

. The amplitude  has been normalized properly to improve the fit. The
frequency for normalizing the amplitude of each second-order filter is closely related to the
peak shift in Equation (6) and is set with a coefficient, ps, for the k-th filter, 

. (19)
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Figure 4 Amplitude spectra of original FIR gammachirp filters  (solid lines) and asymmetric compen-
sation (AC) gammachirp filters  (dashed lines) where n=4, b=1.019, c=-1, and the values
for fr are 250, 500, 1000, 2000, 4000, and 8000 Hz.
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The coefficients p0, p1, p2, and p3 are set heuristically as

p0 = 2, (20)

p1 = 1.35 - 0.19 |c|, (21)

p2 = 0.29 - 0.0040 |c|,  (22)

p3 = 0.23 + 0.0072 |c|. (23)

The root-mean-squared (rms) error between the original gammachirp filter and the AC-
gammachirp filter is less than 0.41 in Figure 4 over the range where . The
average rms error is only 0.63 dB for 90 sets of parameter combinations {n = 4; b = 1.0,
1.35, and 1.7; c = 1, 0, –1, –2, and –3; fr = 250, 500, 1000, 2000, 4000, and 8000 (Hz)}. The
rms error exceeds 2 dB only for three sets when fr = 8000 Hz and c = –3. 

The fit improved only slightly when the coefficients in Equations (21), (22), and (23)
were optimized using an iterative least squared-error method. It is possible to improve the fit
by changing the locations of the poles and zeros defined in Equations (15), (16), and (17),
but this is beyond the scope of this paper.

2.4.2 Comparison of the Impulse Response and the Phase Spectrum

Figure 5(a) shows an example of the impulse response of the gammachirp defined in
Equation (1) (solid line) and the AC-gammachirp obtained from Equation (18) (dashed line).
The difference in the impulse responses between the original gammachirp and the AC-gam-
machirp is about –50 dB in rms amplitude and is therefore almost negligible. Their phase
spectra, shown in Figure 5(b), are very close to each other. Therefore, the AC-gammachirp
provides an excellent approximation to the original gammachirp in terms of its phase charac-
teristics, i.e.,

(24)

and also in the time domain, 

* , (25)

where * denotes convolution.

2.4.3 Similarity to the Asymmetric Function 

The asymmetric compensation filter, , defined in Equations (13) and (14) can
strictly satisfy Equations (8), (9), and (10) and condition (b), and approximately satisfy
Equation (11) and condition (c). The reasons are as follows. For conditions (b), (c) and
Equation (11), the correspondence is obvious from Figure 2. For Equation (8), when c is 0,
the locations of the poles and zeros of Equations (16) and (17) are the same, and then Equa-
tions (13) and (14) become unity. For Equation (9), since ERB (fr) is a linear function of fr,
changing fr+fl to fr–fl simply replaces the poles and zeros in Equations (16) and (17). For
Equation (10), changing the sign of c replaces the poles and zeros in Equations (16) and (17)
and it is possible to derive a stable inverse filter since the asymmetric compensation filter
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satisfies the minimum phase condition. The inverse filter is always stable even if the parame-
ter values are time varying. Accordingly, it is possible to cancel the forward filter with the
inverse filter. Then, the total response of the combination is a unit impulse. This feature leads
to an analysis/synthesis filterbank (described in Section 3.3). 

Since the IIR asymmetric compensation filter has few coefficients, fast level-dependent,
adaptive auditory filtering can be performed by a combination of the compensation filter
with a fast implementation of the gammatone [17][22].

3.    Gammachirp Filterbank

This section describes an adaptive, analysis/synthesis gammachirp filterbank. Since the
auditory filter shape is level-dependent [5][9][14], it is necessary to estimate the sound pres-
sure level of incoming signals. Section 3.1 shows an example of the analysis filterbank with
a level estimation mechanism. Section 3.2 shows another type of filterbank structure using
physiological constraints. Although no specific structure or parameter set has been deter-
mined yet, these examples are sufficient for presenting the most important issue in this
paper. Section 3.3 shows the general structure of an adaptive, analysis/synthesis gammachirp
filterbank. This chapter shows that sound resynthesis is always possible independent of the
method of parameter control. The analysis/synthesis errors are shown to be time-invariant
and small enough to avoid perceptual distortions, even when listening to synthetic sounds.
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Figure 5 (a) Impulse responses and (b) phase spectra of an FIR gammachirp filter (Equation (1)) (solid lines)
and an asymmetric compensation (AC) gammachirp filter (dashed lines). The parameters are n = 4,
b = 1.019, c=-1, and fr. = 2000 Hz.
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3.1  Implementation with level estimation

Figure 6 shows an example of a gammachirp filterbank that consists of a gammatone fil-
terbank, a bank of asymmetric compensation filters, and a parameter controller. The sound
pressure level of incoming signals is estimated in the parameter controller using the output
of the gammatone filterbank and the asymmetric compensation filterbank. The parameter
controller is a bank of parameter control units as shown in the right-bottom block. When
considering the k-th channel, the input signal to this block is first rectified, and is then put
into a leaky integrator (LI) for smoothing. Any value for the time constant is possible in the
following simulation as long as the feedback system is stable; 30 ms was used for the error
estimation in Section 3.3. A weighting function (i.e., a Hamming window of 3 ERB width
across the filter channels), is applied to the LI output of the k-th and adjacent channels,
which are summed together to obtain the activity, aak, for the k-th channel. The estimated
sound pressure level, Ps in decibels, is calculated using a straightforward equation,

(26)

where q is a constant. The estimated sound pressure level controls the parameters of the
gammachirp filterbank. 

It has been demonstrated that the constant, q, can be determined using psychoacoustic
masking data [10][11]. It does not, however, sufficiently describe the procedure and the
results in this chapter since they largely depend on the filterbank structure and the parameter
controller. In those simulations, however, the individual filters were all set on the basis of the
auditory filter shape at a probe frequency of 2000 Hz [9]. Obviously, it is necessary to use
the outputs of several adjacent auditory filters. The formulation with the leaky integrator and

Figure 6 Block diagram of a level-dependent gammachirp filterbank.

Ps 20 q aak⋅( )log=



60 T. Irino and M. Unoki / Analysis–Synthesis Auditory Filterbank based  on Gammachirp

                             

Equation (26) is restricted to an initial approximation of the parameter control since it does
not include fast compression [21] and the compression function is physiologically realistic
[4].

Instead of determining the parameter values for this model, we use a basic structure to
establish a synthesis procedure (described in Section 3.3) that is independent of the method
of parameter control. For the filterbank in Figure 6, it is possible to perform signal resynthe-
sis, provided only the chirp parameter, c, varies with the level in the level-dependent audi-
tory filters. Then, control #1 (Figure 6 (c)) is unnecessary because the gammatone filter is
not a function of the chirp parameter c. The next section shows another filterbank structure
based on physiological observations. 

3.2  Another filterbank structure

Let us introduce physiological knowledge into the filterbank structure. When the sound
pressure level is sufficiently high, the cochlear filter has a broad bandwidth and behaves like
a passive and linear filter. As the signal level decreases, the filter gain increases and the band-
width becomes narrower because of the active processes [19]. This suggests a physiologi-
cally plausible auditory filter is a combination of a linear, broadband filter and a nonlinear,
level-dependent filter that sharpens the filter shape. Recent observations have shown that the
frequency modulation or “glide” persists even post-mortem or after high sound pressure lev-
els [20]. Accordingly, the linear filter can be simulated with a broadband gammachirp filter.
As shown in Equation (12), a gammachirp filter with an arbitrary chirp parameter c can be
produced with a combination of another gammachirp filter and an asymmetric function.
Therefore, the second filter can be simulated by a level-dependent asymmetric compensation
filter as long as the total filter response can be simulated with the gammachirp. 

Accordingly, a candidate filterbank structure is proposed in Figure 7. It consists of a lin-
ear gammatone filterbank, a linear asymmetric compensation filterbank, and an adaptive
asymmetric compensation filterbank controlled by a parameter controller. The output of the
linear asymmetric compensation filterbank is equivalent to the output of a linear gam-
machirp filterbank (c). This output is fed into the asymmetric compensation filterbank to
obtain the total output (d). The parameter controller is similar to that described in Section

Figure 7 Block diagram of a gammachirp filterbank based on physiological constraints.
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3.1. However, before determining the structure and the parameters it is necessary to wait for
results fitting the gammachirp to psychoacoustic masking data across the full range of center
frequencies. The structure is based on a combination of a linear filterbank with bandpass fil-
ters and a non-linear asymmetric compensation filterbank. For signal processing applica-
tions, this filterbank structure has a very important feature that has never been accomplished
by conventional auditory filterbanks as described in the next section. 

3.3  Analysis/synthesis Filterbank

One of the most important features of the gammachirp filterbank is its ability to establish
an analysis/synthesis system as shown in Figure 8. Moreover, this feature is valid for any
kind of parameter controller. Initially, a signal (a) is filtered by a linear, passive gammachirp
filterbank (A). When the chirp parameter c is set to zero for all channels, this is a gammatone
filterbank. The output of the linear filterbank (b) is converted into the output of the gam-
machirp filterbank (c) using a bank of active asymmetric compensation filters (B). Section
2.4 shows how to make a bank of inverse asymmetric compensation filters (D). The output of
the adaptive gammachirp filterbank (c) is then converted into a representation (d) that is
strictly the same as the output of the linear gammachirp filterbank (b) when using the same
parameter set produced by the parameter controller (C) at each moment in time. The filter-
bank output is then equalized in phase using the time-reversal gammachirp filterbank (E);
this is identical to the linear filterbank (A) except that the impulse response of each filter is
reversed in time. Finally, the output after this phase equalization is summed with a weighting
function to reproduce the signal. 

A combination of the linear analysis filterbank (A), the linear synthesis filterbank (E),
and the weighted sum (F) is almost equivalent to a linear, wavelet, analysis/synthesis proce-
dure [2]. Since the combination of the asymmetric compensation filterbank (B) and its
inverse filterbank (D) produces unit impulses for all channels, the error between the original
and synthetic signals is strictly determined by this linear analysis/synthesis filterbank.

Figure 9 shows an example of analysis/synthesis frequency characteristics for an adap-
tive gammachirp filterbank with equally spaced filters for ERB rates between 100 and 6000
Hz using a gammatone filterbank in (A) and (E) (i.e., the gammachirp filterbank when c = 0
for all channels). Figure 9(b) shows the same graph with a magnified ordinate scale. The
maximum error is less than 0.01 dB with 100 channels and is only about 0.03 dB even with

Figure 8 Block diagram of an adaptive, analysis/synthesis gammachirp filterbank.
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50 channels. It appears that about 100 channels are sufficient to minimize the errors. More-
over, the errors are completely independent of parameter control. Consequently, the gam-
machirp filterbank is able to perform signal resynthesis without producing any undesirable
distortion.

 The discussion above guarantees the minimum distortion of the analysis/synthesis filter-
bank system. This filterbank is applicable to various applications when inserting a modifica-
tion block between the asymmetric compensation filterbank (B) and its inverse filterbank
(C). For example, it is possible to construct a noise-suppression filterbank that does not pro-
duce any musical noise (which would be perceptually undesirable) [12]. 

4.    Summary

This paper presents an adaptive, analysis/synthesis auditory filterbank using the gam-
machirp. Initially, the gammachirp function is analyzed to find characteristics for effective
digital filter simulation. The gammachirp filter is shown to be well approximated by the
combination of a gammatone filter and an IIR asymmetric compensation filter. The new
implementation reduces the computational cost for adaptive filtering because both filters can
be implemented with only a few filter coefficients. The inverse filter of the asymmetric com-
pensation filter is shown to be stable. Then two examples of gammachirp filterbanks are pre-
sented, each is a combination of a linear gammachirp filterbank and a bank of adaptive,
nonlinear asymmetric compensation filters, controlled by the signal-level estimation mecha-
nism. A synthesis procedure for such analysis filterbanks is proposed to accomplish signal
resynthesis with a guaranteed precision and no undesirable distortion. This feature has never
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been accomplished with conventional auditory filterbanks. The adaptive, analysis/synthesis
gammachirp filterbank is usable in various signal processing applications requiring the mod-
eling of human auditory filtering.
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1.    Introduction

Models of cochlear implant physiology and perception have historically utilized deter-
ministic descriptions of auditory-nerve (AN) responses to electrical stimulation, which
ignore stochastic activity present in the response. Physiological models of AN responses
have been developed that do incorporate stochastic activity [8][13][14][27][38][39], but the
consequences of stochastic activity for the perception of cochlear implant stimulation have
not been investigated until recently [3].

Such an investigation is prompted by inaccuracies in predicting cochlear implant percep-
tion by deterministic models. For example, studies of single-fiber responses, where only an
arbitrary deterministic measure of threshold is recorded, do not accurately predict perceptual
threshold versus phase duration (strength-duration) curves for sinusoidal stimulation [24] or
for pulsatile stimulation [25][26]. Furthermore, strength-duration curves of cochlear implant
users are not well predicted by deterministic Hodgkin–Huxley type models [25] [30].

However, the complexity of previous stochastic physiological models has made the com-
putation of responses for large numbers of fibers both laborious and time-consuming. Fur-
thermore, the parameters of these models are often not easily matched to the fiber
characteristics of the auditory nerve in humans or other mammals. This has prompted us to
develop a simpler and more computationally efficient model of electrical stimulation of the
auditory nerve [1][2][4] which is capable of direct and rapid prediction of perceptual data
[3].

2.    Computational Modeling of Cochlear Implant Physiology

In [1] and [4] we have described a model of the AN response to electrical stimulation,
following the conceptual approach used in [35], [38] and [39]. This model can be repre-
sented by the electrical circuit diagram shown in Figure 1. Based on the Hill threshold model
[12], our model includes a number of significant components of action potential generation,
including membrane noise, as recorded by Verveen and colleagues [35], which has a Gauss-
ian amplitude distribution and a 1/f frequency spectrum. Threshold models are much simpler
conceptually and are more computationally efficient than Hodgkin–Huxley models. They
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have also been shown to provide a good approximation to more complex models [16]. Addi-
tionally, our model can be fitted easily to the statistics of AN parameters collected from ana-
tomical and physiological studies.

We are able to derive an analytical description of this model, because it is in effect a Ber-
noulli process, where a discharge in response to a pulse is considered to have a value of 1
and no discharge has a value of 0. The probability of discharge, p(n), in response to a single
pulse approximated by the equation [1] [4]

(1)p n( )
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--- 1 erf

V stim n( ) V thr n( )–

2σ
--------------------------------------------- 

 + 
 =
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Figure 1   Stochastic model of single-pulse response. Reprinted from Fig. 2 of [4] © 1999 IEEE.
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Figure 2   Stochastic (solid line) and deterministic (dashed line) model fits to discharge probability data (cir-
cles) from Neuron 2-22 of [15].
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where σ is the standard deviation of the noise potential, Vnoise(n). The equivalent determinis-
tic model can be simulated by setting the noise to zero (σ = 0), producing a step function at
Vthr(n) [1][4].

Deterministic and stochastic model fits to physiological data from a single cat AN fiber
are plotted in Figure 2. The stochastic model provides a much better fit to the data (r2 = 1.0)
than does the deterministic model (r2 = 0.92).

Following Verveen et al.’s convention, we characterize the input/output (I/O) functions
by defining threshold as the intensity corresponding to a discharge probability of 0.5 and
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Figure 3   Stochastic (solid line) and deterministic (dashed line) model I/O functions showing how threshold
and the standard deviation of the Gaussian noise, σ, are defined to determine RS (= σ/threshold).
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Relative Spread (RS) as the standard deviation of the Gaussian noise divided by threshold.
The deterministic model is characterized by threshold alone (σ=0), as illustrated in Figure 3.

In order to model the response of a population of AN fibers we need to determine the
model parameters for each neuron in the population, as well as the intensity of the excitatory
current at the initial site of action potential generation in each neuron.

Figure 4 shows a plot of RS versus threshold for 15 neurons from the Javel et al. data set
for a 200-µs/phase (x) or a 400-µs/phase (o) biphasic pulse. It can be seen that both thresh-
olds and RSs cover a broad range of values. Combining these data with similar published
data [19][34], we are able to estimate the distribution of I/O function parameters (threshold
and RS) for a local population of fibers in the AN. In our “total AN” (large-scale population)
model we simulate this distribution of I/O functions [4].

Although higher rate pulsatile stimuli are typically used in modern cochlear implants,
necessitating short phase durations (i.e., pulse widths), there is a relatively large body of
psychophysical data available in which long phase duration stimuli were used. Furthermore,
these psychophysical data show large discrepancies with deterministic model predictions at
long phase durations [24][25][26][30]. However, the method used for suppressing the stimu-
lus artifact in the Javel et al. experiments did not allow for much data collection at phase
durations longer than 400 µs/phase and none longer 600 µs/phase. Thus we also conducted a
post hoc analysis of previously unpublished data collected by Dynes from single AN fibers
of cats [8], where a pair of closely spaced micropipettes were used in differential-like
recording to produce a high signal-to-artifact ratio even at long phase durations.

In Figure 5 discharge probability is plotted versus stimulus intensity curves for three dif-
ferent phase durations from Cat 76: Unit 2 in the Dynes data set. As the phase duration
increases, the slope of the curve becomes shallower, indicating a greater dynamic range.
Computing the RSs of these curves shows that RS increases as the phase duration of the
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Figure 5   Discharge probability vs. stimulus intensity for single symmetric biphasic anodic/cathodic pulses of
durations 100, 500 and 2,000 µs/phase, from Cat 76: Unit 2 in the Dynes data set [8]. Plotted are
individual measures (asterisks) and stochastic model fits (solid lines). Reprinted from Fig. 6 of [4] ©
1999 IEEE.
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anodic/cathodic biphasic stimulus increases. This effect is seen in all fibers of this data set.
For every fiber, the RS increases as the duration per phase of the stimulus increases. To
incorporate this behavior in our model, we fit discharge-probability functions (Eq. 1) to the
complete data set and calculated the mean threshold and RS at phase durations of 100, 500,
2000 and 5000 µs/phase. We then fit appropriate functions to threshold and RS versus phase
duration plots. These functions are used in the model to interpolate values of threshold and
RS at phase durations other than those used in the Dynes experiments [8].

The two electrode configurations that we investigate in these studies are commonly
known as monopolar and bipolar. In the case of monopolar stimulation, the active electrode
is one of the electrodes on the array within the cochlea and the return electrode is an elec-
trode external to the cochlea. In the case of bipolar stimulation both the active electrode and
the return electrode are on the electrode array within the cochlea.
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Figure 6   Attenuation of the stimulus across the cochlea for monopolar (solid line) and bipolar (dashed line)
electrode configurations. Reprinted from Fig. 9 of [4] © 1999 IEEE.
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Following [21], we approximate the electrode array by a point source of current at the
active electrode and the AN tissue by a homogeneous resistive medium consisting of a uni-
form density of single AN fibers. To calculate the stimulus intensity at each AN fiber, we
assume that the stimulus is attenuated at the rate of 0.5 dB/mm for monopolar stimulation
[18] and 4 dB/mm for bipolar stimulation—the latter value is appropriate for both radial-
bipolar pairs [18] and closely spaced longitudinal-bipolar pairs [20]. Modeling an electrode
placed 15 mm inside a cochlea 30-mm long produces attenuation curves as shown in Figure
6.

In [1] and [2] we go on to extend this model to describe responses to pulse-train stimuli,
by introducing a phenomenological refractory mechanism. To the single-pulse model of [1]
and [4] we add a refractory potential as shown in Figure 7. Following an action potential, the
threshold with which the stimulus potential is compared is raised over the refractory period
by some chosen function, typically an exponential [1][2][8][22]. We also derive analytical
expressions to approximate the pulse-train model, which although more complex than the
single-pulse model, are still computationally efficient and can be fitted easily to the statistics
of AN parameters collected from physiological studies.

3.    Computational Modeling of Cochlear Implant Perception

In [3] we investigate whether inaccuracies in predictions of loudness perception could be
due to ignoring the stochastic response of the AN to electrical stimulation. In order to avoid
the complication of inter-pulse interactions and to enable the use of the simpler and compu-
tationally faster single-pulse model as shown in Figure 1, we restrict our investigation to sin-
gle biphasic pulses and low-rate (< 200 pulses per second) pulse trains. We derive a model of
loudness based on the single-pulse model of neural excitation developed in [1] and [4] and
compare the deterministic and stochastic model predictions. We develop the psychophysical
(perceptual) section of the model in such a way that signal detection theory can be applied to
predict directly how behavioral threshold, dynamic range and intensity difference limen
change with stimulus parameters and nerve survival. The resulting model is shown in Figure
8.
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Figure 8   Composite computational physiological and perceptual model. Reprinted from Fig. 1 of [3] © 1999
IEEE.
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In all the cases examined in this set of studies, the stochastic model predicts perceptual
data better than does the deterministic model. For example, plotted in Figure 9 are percep-
tual data from a cochlear implant user showing uncomfortable loudness and threshold versus
phase duration. While the stochastic and deterministic models predict similar uncomfortable
loudness levels, the deterministic model overestimates the threshold data, particularly for
longer pulse durations. In contrast, the stochastic model, consistent with the physiological
data, predicts (i) absolute values of threshold that are significantly lower than those predicted
by the deterministic model, and (ii) slopes that begin to steepen with phase durations greater
than 500 µs/phase and slopes that are steeper than –6 dB/doubling in the region from 1000 to
2000 µs/phase. This is more than would be expected if it were assumed that threshold corre-
sponds to a certain level of charge delivered by an implant.

Our study [3] also shows that the stochastic model better predicts perceptual data for:
• threshold versus phase duration as a function of electrode configuration (bipolar or 

monopolar),
• the ratio of bipolar dynamic range versus monopolar dynamic range,
• threshold versus number of pulses (temporal-integration), and
• intensity difference limen as a function of intensity (Weber functions).

The physiological model is based on data from the cat AN, but the resulting perceptual
model gives good qualitative predictions of data from implanted humans, monkeys, guinea
pigs and cats. This suggests that stochastic activity in the AN is perceptually significant
across a wide range of measures of loudness perception and regardless of the species,
although anatomical, physiological and cognitive differences may have small quantitative
effects.

Ferguson et al. [9] have implemented a model similar to ours and have compared its pre-
dictions of threshold as a function of pulse duration for monopolar and bipolar stimulation
modes with experimental data. Analysis of data from three species indicated that the vari-
ance of perceptual thresholds is also a function of phase duration, and that these results are
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Figure 9   Perceptual data for uncomfortable loudness (*) and threshold (o) are plotted against phase duration,
along with the deterministic (dashed lines) and stochastic (solid lines) model predictions.
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corroborated by the predictions of the stochastic version of the model. These results are not
predicted by the deterministic model, indicating that the importance of stochastic activity in
the AN extends beyond the perceptual data investigated in our own studies.

4.    Future Directions

In these studies we derive a model of loudness in cochlear implants users based on phys-
iological data and use this model to investigate a number of different perceptual phenomena.
In all the cases examined so far, the model predicts the perceptual performance of cochlear
implant users significantly better when stochastic activity is included in the neural section of
the model.

However, extensions or revisions of this AN model may further improve predictions and
our understanding of the functional significance of the physiology—specific suggestions fol-
low.

The neural section of our model is derived from physiological data collected in cats. Fur-
ther physiological data may be collected from humans using cochlear implant telemetry and
non-invasive electrophysiology, which should prove useful in refining our simple model of
current spread and neural response. A model of current spread in the human cochlea con-
structed from human cochlear sections [6] may also help to this end.

Another extension to the model would be to allow for other sources of noise. For
instance, the survival of inner hair cells in some subjects could result in some residual syn-
apse-driven spontaneous activity in the AN. This would affect the amount of noise present in
the total AN response. Other sources of noise may also be present in more central sections of
the auditory pathways. The effects of both of these potential noise sources can be included in
our perceptual model if their behavior is known.

By changing parameters of the model to reduce the amount of stochastic activity we may
also account for such data which lie somewhere between the deterministic model and the
stochastic model predictions. For instance, particularly focused current fields or extremely
low neural survival may cause higher probabilities of firing at stimulus intensities within the
behavioral operating range. Because neural responses at high discharge probabilities exhibit
relatively little variability, stochastic and deterministic model predictions are similar under
such conditions.

The physiological data on which our model is based are from acutely implanted animals.
This model does not take into account the effects which etiology, prolonged deafness and
implantation have on the response of AN fibers to electrical stimulation [31] [37]. An exten-
sion to these studies could be to model the effects of various etiologies on single-fiber I/O
functions and current spread.

Only responses to stimulation from a single electrode have been investigated in these
studies. In order to model responses to stimulation from multiple electrodes, even at moder-
ate pulse rates, refractory effects should be incorporated [1][2] when the electrodes are stim-
ulating overlapping populations of fibers. Also, loudness summation effects may need to be
considered when the neural populations excited do not overlap [17][29][33][40].

In these studies we have also limited our investigation to low pulse-rate stimuli. With the
pulse-train model developed in [1] and [2] and shown in Figure 7, we may now have an
appropriate tool for extending this investigation to the prediction of perceptual data for mod-
erate stimulation rates (200–1,000 pps). However, to develop the model for high pulse rate
(> 1,000 pps) stimulation, neurophysiological data must be collected for a range of discharge
probabilities (possibly as low as 0.01 or lower) at such high pulse rates. Physiological data
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and modeling results [8][19][28] reveal inter-pulse interactions occurring at high pulse rates
which can significantly increase or decrease the level of stochastic activity in a fiber.

To further investigate such nonlinearities we are now developing a more computationally
efficient stochastic Hodgkin–Huxley type model than those such as Rubinstein’s [27][28].
This is achieved by applying Chua’s [5] reformulation of the Hodgkin–Huxley model to Fox
and Lu’s [10] stochastic version of the model. Chua’s reformulation permits efficient simula-
tion of complex biological neurons using a standard circuit analysis program such as SPICE
[23][32]. Initial simulation results show that such a model can accurately and efficiently pre-
dict a number of properties of the random fluctuations in the membrane potential as charac-
terized by Verveen et al. [35]. Plotted in Figure 10 are membrane-potential traces from [35]
showing fluctuations in nerve-fiber transmembrane potentials at the nodes of Ranvier and
model predictions of these fluctuations. Both Verveen’s recordings and the model predic-
tions exhibit a Gaussian amplitude distribution and an increase in membrane noise variance
with depolarization. The model also predicts the 1/f frequency spectrum observed by
Verveen et al., which tends towards a white (flat) spectrum at higher frequencies.

However, there is some preliminary evidence that the Fox and Lu approximation may
become inaccurate when the model neuron is spiking [Jay Rubinstein, pers. comm.]. One
possibility is that the approximation deals incorrectly with the noise distribution when the
membrane is hyperpolarized or depolarized, which Verveen and Derksen observed to be
highly non-Gaussian [36]. If this can be corrected, then with Chua’s reformulation we will
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© 1968 IEEE). (b) Model predictions of membrane potential fluctuations (top pane) and their dis-
tributions (bottom pane): at resting potential (-60 mV) and at a sustained depolarized potential.

(a) (b)



74 I. C. Bruce et al. / Modeling of Cochlear Implant Physiology and Perception

                             

be able to investigate simply and efficiently how stochastic versions of both single-node
models and anatomically correct multi-node models [7][11] predict physiological data for
pulsatile cochlear implant stimulation.

5.    Summary and Conclusions

A number of aspects of cochlear implant physiology and perception are better predicted
by a stochastic model than by the equivalent deterministic model. These results show that
loudness perception in implant subjects is highly dependent on the statistics of AN response,
not just on some form of absolute threshold. This may imply that loudness perception of
acoustic stimuli in normal hearing and hearing-impaired subjects is also dependent on the
statistics of AN response, not just on absolute thresholds. High-rate electrical stimulation
may produce significant inter-pulse interactions related to changes in levels of membrane
noise, which cannot be predicted by deterministic models.
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There is no doubt that humans can hear reasonably well with only one ear (monaural
hearing). Nevertheless, hearing with two properly functioning ears (binaural hearing) is
superior to monaural hearing in many ways. This is due to the fact that there is additional
information available to the auditory system when listening through its two ears in contrast
to when listening through only one of them. This additional information is encoded in the
differences of the input signals to the two ears. The auditory system is capable of decoding
part of this information and can make use of it when forming auditory percepts.

The advantage of binaural over monaural listening can be observed with regard to the
following auditory functions (among others) [2]:
(1) Separation of different sound sources
(2) Sound localization
(3) Suppression of coloration and reverberance
(4) Suppression of noise when concentrating on a desired signal

As to the separation of sound sources, signals from concurrent sound sources become
more distinguishable — at least when the sources are at different locations in space (i). The
spatial coincidence of sound sources and auditory events becomes better and localization
blur decreases considerably (ii). When reflected sound is present — as in enclosed spaces
with reflecting walls — coloration and reverberance are less pronounced perceptually (iii).
As sources are better separated and the auditory events more precisely localized, it becomes
easier for the listeners to concentrate on the desired signals and to disregard those which
they perceive as noise in a given context (iv).

When analyzing binaural hearing in more detail it is useful to make a distinction among
its physical, psychophysical and psychological components [1]. As to the physics of binaural
hearing, the following statement has for a long time been considered common wisdom in the
field – since air is an (approximately) acoustically linear medium, the difference of the
sound signals at the two ears can be considered an LTI system, and as such, can be described
by means of an “interaural transfer function.”

A transfer function can be separated into a magnitude function and a phase function,
whereas the latter can also be plotted as a phase-delay and/or as a group-delay function.
Consequently, methods were developed to measure individual interaural transfer functions
for all possible angles of sound incidence with high accuracy. These functions were then
analyzed, especially with regard to interaural-level differences and interaural arrival-time
differences. The data collected in this way enable researchers to better understand the differ-
ences of the input signals to the ears and, further, to generate binaural input to the two ears
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for experimental purposes — with either natural differences or other, deliberately chosen
differences.

Interaural transfer functions do not only play a role in the auditory systems’ capability of
forming the direction of the auditory events, but also in forming their perceptual distance.
The article by Brungart (in this volume) elaborates on this relationship.

Although there in no doubt that the approach depicted above has gained fruitful results, it
is basically restricted to the static case where the sound sources and the listeners have a fixed
position in an environment where everything else is spatially fixed as well (e.g., nobody
moving around, no doors being opened or closed). This is, indeed, a very constraining and
highly unnatural assumption. In a realistic environment the system is neither time invariant
nor linear. Listeners move their heads around all the time and sound sources are often mov-
ing about. Present research has just begun to touch the physical problems of binaural hearing
in spatially variant environments (e.g., by considering the directionality of moving sources
and listeners or Doppler shifts).

As to the psychoacoustics of binaural hearing, many models of signal processing in the
subcortical auditory system are able to accurately simulate a substantial amount of binaural
perceptual phenomena, such as sound localization in a free field with a limited number of
concurrent sound sources, or enhancement of the signals from one sound source with respect
to those from other ones (source separation). The paper by Ito & Akagi (this volume) is a
good example along these lines of thinking. One of the highlights of this kind of binaural
research is the availability of so-called “cocktail-party processors.” These are programs
which are able to separate one talker from concurrent ones in a multi-talker (cocktail-party)
situation. The enhancement of the desired talker can be up to 20 dB (expressed as S/N-ratio
improvement).

Yet current cocktail-party processors, based on interaural signal differences only, show a
significant deficiency: They dramatically decrease in performance as soon as reflected sound
is present (e.g. in reverberant spaces). The reason for this behavior is that they mainly evalu-
ate interaural-arrival-time differences. Due to the superposition of direct and reflected
sounds the interaural phase differences are seriously corrupted in reverberant environments
and consequently, the interaural time-differences as well. The interesting fact is that the
human auditory system can cope quite well with reverberant environment and still achieve a
significant enhancement of the desired talker.

Two approaches to solve this problem can be observed at this time: First there is physio-
logical research into the subcortical auditory system with the aim of a better understanding
of how nature evaluates interaural signal differences (see Hartung & Sterbing, this volume).
Second, models are being designed which take into account further acoustic cues in addition
to interaural differences (e.g., harmonic structures, attack times, co-modulation). This is
clearly an approach which reaches beyond the psychoacoustics of binaural hearing. As these
systems often include pattern-recognition procedures they are, among other things, based on
prior knowledge (cognition).

The role of cognition in binaural hearing is in fact one of the topical fields of research at
this time. To name a few problems in this context — human listeners, when moving their
heads around, know the direction and amount of these movements and interpret their effect
on the signals at the two ears. It is well accepted that these dynamic cues are dominant rela-
tive to static cues in directional hearing, yet, it is hardly known how the auditory system
actually processes them. In fact, in humans this problem is still simple as compared to ani-
mals which can move their pinnae around deliberately. Further, when forming auditory per-
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cepts, information from other senses, such as visual or tactile information, is taken into
account by the central nervous system. As to the cocktail-party problem — when the listener
knows the acoustic characteristics of a desired talker’s voice, or even knows what he/she is
talking about, speech enhancement is much better. Again, cognition is involved.
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1.    Introduction

After almost a century of research, the mechanisms that allow humans to determine the
direction of a sound source are well documented. Auditory localization in the horizontal
plane is known to depend primarily on differences in the time and intensity of the sound
reaching the ears of a listener [14]. The sound arriving at the more distant ear is delayed and
attenuated relative to the sound at the closer ear due to the longer propagation path as well as
the diffraction effects of the head and torso. The resulting interaural time delay (ITD) and
interaural intensity difference (IID) can be used to determine the lateral position of the
source. Additional information about the location of the sound source is provided by the
spectral shaping effects of the outer ear, or pinna [13]. Pinna-based spectral cues allow lis-
teners to determine the elevation of a sound source and to distinguish between sounds in the
front and rear hemispheres. 

In a free-field listening environment these directional cues are effectively independent of
distance when the sound source is located at least 1 m away from the listener. Virtually all
auditory localization research has focused on this far-field region. However, when a sound
source approaches within one meter of the head the interaural difference cues become highly
dependent on the distance of the source. Several researchers have examined the distance-
dependence of auditory localization cues for sources closer than a meter. Stewart [15] was
the first to calculate the IID and ITD for a head modeled by a rigid sphere. This rigid-sphere
model was extended by Hartley and Frey [9] and was recently revisited by Brungart and
Rabinowitz [2]. Acoustic measurements of the IID and ITD as a function of distance have
been made on a “bowling ball” head [5] and on anthropomorphic manikin heads [1] [7].
Both the calculations and the measurements have shown that the IID increases dramatically
when a lateral sound source approaches the head while the ITD is roughly independent of
distance, even when the source is close. 

Two factors contribute to this increase in IID for nearby sources. The first is related to the
scattering of sound by the head and torso. When a sound source is located outside the
median plane, the direct path from the source to the more distant ear is blocked by the head.
The sound must diffract around the head and torso to reach the further ear and is attenuated
in the process. Thus, the further ear is said to lie in the acoustic “shadow” of the head. The
magnitude of this head-shadowing effect depends on both the frequency and distance of the
sound source. The frequency dependence is determined by the size of the head relative to the
wavelength of sound. Thus, the head-shadowing effects are negligible at low frequencies,
where the head is small relative to the wavelength of the sound, and increase systematically
with increasing frequency. The dependence on distance is determined by the size of the head
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relative to the distance of the source. When the source distance is large relative to the width
of the head, the attenuation due to head-shadowing approaches an asymptotic value, and is
roughly independent of distance. At closer distances, however, the effects of head-shadow-
ing increase systematically with decreasing distance. This systematic increase contributes to
the enlarged IIDs found for close sources. Head-shadowing is not the only factor contribut-
ing to these enlarged IIDs. When the source is close to the head, the inverse relationship
between the intensity of a sound and the square of its distance from the source plays a major
role in determining the IID. As a sound source approaches the head, the intensity of the
sound increases more rapidly at the location of the closer ear than at the further ear, resulting
in an increased IID. This can be illustrated by the simple example of a sound source along
the interaural axis of a listener with ears separated by 20 cm. When the sound source is
located 1 m from the center of the head, the source is located 110 cm away from the further
ear and 90 cm away from the closer ear. Ignoring the effects of diffraction by the head, the
IID will be 1.7 dB. If the distance of the source is decreased from 1 m to 15 cm, the source
will be located 25 cm from the further ear but only 5 cm from the closer ear, resulting in an
interaural intensity difference of 14 dB. Thus, a substantial increase in IID is expected for
close sources, even if the effects of diffraction by the head are ignored. Note that, in contrast
to the effects of head-shadowing, these proximity effects are independent of the frequency of
the sound source. For this reason source-proximity effects can produce substantial low-fre-
quency IIDs for nearby sources that would never occur at more distant locations. For exam-
ple, the IID at 500 Hz for a source along the interaural axis is approximately 20 dB at a
distance of 12 cm, but never exceeds 6 dB when the source distance is greater than 1 m [1]. 

The combined effects of head-shadowing and source proximity can produce dramatic
increases in the IID as a sound source approaches the head. In contrast, the interaural time
delay, which depends primarily on the difference in path lengths from the source to the left
and right ears, is roughly independent of distance even for nearby sources. This contrast is
especially dramatic when perceptual issues are considered. Although the ITD has been
shown to increase slightly as the source approaches the head, both in calculations of the ITD
for a rigid sphere model of the head [2] [4] [5] and measurements of the ITD with a KEMAR
acoustic manikin [1], most of this increase occurs at lateral locations where the ITD is
greater than 400 ms and the auditory system is known to be relatively insensitive to changes
in ITD. In terms of earlier measurements of the smallest perceptible change (just-noticeable-
difference or JND) in ITD for a 500-Hz tone [10], the ITD never increases by more than 2-3
JND units as a source at a fixed direction approaches the head. In contrast, the IID for a lat-
eral source will increase by 15-20 or more JND units as distance decreases from 1 m to 12
cm. 

The combination of distance-varying IIDs and distance-invariant ITDs makes it theoreti-
cally possible for a listener to determine the distance of a nearby sound source by first deter-
mining its lateral position from the ITD and then estimating its distance based on the
magnitude of the IID. This model of near-field distance perception, which was first proposed
by Harley and Frey in 1921 [9], is supported by recent measurements of auditory localiza-
tion that have shown that distance perception is relatively good for nearby lateral sources
and poor for nearby medial sources [1]. This chapter discusses two models of auditory dis-
tance perception based on binaural difference cues. The first model, described in the next
section, was first proposed by Hirsch (and later expanded by Molino) and is based on a geo-
metrical calculation of the path lengths from a source distant to the left and right ears. The
second model, described in the remaining portion of the chapter, is a new model of binaural



D.   S. Brungart / Model of Auditory Distance Perception for Nearby Sources      85        

distance perception based on measurements of the IID for a 500-Hz tone on a KEMAR man-
ikin and the JND for a 500-Hz tone measured by Hershkowitz and Durlach [10].

This new model is used to calculate the minimum perceptible decrease in the distance of
a sound source as a function of distance and direction, as well as to simulate performance in
an auditory-distance-identification experiment. The results of this simulation are compared
to data from a psychoacoustic localization experiment, and the advantages and disadvan-
tages of the model are discussed.

2.    Hirsch’s Model of Binaural Distance Perception

In 1968, Hirsch [11] proposed a model of binaural distance perception that allowed a lis-
tener to determine the distance of a sound source directly from the IID and ITD. In Hirsch’s
model, the effects of sound diffraction by the head are ignored and the ears are represented
by point receivers in free space separated by the diameter of the head, 2a (left panel of Fig-
ure 1). Hirsch showed that, if the distance from the center of the head to source, S, is suffi-
ciently large, the path lengths to the left and right ears can be approximated by: 

rL ≈ r+∆r (1) 

rR ≈ r-∆r (2) 

where 

∆r = a sin(θ), (3)

Figure 1    Models of binaural distance perception. In these figures, a sound produced by source, S, at distance,
r, from the center of the head and at angle, θ, from the median plane is received at the left and right
ears (L and R) of a listener with head radius, a. In Hirsch’s model (a), diffraction effects of the head
are ignored and the sound follows the direct paths SL and SR to the ears. In Molino’s model (b), the
sound travels a direct path to the closer ear (SR) but must wrap around the surface of the head to
reach the farther ear (L). This is accomplished by following the tangent line from the source to the
surface of the sphere (ST) and then curving around the circumference of the head from the tangent
point to the ear (TL), thus following the total path STL. Note that in Molino’s model the ears are
placed forward of the frontal plane by angle ε. See text for details.
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r is the distance from the source to the center of the head, θ is the angle from the median sag-
ittal plane to the sound source, and a is the radius of the head. 

The interaural time delay ∆t(θ) is simply the additional propagation time required for the
sound to reach the further ear after it reaches the closer ear, so 

(4)

where c is the speed of sound. The intensity of the sound is inversely proportional to the
square of its distance from the source, so the interaural intensity difference, i (expressed as
the ratio of the increase in amplitude from the left ear to the right ear relative to the ampli-
tude at the left ear), can be defined as:

(5)

where ir is the intensity at the right ear, il is the intensity at the left ear, and I0 is the intensity
of the sound source at a distance of 1 m in the free-field. Solving equation 5 for r and substi-
tuting from equations 3 and 4 yields 

(6)

Thus, under the free-field assumptions of this model, the range of a sufficiently distant
sound source can be determined directly from the ratio of the interaural time delay to the
interaural intensity difference without any knowledge about the intensity of the source. 

Hirsch’s model is appealing because it reduces the determination of distance based on
binaural cues to a simple ratio of the interaural time and intensity differences. The model
does, however, rely on the unrealistic assumption that diffraction by the head is negligible.
Furthermore, the model is restricted to relatively distant source locations, where the interau-
ral difference cues are virtually independent of distance. Consequently, a listener using
Hirsh’s model for distance perception would perform poorly. Using measured discrimination
thresholds of 28 µs for ∆t and 0.4 dB for i, Greene [8] showed that the smallest detectable
relative change in distance predicted by Hirsch’s model for a source at θ = 90°, r = 2 m, and
a = 10 cm can be estimated as follows: 

(7)

Thus, even for a lateral source producing the maximum possible binaural difference
cues, a listener making distance judgments based on Hirsch’s model will only be able to
detect changes in distance on the order of 50%. 

Molino [12] has suggested an augmented version of Hirsch’s model that eliminates the
free-field assumption and the requirement of a distant source. Molino’s model approximates
the head as a rigid sphere and estimates the path length from the source to the contralateral
ear by assuming the sound first follows the path from, S, tangent to the sphere at point T, and

∆t θ( )
rL rR–

c
---------------- 2∆r

c
---------

2a
c

------ θ( )sin= = =

ir il–

il
------------

I0

r ∆r–( )2
----------------------

I0

r ∆r+( )2
----------------------–

I0

r ∆r+( )2
----------------------

--------------------------------------------------- 4∆r
r

---------≈=

r
4∆r

i
--------- 2c∆t

i
------------≈ ≈

δr
r

----- δ ∆t( )
∆t

------------- δi
i

----+ 28µs
600µs
--------------- 0.092

0.200
-------------+ 0.507= = =



D.   S. Brungart / Model of Auditory Distance Perception for Nearby Sources      87        

then wraps around the circumference of the sphere to the left ear, L (line STL in Figure 1).
The sound reaching the closer ear travels a direct path from the source to the ear (line SR).
Molino also assumes that the ears are separated by 165° rather than 180°, placing the ears
slightly forward on the head (at angle, ε, from the frontal plane). These assumptions result in
a significantly more complicated estimate of the path-length difference than that of Hirsch’s
model (Equation 3): 

STL-SR = (r2 - a2)0.5 + a(sin-1(a/r)+ θ- ε) - (r2 - 2arsin(θ+ ε) + a2)0.5 (8)

Molino’s model demonstrates that Hirsch’s prediction — the difference in path length
between the left and right ears changes as a function of distance holds even when signifi-
cantly more realistic assumptions about source distance and head diffraction are used. How-
ever, it eliminates the appealing mathematical relationship between the distance of the
source and the interaural time and intensity differences provided by Hirsch’s model, and
substantially increases the complexity of the calculation of ITD and IID (for which no equa-
tion is provided). Furthermore, Molino’s augmented model requires the subject to have a
priori knowledge about the direction of the source in order to unambiguously calculate
source distance. In Hirsch’s model, the equation for calculating r is based solely on the ratio
of ITD to IID and is independent of θ (Equation 6), so no directional information is required
to determine the distance of the source. In Molino’s model, however, certain combinations of
r and θ will produce identical IID and ITD pairs. Therefore, it is necessary to know the
direction of the sound source independent of the ITD in order to calculate its distance using
Molino’s model. Consequently, it is substantially harder to predict human localization per-
formance with Molino’s extended model than with Hirsch’s original model. 

3.    Assumptions of the Model

Although they are conceptually interesting, neither Hirsch’s model nor Molino’s exten-
sion of that model are capable of predicting human localization performance for nearby
sound sources. The rest of this chapter outlines a new model of auditory-distance perception
for nearby sources based on acoustic measurements of the IID from a KEMAR manikin and
measurements of the JND in IID for a 500-Hz tone. This model is based on three major
assumptions.

3.1  Accurate Knowledge of Lateral Position

The first assumption of the model is that the listener is able to use the ITD, which is
largely independent of the distance of the source, to determine the lateral position of the
sound. The model assumes that the listener is able to determine the lateral position accu-
rately, so any errors caused by misperceptions about the direction of the sound are ignored.
The model does, however, account for front–back confusions about the location of the
sound, where a sound is perceived to be at the mirror image of its true location across the
frontal plane [16]. 

3.2  Distance Judgments Based on IID

The second assumption of the model is that the listener makes his or her judgments about
the distance of the sound source based solely on the perceived IID of the stimulus. In this
model, which is loosely based on the Durlach and Braida model of intensity perception [6],
each exposure to the stimulus generates a Gaussian-distributed random perceptual variable
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with a mean value equal to the actual IID and a standard deviation of 0.8 dB. The standard
deviation is derived from the measurements of Hershkowitz and Durlach [10], who found
that the 75% correct JND in IID for a 500-Hz tone was approximately 0.8 dB across a wide
range of reference IID values. The 75% criterion corresponds to the probability of correctly
distinguishing between two identically distributed Gaussian random variables (the perceived
IID during the reference and reference+∆ presentations of the stimulus) with their means
separated by one standard deviation. Thus, the 75% correct JND can be considered approxi-
mately equivalent to the standard deviation of the underlying perceptual variable associated
with the IID. 

3.3  Perfect Mapping from IID to Distance

The third assumption of the model is that the source distance, r, for a given location in
azimuth is related to the IID, i, (expressed in dB) by an equation of the form: 

r = αiβ (9)

and that the listener is able to map the perceived IID to the perceived distance of the source
according to this equation without error. Note that the listener is required to have access to a
different map of this type at each azimuth location. 
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Figure 2   Interaural intensity difference for a 500 Hz tone as a function of source distance. The x’s represent
measurements made with a KEMAR manikin. The dashed lines represent the IID model based on
the best linear fit of the log of the IID (in dB) to the log of the source distance, of the form i′ = αr β.
The coefficients of the model, as well as the inverse function relating distance to IID, are shown at
the upper right of each panel.
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4.    Calculation of Model Parameters

The parameters of the model were derived from measurements of the IID at 500 Hz made
with a KEMAR manikin and a compact, acoustic-point source [1]. The measurements,
which were taken at distances of 12 cm, 25 cm, 50 cm, and 100 cm from the center of the
manikin head, are shown by the x’s in each panel of Figure 2. The dashed line represents the
linear least-squared-error estimate of the (linear) IID as a function of the log of the source
distance. The dB value of the IID can be expressed in the form: 

(10)

where i′ is the interaural intensity difference (in dB) and r is the distance of the source (in
cm). The equation for the curve is shown in this form at the upper right of each panel.

The inverse of this function can be used to calculate the source distance, given the IID in
dB. The inverse curve has the form 

r′(i) = αiβ (11)

where 

 (12)

and 

β = 1/B (13)

The equation for the inverse curve is also shown on each panel. 
Note that Figure 2 shows the IID curves for the entire right hemisphere. Although the

differences between the IID curves at symmetric locations in the front and rear hemispheres
are relatively minor (the curve is generally slightly flatter in the rear hemisphere), the param-
eters of the inverse curve equation are substantially different. Thus, based on the assump-
tions of this model, it is reasonable to anticipate that the performance would be degraded in
a front–back confusion, where the sound in the front hemisphere is perceived in the rear
hemisphere (or vice-versa). The treatment of front–back confusions by the model is dis-
cussed in Section 7.

5.    Model Estimate of Percent JND Decrease in Distance

It is relatively easy to determine the smallest perceptible percentage decrease in the dis-
tance of a sound source (% JND) with this model. Figure 3 shows %JND in the distance of a
sound source predicted by the model at five source locations ranging between 30° and 150°

in azimuth. The threshold decrease in distance is the decrease necessary to increase the IID
by one JND, or 0.8 dB. Thus, for a given distance, r, the % JND in distance (for 75% correct
detection) is equivalent to:

(14)

As seen in Figure 3, the % JND in distance decreases as the source distance decreases. 

α A
B 1––

=

r r' i' r( ) 0.8+( )–
r

----------------------------------------- 100⋅
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Note that this implies that very small changes in distance will be detectable when the
source is located near the head. For a source 12 cm from the center of the head at 90° in azi-
muth, a decrease in distance of 8%, or 1 cm, will produce a detectable change in IID. In con-
trast, a decrease in distance of more than 20 cm is required to produce a detectable change in
IID when the source is located 1 m from the listener. 

The %JND is only slightly dependent on azimuth between 60° and 120°, but increases
substantially at the more medial locations (30° and 150°) where the IID is less distance-
dependent. In the median plane the IID is essentially 0 dB at all distances, and no changes in
distance can be detected based on the IID.

These predictions of the % JND in distance should be robust in the sense that they pro-
vide an upper bound on the minimum detectable change in the distance of a sound source
near the head. This level of performance could be obtained simply by listening for changes
in the IID, and does not require accurate knowledge about the direction of the source. The
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Figure 3   Predictions of %JND decrease in distance as a function of source distance and direction. Locations in
the front and rear hemispheres are shown in the top and bottom panels, respectively. No data are
shown at 0° or 180° where the IID is negligible at all distances and no IID-based distance judgments
are possible.
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next section describes a more advanced adaptation of the model that predicts behavior in a
distance-identification experiment, where listeners are required to determine the location of
the sound from a single presentation of the stimulus.

6.    Simulation of Distance Identification Performance

Distance identification is fundamentally more difficult than distance discrimination. In
discrimination, the listener is required only to determine whether there is a difference in IID
between two consecutive presentations of a stimulus. In identification, however, the listener
is required to make an absolute judgment about the distance of the sound from a single pre-
sentation of the stimulus. In this model of distance perception, the listener must determine
the lateral position of the source, choose the correct map between IID and distance for that
lateral position, and use that map to derive the distance of the source from the perceived IID.
Under the assumption that lateral position was correctly determined by the listener, the per-
ceived distance of a single stimulus presentation at distance, rstimulus, and angle, θ, is simu-
lated by the following equation: 

rresponse = (1-V)(r′θ (i′(rstimulus)+ niid)) + (V)(r′180-θ (i′(rstimulus) + niid)) + nresponse (15)

• rθ′() is the function relating IID to distance at location, θ (Equation 11); 
• r′180−θ() is the function relating IID to distance at the reversed location of θ; 
• i′() is the inverse of r′θ() (Equation 10); 
• niid is a zero mean Gaussian random variable with σ = 0.8 dB representing internal noise

associated with the perception of the IID; 
• nresponse is a zero-mean Gaussian random variable with σ = 8 cm representing noise in

the response location indicated by the subject; 
• V is a Boolean random variable equal to 1 when a front–back reversal occurs (p = 0.14). 

The value of σ for niid was based on the measured JND in IID. The probability distribu-
tions of the other variables were chosen to best match the data from a psychoacoustic dis-
tance localization experiment described in the next section [1]. The probability of V was
chosen to match the percentage of front–back reversals that occurred in the psychoacoustic
experiment, and the value of nresponse was chosen to best match the errors found in the psy-
choacoustic data. 

The results of a simulation of distance identification performance using this model are
shown in the left panels of Figure 4. Each panel represents 1000 simulated trials with ran-
domly distributed stimulus distances from 12 cm to 1 m. Response locations were restricted
to the range 12 cm to 150 cm, and at locations in the median plane (0° and 180°) the IID var-
ies little with distance and the majority of the simulated responses are at the maximum or
minimum value. 

The number at the upper right of each panel shows the correlation coefficient between
the log of the stimulus distance and the log of the response distance at that source location.
In the median plane, the stimulus and response locations are essentially uncorrelated. As the
source position moves more lateral to the head, the correlation increases systematically until
at 90° the correlation reaches its maximum value of 0.89.Comparison of Simulation Data to
Psychoacoustic Data

The right panels of Figure 4 show the results of an auditory localization experiment con-
ducted by Brungart [1]. In this experiment, listeners were asked to attend to a series of
broadband noise bursts produced by a compact acoustic point source at a random location in
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Figure 4  Comparison of localization performance predicted by the model with psychoacoustic localization
data at seven azimuthal locations. The correlation coefficient between the log of the stimulus dis-
trance and the log of the response distance is shown in the upper left of each panel.
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the right hemisphere, and to identify the location of the source by moving a response pointer
to the perceived location of the stimulus. The amplitude of the stimulus was randomized to
eliminate intensity-based distance cues. A total of 2000 trials were collected for each of four
subjects in the experiment. The results, shown in the right panels of Figure 4, are limited to
trials at elevations between –30° and 30°. They have been sorted into seven azimuthal bins,
each containing all trials within the 30° range of azimuths centered at the value of θ shown at
the left side of the figure. As in the simulation data, the correlation coefficient between the
log of the stimulus distance and the log of the response distance is shown at the upper left of
each panel. 

The noise parameters of the simulation were chosen to generate similar overall perfor-
mance for azimuth locations near 90°. Thus, the correlation coefficient for the simulated and
actual data is similar for sources from 60° to 120°. As in the simulation, performance in the
psychoacoustic experiment diminishes as the source position moves toward the median
plane. The correlation does not, however, decrease to zero in the median plane. The superior
performance in the psychoacoustic experiment probably occurs in part because the psychoa-
coustic data include locations ranging from –15° to 15° in azimuth, where there is some vari-
ation in the IID with distance, while the simulation data include only sources in the median
plane. There may also be some monaural spectral distance cues that contribute to localiza-
tion performance in the median plane and are not covered by this preliminary model [1]. A
visual inspection of the raw response data indicates that the primary difference between the
model data and the psychoacoustic data is the large number of responses in the simulation
which occurred at the limiting distance of 150 cm. Clearly, the model does not adequately
represent the type of responses that occur when the perceived IID is low. Either a distribu-
tion of niid with shorter tails than provided by the Gaussian distribution is required, or the
responses below a certain IID value should be randomly distributed over a range of possible
responses (from 100 to 150 cm, for example) to more accurately simulate the type of
responses exhibited by the subjects. 

Another interesting difference between the simulation data and the psychoacoustic data
is that performance in the simulation is slightly, but significantly, better at θ = 30° than at θ =
150° (p < 0.05, from the Fisher transform of correlation coefficients [3]), while performance
in the psychoacoustic experiment was slightly, but significantly, better at θ = 150° than at θ =
30° (p < 0.05, Fisher transform). The KEMAR HRTF measurements in Figure 2 indicate that
the IID is slightly more sensitive to distance at 30°, which is reflected in the behavior of the
model. It is unclear why the responses in the psychoacoustic experiment were slightly more
accurate in the rear hemisphere. 

7.    Conclusions

This chapter has examined a preliminary model of near-field auditory depth perception
based on distance-dependent variations in the IID for a nearby source. The important
attributes of this model can be summarized as follows: 

• The model predicts that the distance discrimination threshold for nearby sources,
expressed as the minimum audible percent decrease in distance, will decrease as the
source moves lateral to the head and as the source approaches the head. When the source
is located just outside the ear (θ = 90° and r  = 12 cm) the model suggests that changes in
source distance as small as 1 cm will be detectable based solely on changes in the IID.
Although no psychoacoustic data are currently available to verify these predictions, a
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series of experiments measuring the JND in distance for sources within 1 m of the head
is planned. 

• The model predicts that performance in a distance identification experiment will system-
atically improve as the source moves lateral to the head, and worsen as the source moves
toward the median plane. These predictions are verified by data from a psychoacoustic
localization experiment. However, the psychoacoustic data indicate that performance
does not degrade completely in the median plane, as predicted by the IID-based distance
perception model. It is likely that monaural spectral cues are providing additional dis-
tance information in the median plane, which is not reflected by the model. This type of
spectral information could be included in more advanced versions of the model. 

• The model predicts somewhat more accurate distance performance at 30° than at 150°,
based on the greater sensitivity of the IID to changes in distance at 30° in the KEMAR
HRTFs, but this behavior is not reflected in the psychoacoustic data. This discrepancy
may be a result of acoustic differences between the KEMAR manikin, which was used to
measure the IIDs used by the model and by the actual subjects. It may also result from
the assumption that the precise lateral position of the source is derivable from the ITD. A
more advanced version of the model would more accurately account for uncertainty in
the azimuthal position of the source. 

While this is only a preliminary model, it does accurately portray the general direction-
dependent behavior of auditory distance localization in the region within 1 m of the lis-
tener’s head. The accuracy of its predictions also provides evidence of the importance of the
IID to the distance perception of nearby sources. Further work is necessary to establish a
more comprehensive model that includes monaural spectral cues and more realistic assump-
tions about the perception of source direction. 
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1.    Introduction

Sound localization based on the interaural time difference (ITD) detects sound source
locations using the difference in arrival times of the sound waves at the two ears [11] [12].
To understand the process and represent it computationally, we developed a computational
model of auditory sound localization based on the ITD.

Sound waves arriving at the ears are decomposed into their frequency components and
are changed into impulse trains by the auditory periphery. The impulse trains accurately rep-
resent the time intervals between firings because auditory nerve firings tend to be phase-
locked or synchronized to the stimulating waveforms (Figure 1) [11][13]. The difference
between the temporal information from the two ears is used for sound localization [2]. It is
known that humans can perceive an ITD variation of about 10 µs at 900 Hz, corresponding
to a minimum audible angle (MAA) of about [11][10].

A nerve impulse is an electrical excitation called an action potential and its duration is
over 1 ms. Additional synaptic transmissions in the auditory system extend the duration of
the signal [1]. Thus the duration of an auditory firing is long compared with that of the ITD
perceived by humans. Such a long-duration signal is problematic for the minute temporal
information that should be transmitted and it may obscure temporal information. Although
impulses from the auditory nerves are in synchronization with a particular phase of the stim-
uli, it is known that impulses fluctuate slightly in time [6]. Again, this may obscure temporal
information. Given all these conditions, it is amazing that humans can perceive an ITD vari-
ation of about 10 µs.

In this study, the signals in the nervous system such as action potentials and synaptic
transmission, were modeled computationally and these models were used to detect ITDs.
Impulse trains, with fluctuation in time that simulate spikes in the auditory nerve fibers, were

Figure 1   Temporal information and impulse fluctuation.
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used as input data to the model. Then processes of sound localization with temporal redun-
dancy and impulse fluctuation were studied through this model.

2.    Representation of Signals

To represent the action potential computationally, we use Hodgkin–Huxley type equa-
tions [3] [14] [9].

(1)

Here, V(t) is the membrane potential at time t, Cm is the membrane capacitance, and Em is
the resting potential; ENa and EK are equilibrium potentials for sodium and potassium,
respectively; and g Na and g K are the conductances of sodium and potassium. The ion con-
ductances are 

(2)

where gn(t) indicates the conductance for ion n at time t, tn is the time of the most recent
onset of ion n conductance, τn is the time constant for the conductance, and an is the ampli-
tude constant related to the permeability of ion n. Then, the leakage conductance gL is repre-
sented by

(3)

where α is the coefficient for the relationship between the leakage conductance and the
membrane potential and aL is the maximum conductance.

Synaptic transmission is also represented by the same type of equations. Although apply-
ing these equations might not be accurate in this case [1], this is one way to model the tem-
poral redundancy of signals. The equations that describe the behavior of synaptic potentials,
(4) and (5), do not model the firing of the post-synaptic cell. These firing thresholds arede-
fined in equation (6) 

(4)

(5)

where V(t) is the postsynaptic potential at time t; Cm is the membrane capacitance; Em is the
resting potential; ENa and EK are the equilibrium potentials for sodium and potassium; and
GNa, GK, and gL are the postsynaptic conductances for sodium, potassium, and the leakage,
respectively. Again Gn(t) indicates the postsynaptic conductance of ion n at time t. tn is the
time of the most recent onset of ion n conductance. Τn is the time constant for the postsynap-
tic conductance, and An is the amplitude constant related to the permeability of ion n.

In this model — to represent the effects of other conductances such as early potassium
channels, voltage-gated calcium channels, and calcium-activated potassium channels — the
firing threshold level is varied according to Eq. (6), which translates the magnitude of the
grand postsynaptic potentials into the frequency of firing of action potentials [1]. 

(6)

Cm
dV t( )

dt
-------------- gNa V t( ) ENa–( ) gK V t( ) EK–( ) gL V t( ) Em–( )–––=

gn t( ) an t tn–( )e
t tn–( )– τn⁄

=

gL t( ) aL1 e
α V t( ) Em––

–=

Cm
dV t( )

dt
-------------- GNa V t( ) ENa–( ) GK V t( ) EK–( ) gL V t( ) Em–( )–––=

Gn t( ) An t tn–( )e
t tn–( )– T n⁄

=

V threshold t( ) β e
t tr–( )– τr τa+( )⁄

Ethreshold+⋅=
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where Vthreshold(t) indicates the threshold level at time t and tr is the time of the most recent
discharge. Ethreshold is the basis of threshold level in this function, τr is the time constant rep-
resenting the relative refractory period, and β is the amplitude constant. And to express
adaptation to a prolonged stimulation, τa is used

(7)

Adaptation related to the frequency of firing during a certain period of T (hundreds of
ms) is represented by extending the length of the relative refractory period τa of V(t), and γ is
the coefficient for the relationship between the permeability of potassium and the frequency
of firing. Hence, if

 for t-tr > absolute refractory period (8)

then the postsynaptic cell fires.
Simulations of these models are illustrated in Figure 2. Presynaptic action potentials are

shown in the top panel labeled ‘nerve 1’ and each action potential arriving at a synapse pro-
duces a postsynaptic potential (PSP) on the postsynaptic membrane of a cell, as shown in the
second panel down from the top. The other pair are shown in the third and fourth panels,
labeled ‘nerve.’ When both presynaptic nerves innervate the same cell, PSPs produced by
both nerves are summed to produce a larger PSP. While spatial summation combines the
effects of signals received at different sites on the membrane (at A in the bottom panel), tem-
poral summation combines the effects of signals received at different times (at B in the bot-
tom panel). The firing threshold level is illustrated by the dotted line in the bottom panel.

τa τmax 1 γ V threshold t( ) Ethreshold–( ) td
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Figure 2   Spatial summation (A) and temporal summation (B)
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When the summed PSP exceeds a given threshold level, an action potential is generated on
the postsynaptic cell. Then, these representations of the signals in the nervous system are
used to detect ITDs.

3.    Model Circuits For Detecting ITDs

3.1  Cross Correlation

The system for detecting ITDs exists in the medial superior olive (MSO), where the neu-
ral pathways from the left and right ears cross for the first time [17] [7]. The Jeffress model
is well known as a model for this detection [5]. It is represented as a circuit consisting of an
array of coincidence detectors and two nerve fibers from the left and right ears. The coinci-
dence detectors fire most often when impulses from both sides arrive simultaneously. The
model calculates ITDs with cross correlation between impulse trains coming from both sides
(Figure 3). When a sound source is placed in front of the face, the arrival times from the left
and right pathways are the same, because the lengths of time taken by the sound wave to get
to the ears and by the impulse trains to get to the circuit are equal. Thus, the center detector
in the circuit responds most strongly. The position of the responding detector varies as a
sound source moves.

   Because auditory nerve firings tend to be phase-locked to the stimulating waveforms,
impulse trains contain temporal information. A computational cross-correlation model like
the Jeffress model works well to detect ITDs using such impulse trains that synchronize with
a particular phase of stimuli. Cross correlation is represented by

(9)

In this equation, x and y are impulse trains from the right and left ears and τ is the time dif-
ference between the two signals. The cross-correlation model outputs the τ which gives the
maximum response. The cross correlation is usually implemented at discrete temporal inter-
vals. If the intervals between adjacent coincidence detectors become smaller, the model will
detect ITDs more accurately. Hence, the cross correlation model is a basic system for detect-
ing ITDs [18] [16].

Figure 3   A coincidence detector circuit.

Rxy τ( ) x t( )y t τ+( ) td
∞–

∞

∫=



K. Ito and M. Akagi / Model of Sound Localization                                             101        

3.2  Temporal Redundancy

In this study, features of the nervous system were used and the models of nerve impulses
and synaptic transmission were applied to a coincidence detector circuit. The duration of the
nerve impulse is over 1 millisecond and that of synaptic transmission ranges from several
milliseconds to hundreds of milliseconds.

Figure 4 shows two types of temporal transition of PSPs on two coincidence detectors,
corresponding to the detection of 0-µs and 20-µs ITDs. On the left side of Figure 4A, an
impulse from each side is applied to the circuit without any time difference. For a human to
perceive an ITD variation of about 10 µs as the MAA, it is best if the duration of PSP is
shorter than 10 µs (Figure 4A). Since impulses arrive at the 0-µs ITD detector at the same
time, two PSPs combine together and make a large potential. On the right side of Figure 4B,
the arrival times of impulses at the 20-µs ITD detector do not match, PSPs decline without
affecting each other. Thus, it is easy to distinguish the difference between the two detectors
and determine ITDs.

However, the duration of PSP by synaptic transmission is several milliseconds or more
(Figure 4B). At the 0-µs ITD detector, two long PSPs combine and give a large potential.
Likewise, at the 20-µs ITD detector, two long PSPs combine and give a large potential, even
though the arrival times of the two impulses do not match. This is because the temporal
interval between them is much smaller than the duration of PSPs. Thus, the duration of PSP
gives an ambiguous result that obscures minute information such as the temporal interval
between the arrival times of impulses.

Figure 5 shows the temporal transition of postsynaptic potentials on the coincidence
detector cells arranged along the azimuth (the axis of ITDs). An impulse from each side is

Figure 4   Temporal redundancy for short (A) and normal (B) PSPs.
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applied to the circuit without any time difference. The impulse from each ear stimulates
coincidence detectors sequentially from each side of the circuit and a small postsynaptic
potential is generated at every detector. When impulses from both sides meet at the middle
detector, the PSPs are summed and a large potential is generated. Then the impulses separate
and keep stimulating other detectors on the other side and summations of PSPs are generated
on both sides. The envelope with the maximum potential on every detector draws a peak on
the axis of ITDs. The peak looks very broad but should indicate the ITD.

 Although it is not certain that threshold levels on all detectors in the MSO are the same,
we assume that they are the same in this model. When the threshold level is set to the same
level as the peak of the potential envelope, its simulation is equivalent to calculating the
cross correlation because just one detector fires in this case (Figure 6).

Figure 5   Postsynaptic potentials in a coincidence detector circuit. This graph indicates the temporal transition
of PSPs in the model after an impulse is applied to each input of the circuit.

Figure 6   Threshold level at the peak of the potential envelope.
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Impulse trains firing in synchronization with a particular phase of a stimuli with a fre-
quency of 300 Hz and a 0.3-s duration with an interaural time difference of 100 µs are pro-
vided as input to the model. The upper panel in Figure 7 shows the period histogram of the
impulse train and the lower panel shows the spike histogram obtained by this simulation.
The spikes are concentrated at an ITD of 100 µs in azimuth.

3.3  Nonlinear Output Mechanism

However, it is difficult to set the threshold level precisely at the level of the peak of the
potential envelope. It is natural to set it to a level below the peak. In that case, all the detec-
tors whose potential exceeds the threshold level fire and a broad range of firings appear
along the azimuth (Figure 8). Accordingly, our model includes a nonlinear output mecha-
nism. 

Figure 9 shows the result of a simulation of the nonlinear output mechanism using the
same impulse trains as in Figure 7. The upper panel in Figure 9 shows the period histogram
of the impulse train and the lower panel shows the spike histogram obtained by this simula-
tion. The nonlinear output mechanism outputs spikes over a broad range along the axis of
ITD and the envelope of the spike histogram looks so square that it is difficult to determine
the ITD. Although this output mechanism seems inappropriate for detecting ITDs, the output
can be improved by using the variability of impulses on auditory nerve fibers.

3.4  Impulse Fluctuation

Auditory nerve fibers do not always fire in synchronization with the same phase of the
stimuli; impulse trains from the auditory nerves fluctuate slightly in time (Figure 1) [6].
Since our model uses impulse trains from the auditory peripheral model that fluctuate in
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Figure 7   Period histogram of the impulse train firing in synchronization with a certain phase of stimuli and
the spike histogram obtained by the simulation indicates the ITD (=100 µs) in azimuth.
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time [9], the model will be affected by the impulse fluctuation. For ITD detection by cross
correlation, or the threshold level at the peak of the potential envelope in a coincidence
detector circuit in particular, the fluctuation act like noise. Impulse trains having a character-
istic frequency of 300 Hz with a large fluctuation in time. duration of 0.3s and with a time
difference of 100 µs, are provided as input to the cross correlation model. The upper panel in
Figure 10 shows the period histogram of one of those impulse trains with a large fluctuation
and the lower panel shows the spike histogram obtained by this simulation. The spike histo-
gram has some peaks but they do not indicate the ITD. Thus, it is difficult to determine the
ITD. 

Figure 8   Threshold level below the peak of the potential envelope.
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Figure 9   Period histogram of the impulse train firing in synchronization with a certain phase of stimuli and
the spike histogram obtained by the nonlinear output mechanism (ITD =100 µs). The envelope of
the spike histogram looks so square that it is difficult to determine the ITD
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Therefore, since we have impulse trains with a large fluctuation in time as input to our
model, we set the firing threshold level below the peak of the potential envelope. Impulse
fluctuations affect the location where the peak of the potential envelope appears on a coinci-
dence detector circuit because the detector where impulses from both sides of the circuit
encounter each other changes based on the noise. The location of the peak of the potential
envelope varies and the firing range also shifts along the axis of ITD (Figure 11A). If the
threshold level is set to an appropriate level, the firing ranges will often overlap each other in
spite of the variation in peak location, and the detectors in the overlapping area will keep fir-
ing. Since impulse fluctuation of an auditory nerve fiber has a normal distribution, it is likely
that the actual ITD is included in the response curve.

If a spike histogram is drawn according to the variation in the firing range, it is found that
the number of spikes in the overlapping area is greater than in other areas (Figure11B). This
means that we use impulse trains fluctuating in time as input data improves the output of the
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Figure 10   Period histogram of the impulse train with a large fluctuation in time and the spike histogram
obtained by cross correlation (ITD =100 µs). The envelope of the spike histogram has several
peaks and it is difficult to determine the ITD.

Figure 11   Nonlinear output mechanism.
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model compared with using ones with no fluctuation, and the envelopes of spike histograms
output from the nonlinear output mechanism tend to have a peak that indicates the ITD or its
vicinity. Figure 12 shows the result of a simulation by the nonlinear output mechanism using
the same impulse trains as in Figure 10. The upper panel in Figure 12 shows the period his-
togram of the impulse train with a large fluctuation and the lower panel shows the spike his-
togram obtained by this simulation. The envelope of the spike histogram as a function of the
ITD is rising and beginning to form a peak. 

4.    Improving the Accuracy

4.1  Emphasizing

It is still difficult to determine the ITD using only one coincidence detector circuit. Actu-
ally, there are hundreds of detector circuits for each frequency in the MSO and outputs from
these circuits are integrated [2] [17]. Therefore, the model can emphasize the peak indicating
the ITD and achieve higher accuracy by having many circuits with different thresholds for
each frequency and by integrating all the outputs. To avoid a large increase in the amount of
calculation, we used multi-threshold paths for every coincidence detector instead of many
circuits. Then, the outputs from all the paths were integrated. This method can emphasize the
peaks of the potential to detect the ITD (Figure 13).

We used an inhibition-like model to determine the ITD more effectively. Since the coin-
cidence detector indicating the ITD tends to fire earlier than others in the circuit (Figure 14),
the inhibition suppresses the succeeding firings and thus emphasizes the initial firing.
Although there are reports about inhibition in the MSO [15] [3], this inhibition-like model is
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Figure 12   Period histogram of the impulse train with a large fluctuation in time and the spike histogram
obtained by the nonlinear output mechanism (ITD =100 µs). The envelope of the spike histogram
on the ITD rises.
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Figure 13    Multi-threshold model.

Figure 14   The detector indicating the ITD tends to fire earlier than others in the circuit.
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not based on physiological data. Note that this is another way to emphasize the peak and
suggests the possibility of a multi-threshold mechanism. Thus, our computational localiza-
tion model is constructed using models of action potentials and synaptic transmission, the
multi-threshold model, and the inhibition-like model. The sound localization model outputs
spikes. that indicate the best ITD. 

4.2  Simulation Results

Figure 15 shows an example of outputs from the coincidence detector circuit with the
multi-threshold and inhibition models. Impulse trains with a small fluctuation — having a
characteristic frequency of 300 Hz and about 10-ms duration, or five impulses — were used
as input data and the model output the postsynaptic potentials instead of spikes to show the
effects of the emphasis. Consequently, the potentials in the detectors indicating the ITD and
its vicinity were emphasized by the multi-threshold model and the inhibition-like model.

Next, we examined the potential of the auditory sound localization model to achieve
greater accuracy at detecting ITDs. Impulse trains having characteristic frequency of 300
Hz, 0.3-s duration and with a time difference of 100 µs were used as input to the model.
Each simulation used three types of impulse trains, which fired in synchronization with a
fixed phase of the stimuli, with small and large fluctuations in time. The impulse train with
large fluctuation mimics the phase locking of actual auditory nerves [9]. The results of the
simulations were as follows; The upper panel in Figure 16 shows the period histogram of the
impulse train firing in synchronization with a fixed phase of stimuli. The lower panel shows
the spike histogram that result from this simulation. The envelope of the spike histogram has
no peak and it is difficult to determine the ITD. 

Upper Layer

Figure 15   Outputs from the coincidence detector circuit to a upper layer. The potentials are summed by the
multi-threshold model and emphasized by the inhibition-like model.
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Impulse trains do not always keep firing in synchronization with a fixed phase of the
stimuli. The upper panel in Figure 17 shows the period histogram of the impulse train with a
small fluctuation in firing time. And the lower panel shows the spike histogram obtained by
this simulation. The spikes are distributed around ITD of 100 µs in azimuth. However, the
peak indicates the correct ITD.

The upper panel in Figure 18 shows the period histogram of the impulse train with a
large fluctuation in firing time. The lower panel shows the spike histogram obtained by this
simulation. Even though the spikes are distributed around ITD of 100 µs in azimuth and the
envelope is smooth, the peak indicates the correct ITD.

5.    Conclusions

A computational model of the auditory sound localization based on the interaural time
difference was presented. Nerve impulses and synaptic transmission in the nervous system
were modeled computationally and these models were applied to a coincidence detector cir-
cuit model to detect ITDs. Impulse trains with fluctuation in time were used as input data
and the effects of the impulse fluctuation on the detection of ITDs were investigated.

The simulation results show that the peak indicating the ITD in azimuth obviously sharp-
ens when impulses fluctuating in time are used as input. Using such impulse trains as input
data improves the output of the model compared with using ones having no fluctuation. This
suggests that impulse fluctuation can contribute to the detection of ITDs in the temporally
redundant process and the nonlinear output mechanism.
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the spike histogram obtained by the simulation (ITD =100 µs). The envelope of the spike histo-
gram has no peak and it is difficult to determine the ITD.
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Figure 17   Period histogram of the impulse train with a small fluctuation in time and the spike histogram
obtained by the simulation (ITD =100 µs). The peak of the envelope of the spike histogram indi-
cates the ITD.
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Figure 18   Period histogram of the impulse train with a large fluctuation in time and the spike histogram
obtained by the simulation (ITD =100 µs). The peak of the envelope of the spike histogram indi-
cates the ITD.
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1.    Introduction

The perceived direction of an auditory event is determined largely by the sound pressure
at the two ears (either humans or animals). Before sound waves, which are emitted by a
sound source, reach the ears of a listener, they are shadowed, diffracted and reflected by the
head, shoulders and pinna. This leads to directionally dependent changes of the spectrum at
the ears. The auditory system uses these specific distortions to estimate the direction of a
sound source. 

Usually the cues used by the auditory system are divided into cues which only need the
evaluation of the sound pressure at one ear (monaural cues) and cues, which need the evalu-
ation of the sound pressure of both ears (interaural cues). If a sound source is positioned out
of the median plane, the sound has to travel a shorter path to the ear close to the sound
source and a longer way to the opposite ear. This leads to interaural time differences in the
signals at the two ears. The shadowing of the head also attenuates the sound pressure at the
opposite ear so that the level at the two ears is different (interaural level differences, ILD). 

The directional dependent spectral distortion is described by the head-related transfer
function (HRTF). The HRTF is defined as the ratio of the Fourier transform of the sound
pressure at some position in the ear canal and the Fourier transform of the sound pressure in
the center of the coordinate system assuming that head and body are absent [4]. 

The ratio of the HRTF of the left and the right ear ( , ) for the same direction is
termed the interaural transfer function (ITF):

(1)

From the ITF the following interaural parameters can be derived. The interaural level differ-
ence (ILD, L∆) is

(2)

The interaural phase difference (IPD, φ∆) is

(3)

Hl Hr

ITF ω r ϕ ϑ, , ,( ) Pl ω r ϕ ϑ, , ,( )
Pr ω r ϕ ϑ, , ,( )
--------------------------------- Hl ω r ϕ ϑ, , ,( )

Hr ω r ϕ ϑ, , ,( )
----------------------------------= =

ILD ω r ϕ ϑ, , ,( ) 20 ITF ω r ϕ ϑ, , ,( )( )log=

IPD ω r ϕ ϑ, , ,( ) arc ITF ω r ϕ ϑ, , ,( )( )=



114 K. Hartung and S. J. Sterbing / Model of Sound Localization Using Neurophysiological Data                        

                             

The interaural phase delay (IPDT) is

(4)

The interaural group delay (IGDT) is

(5)

The IPDT is the time delay of the fine structure of the signals and is used for low frequencies
(f < 1.6 kHz). The IGDT is the time delay of the envelopes of the signals and is used for high
frequencies. This distinction reflects the fact that in humans and guinea pigs the fine struc-
ture of the signal is preserved (“phase-locking“) only for low frequencies. Above that fre-
quency limit only the envelope is coded. The monaural spectra at the ears are the sound
source spectrum multiplied by the HRTF of the left and right ear, which are calculated as fol-
lows:

(6)

(7)

For a long time it has been assumed that the interaural cues determine the lateral position
of the hearing event, while the monaural cues determine the perceived elevation and are nec-
essary for front–back disambiguation (overview in [4]). These assumptions were based on
psychoacoustic experiments restricted to the median plane or using headphone presenta-
tions. It was assumed that in the median plane the interaural cues were zero and only monau-
ral cues provided information about the direction (e.g. [2], overview in [4]). Searle et al. [15]
pointed out, that due to small asymmetries of head and pinna, even in the median plane ILD
and ITD are dependent on the elevation and that these cues can be used for localization.
Other experiments also give evidence that interaural cues might play a role for front–back
disambiguation and elevation estimation [17]. 

In the mammalian brain, the first station for processing interaural cues is found in the
superior olivary complex (SOC). For spatial hearing the medial superior olive (MSO) and
lateral superior olive (LSO), and medial nucleus of the trapezoid body are important (see
[10] for an overview) The MSO receives projections from the ipsi- and contralateral-ventral
cochlear nucleus. It is assumed that the MSO computes the interaural time differences by
some form of coincidence detection. A MSO neuron responds maximally if it is excited at
the same time by an ipsi- and contralateral excitation. The inputs of the individual neurons
are delayed by different lengths of fibers so that a neuron is tuned to a specific interaural
time difference. The LSO receives excitatory input from the ipsilateral ventral cochlear
nucleus and inhibitory input from the contralateral side via the ipsilateral medial nucleus of
the trapezoid body (MNTB). The LSO neurons show the strongest response, if the ipislateral
ear is excited by a higher sound pressure level or the signal reaches the ipsilateral ear earlier.
All nuclei of the brainstem project to the central nucleus of the inferior colliculus (ICc). The
sensitivity of ICc neurons to interaural time and level differences has been demonstrated by
a number of studies (overview [10]). In free-field experiments, some form of azimuth tuning
was found for 52% of the neurons (e.g. [1]). The representation of auditory space, which
means the representation of the lateral position and elevation tuning could not be demon-
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strated with free-field stimulation. Brugge and coworkers [6][7] used virtual sound sources
generated with non-individual HRTFs to investigate spatial tuning in the cat primary audi-
tory cortex (AI). They found relatively large receptive fields (half-field, full field). It is not
clear, whether this unspecific tuning can be explained by the use of non-individual HRTFs or
the ability of cats to use their pinnae actively.

There have been several proposals for the modeling of sound localization. Colburn [8]
gives an extensive overview of the different models. Most of the models discussed in Col-
burn’s chapter model only the lateralization (left/right dimension) of the hearing event and
are not able to explain elevation perception or front–back discrimination. The majority of the
models which try to explain elevation perception and front–back discrimination use only
interaural cues. Lim and Duda [12] and Martin [14], for example, use the ILD and ITD cues
in different frequency bands and compare the actual parameter vector with a set of a refer-
ence vectors, which stand for the specific combination of interaural parameters for a certain
direction of incidence. All studies show that the interaural cues provide sufficient cues for
the estimation of the elevation and front–back disambiguation. Brainard et al. [5] accounted
for the spatial tuning of neurons in the optic tectum of the barn owl by assuming that each
neuron is tuned to an optimal ILD and ITD in each frequency channel. The activity of the
neuron reaches a maximum, when the actual ILD and ITD match this optimal values. The
superposition of the activity of different frequency band can explain the shape of the recep-
tive fields. 

2.    Methods

Individual head-related transfer functions (HRTFs) of 19 guinea pigs were measured
with miniature microphones (Knowles 3046) placed at the entrance of the ear canal (for
details see [9]). The animals were placed in the center of an anechoic room with eleven loud-
speakers mounted on an arc ranging from -10˚ to 90˚. The ratio of the discrete Fourier trans-
form of the test noise (random phase noise, sampling rate 50 kHz, duration 4096 samples) of
the sounds measured at the two ears gives the transfer function. For each direction the ITD,
ILD and monaural directivity for third-octave wide bands were computed. Virtual spatial
sounds of different bandwidth (50-ms duration, 5-ms rise/fall time, 80 dB SPL) from 122
directions of the entire upper hemisphere were generated off-line and presented via individu-
ally calibrated earphones to the anesthetized (ketamine/thiazine) animal. Each position was
presented five times in pseudo-random order. The single-unit activity in the central nucleus
of the inferior colliculus was recorded with glass microelectrodes (impedance: 3-10 MΩ,
filled with 3M KCl). The spike number for each direction was tested for statistical significant
differences against the neighboring directions (Kruskal–Wallis Test). The characteristic fre-
quency of each neuron was determined using monaural pure tone stimulation.

3.    Results 

3.1  Analysis of the Head-Related Transfer Functions

The head-related transfer functions of the guinea pig show asymmetries between the left
and the right ear. These asymmetries are most prominent for high frequencies. Furthermore,
individual differences were found. The maximum ILD value was 15 dB, maximum ITD
value was 500 µs. The directivity for the left and right ear varies with frequency. The maxi-
mum is moving from lateral positions (Figure 1 a–d) at low frequencies to frontal directions
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at high frequencies (Figure 1 e–f).The ITD values are relatively independent of the fre-
quency (Figure 2). The maximum ILDs are increasing with frequency and show large differ-
ences in their spatial patterns between different frequency bands (e.g. Figure 3 d,e).   

3.2  Physiological Recordings

The central nucleus of the inferior colliculus receives, among others, binaural input from
the medial and the lateral superior olive (MSO, LSO) as well as monaural input from the
cochlear nucleus (mainly from the dorsal cochlear nucleus). Although little is known about
the interaction of these sources, this convergence may be used for the combination of binau-
ral and monaural spatial cues. The majority of neurons in the central nucleus of the inferior
colliculus are spatially tuned. This has been revealed by studies using virtual sound source
stimulation using white-noise signals. Single unit recordings in the midbrain of the guinea
pig showed that approximately 90% of the neurons responded selectively for certain sound
source directions [9] [16]. Front–rear discrimination could be shown on single neuron level. 

The primary goal of the present study was to investigate, whether the spatial tuning of the
ICc neurons can be explained by a superposition of physiological plausible representations
of these inputs mentioned above. For that reason virtual sound source signals (VSS) of dif-
ferent bandwidth (white noise, one octave, 1/3 octave) were used to stimulate 46 single neu-
rons. The center frequency of the one-octave and third-octave bands was chosen according
to the characteristic frequency of each neuron. The characteristic frequencies were measured
using pure tone stimulation of the contralateral ear. The majority (74%) of neurons, which
were tuned under the white-noise condition, were also tuned during stimulation with one-
octave VSS. The size of the receptive fields (RF) was constant with decreasing bandwidth
for 51% of the neurons, increased for 35%, decreased for 7%. Another 7% of the units
showed a change of RF position. For stimulation with third-octave bands only 31% of the
neurons responded spatial selective. This suggests that narrow-band stimuli cannot elicit
spatial tuning on neuronal level. Usually the spike rate increased for narrow-band stimuli. 

3.3  Model Structure

Figure 4 shows the structure of the model. The signals are spatially filtered by the HRTF
of the left and right ear. Within third-octave bands the ILD and ITD of each frequency band
are calculated. It is assumed, that within a frequency band different neurons are tuned to dif-
ferent ITD values. A neuron responds maximally if the presented ITD matches the preferred
ITDopt of the neuron. σ ITD determines the tuning sharpness and is the reciprocal of the neu-
ron’s characteristic frequency. The activity is modeled with

(8)

Figure 5 gives an example of the activity function for a low and a high frequency neuron.
The ILD-tuning is modeled by a similar equation using a value of 10 dB.

(9)

Monaural inputs also contribute to the binaural response. The activity of each of the
monaural inputs is proportional to the power in each 1/3 octave band at the left and right ear.
The values are scaled in such way, that for a constant level of the sound source the values are
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Figure 1   Directionality in different frequency bands (1/3 octave bandwidth); Panel a, b, c, d and f: left ear,
panel e: right ear; the lines mark iso-level contours. 
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Figure 2   Interaural time differences for different frequency bands.
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Figure 3   Interaural level differences for different frequency bands. Note that the iso-ILD contours are asym-
metrical with respect to the frontal plane.
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between 0 and 1 for all frequency bands and directions. The activity of the model neuron is
the weighted linear superposition of the activities of the above mentioned inputs. The model
neuron can receive maximally one ITD, one ILD and one monaural input from the left and
the right ear for each band, and integrates these inputs over the whole frequency range.

Figure 6 shows an example of the directional activity of a time and level difference pro-
cessor. These activities reflect the shape of the ILD and ITD contours of the HRTF. The ILD
activity shows prominent asymmetries between sound incidence from the frontal and rear
hemisphere, while the ITD activity is symmetric around the interaural axes. 

The weights of the different inputs are adjusted in order to minimize the squared error
between response of the model and the measured neuronal response over all directions (Fig-
ure 7). This least square problem is constrained by the condition, that the weights should not
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Figure 4   Structure of the model. HRTFl,r — head-related transfer functions, BP — Band-pass filter bank
ITD — time difference processors. ILD — level difference processors.

Figure 5   Two examples of ITD-tuning width.
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Figure 6   Examples of directional activity of ILD (a-e) and ITD (f) input. The inputs are optimally tuned to
sound incidence from 315˚ azimuth and 0˚ elevation. The gray scale bar on the right side of each
diagram indicates normalized activity. White areas mark directions with maximum activity.
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take any negative values. The optimal ITD (τ∆opt) and ILD (L∆opt) correspond to the values
at the preferred direction of the neuron which is modeled.

3.4  Results of Receptive Field Modeling 

The spatial activity of the model neurons fit the measured responses very well. Front-rear
discrimination and the selectivity for high elevation can be modeled. The distribution of the
input weights is different for all tested neurons. The modeled neurons have high weights for
the inputs close to the characteristic frequency (CF). The monaural inputs and ITD inputs
seem to be less important, but cannot be neglected. Figure 8 shows an example of the mea-
sured (a) and modeled (b) spatial response. This neuron responds maximally for sound from
315˚ azimuth and 0˚ elevation. Figure 9 shows the estimated inputs. This neuron has a CF of
approximately 500 Hz. One can see high weights close to CF for the ILD and monaural
inputs of the left ear. Additional ILD inputs from higher frequency bands (0.8, 1.3 and 8.2
kHz) and additional monaural inputs seem to resolve front/back ambiguities. Figure 8c
shows summed interaural activity, which reveals clear preference for frontal directions. Fig-
ure 8(d) displays the summed activity of the interaural inputs alone, which is relatively
ambiguous in terms of front–back discrimination. In many cases it is observed, that in addi-
tion to the inputs close to CF further inputs from distant frequency bands have a significant
contribution to the output activity. These results are in accordance with the results of the
physiological experiments with narrow-band sound sources (1/3 octave, 1 octave). It can be
assumed, that the spatial tuning of ICc neurons requires the integration of monaural and
interaural cues over a wide frequency range. 

3.5  Localization Model

In order to test the efficiency of the representation, a localization model based on a popu-
lation of many single neurons was created (Figure 10). The localization model consists of
great number of model neurons, which are each tuned for different directions (resolution 5˚).

pre-
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Figure 7   Estimation of the weights. The optimal ITD and ILDs correspond to the best direction of the mea-
sured neuron. The weights are calculated using a constrained least-square approximation.
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Figure 8   a) neuronal response, b) response of the model, c) response of the model to monaural cues, d)
response of the model to interaural cues.
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b)

d)

c)



124 K. Hartung and S. J. Sterbing / Model of Sound Localization Using Neurophysiological Data                        

                             

The preprocessing and the representation of the ILDs and ITDs is the same as in the single
cell model. The robustness of the representation of the interaural parameters was tested by a
superposition of internal noise on the presented ILD (5 dB variance) and ITD (25µs vari-
ance) patterns.

A localization test in the horizontal plane using interaural level and time difference cues
derived from a catalogue of human HRTF gave the following results: for all directions,
except directly on or close to the median plane, the estimated direction matched the pre-
sented direction (Figure 11, upper row). The model responses showed more front–back than
back–front confusions (Figure 11, lower row)

4.    Discussion

The model simulations confirm that the interaural parameters allow a robust estimation
of the direction of incidence. In contrast to the parametric models of Janko et al. [11], Lim
and Duda [12], or Backman and Karjalainen [3], our approach allows a representation of
concurrent, but spectrally non-overlapping sound sources. The results of the narrow-band
experiments and the model simulations provide evidence for the assumption that the spatial
tuning of a single neuron in the ICc requires the integration over non-adjacent bands in a rel-
atively wide frequency range. This is different than the findings of Brainard and coworkers
[5]. The authors modeled the spatial tuning of the neurons in the optic tectum of the barn owl
and found that the shape of the spatial receptive fields could be explained by the superposi-
tion of the activity of ILD and ITD processors of adjacent frequency bands. They used
slightly different activation functions for the interaural cues and did not consider monaural
cues. Front–back discrimination was not tested in this study, because the presented direc-
tions were restricted to the frontal hemisphere. Our results suggest, that the processing in the
ICc of the guinea pig is different to the processing in the optic tectum of the barn owl. It
seems that in the ICc different cues are integrated in a very specific manner, which might be
more robust against distractors and can explain spatial front–back discrimination. The distri-

Figure 9   Estimates of the weights for each input. LR — monaural spectrum right ear, LL — monaural spec-
trum left ear, ITD — interaural time difference, ILD — interaural level difference.
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bution of the estimated input weights is in agreement with the results of the narrow-band
experiments described above and anatomical studies [13]. It should be remarked, that these
input weights are only estimates of the real inputs. Further experiments will test the esti-
mates during electrophysiological experiments.

5.    Summary

The vast majority of neurons in the central nucleus of the inferior colliculus (auditory
midbrain) are spatially tuned, which has been revealed by electrophysiological studies using
broadband virtual sound sources for stimulation. Based on the individual head-related trans-
fer functions of each animal the interaural level differences (ILD), interaural time differ-
ences (ITD) and the monaural directivity were calculated in 1/3-octave bands for the upper
hemisphere. It was assumed, that the neurons received input from ILD and ITD processors
and from monaural pathways. The relative weights of these 72 inputs were estimated by a
least-squares approximation of the neuronal response. The modeled responses were in good
agreement with the measured responses. The weights were different for each of the tested
neurons. High weights were found for cues close to the characteristic frequency of the neu-
rons. Based on this single-neuron model a localization model using a population of neurons
which were tuned to different directions was tested in a localization task. The model allowed
a robust estimation of the direction of the sound source. 

 Acknowledgments

This work was supported by DFG grant Ho 450/23-1-347.

References

[1] Aitkin, L. and Gates, S. P. “Responses of neurons in inferior colliculus to variations in sound-source azi-
muth.” J. Neurophysiol. 52: 1–15, 1984.

[2] Asano, F., Suzuki, Y. and Sone, T. “Role of spectral cues in median plane localization.” J. Acoust. Soc.
Am. 88: 159–168, 1990.

[3] Backman, J. and Karjalainen, M. “Modeling of human direction and spatial hearing using neural net-
works.” Proc. ICASSP-95, 1995.

[4] Blauert, J. Spatial Hearing — The Psychophysics of Human Sound Localization. Cambridge, MA: MIT
Press, 1997.

[5] Brainard, M., Knudsen, E. and Esterly, S. “Neural deviation of sound source location: Resolution of spa-
tial ambiguities in binaural cues.” J. Acoust. Soc. Am. 91: 1015–1027, 1992.

[6] Brugge, J., Reale, R. and Hind, J. “The structure of spatial receptive fields of neurons in primary auditory
cortex of the cat.” J. Neurosci. 16: 4420–4437,1996.

[7] Chen, J., Wu, Z. and Reale, R. “Applications of least-squares FIR filters to virtual acoustic space.” Hear.
Res. 80: 153–166, 1994.

[8] Colburn, H. S. “Computational models of binaural processing.” In Auditory Computation, H. Hawkins, T.
McMullen, A. N. Popper and R. R. Fay (eds.), Springer: New York, pp. 332–400, 1995.

[9] Hartung, K. and Sterbing, S. J. “Generation of virtual sound sources for the electrophysiological charac-
terization of auditory spatial tuning in the guinea pig.” In Acoustical Signal Processing in the Central
Auditory System, J. Syka (ed.), New York: Plenum Press, pp. 408–412, 1997.

[10] Irvine, D. R. F. “Physiology of the auditory brainstem.” In The Mammalian Auditory Pathway: Neuro-
physiology, A. N. Popper and R. R. Fay (eds.), New York: Springer, pp.153–231, 1992.

[11] Janko, J., Anderson, T. and Gilkey, R. H. “Using neural networks to evaluate the viability of monaural and
interaural cues for sound localization.” In Binaural and Spatial Hearing in Real and Virtual Environ-
ments, R. H. Gilkey and T. R. Anderson (eds.). Hillsdale, NJ: Lawrence Erlbaum, pp. 557–570, 1997. 

[12] Lim, C. and Duda, R. “Estimating the azimuth and elevation of a sound source from the output of a
cochlear model.” IEEE-Asilomar Conf. Signals, Systems, Computers, pp. 399–403, 1995.



126 K. Hartung and S. J. Sterbing / Model of Sound Localization Using Neurophysiological Data                        

                             

[13] Malmierca, M. S., Rees, A., LeBeau, F. E. and Bjaalie J. G. “Laminar organization of frequency-defined
local axons within and between the inferior colliculi of the guinea pig.” J. Comp. Neurol. 357: 124–144,
1995.

[14] Martin, K. A Computational Model of Spatial Hearing. Master Thesis. Massachusetts Institute of Tech-
nology, 1995.

[15] Searle, C., Braida, L., Cuddy, D. and David, M. “Binaural pinna disparity: Another localization cue.” J.
Acoust. Soc. Am. 57: 448–455, 1975.

[16] Sterbing, S., Hartung, K., Hoffmann, K.-P. and Blauert, J. “Auditory spatial tuning of inferior colliculus
neurons in the guinea pig.” Soc. Neurosci. Abstr. 350.7, 1996

[17] Wightman, F. L. and Kistler D. J. “Factors affecting the relative salience of sound localization cues.” In
Binaural and Spatial Hearing in Real and Virtual Environments, R. H. Gilkey and T. R. Anderson (eds.)
Hillsdale, NJ: Lawrence Erlbaum pp. 1–24, 1997.



 

                             

THE BAT AS A COMPUTATIONAL SYSTEM



 

                             



Computational Models of Auditory Function 129
S. Greenberg and M. Slaney (eds.)
IOS Press, 2001

THE BAT AS A COMPUTATIONAL SYSTEM

Steven Greenberg

International Computer Science Institute
1947 Center Street, Berkeley, CA 94704, USA

In German, the bat is known as “Die Fledermaus,” or the “flying mouse.” There is some
kernel of truth to the name, as bats are, like mice, mammals, and are also capable of scam-
pering quite swiftly in pursuit of their coming meal. But bats differ from mice in the sorts of
auditory specializations used to navigate through the world. In contrast to other terrestrial
mammals, bats rely heavily on acoustics to maneuver around, using the ear in a manner anal-
ogous to the way vision is used by most other species. Because of this extreme behavioral
reliance on audition, bats provide a unique animal model with which to test the relation
between neuronal function and sound localization.

Many species of bat use a sonar-like system for locating and characterizing objects dur-
ing the course of flight. A brief (< 2 ms), high-frequency (30–100 kHz) pulse is emitted sev-
eral times per second during flight, particularly around dusk when bats commonly feed on
moths and other flying insects [3]. When the pulse strikes an object, a portion of the energy
is reflected back to the bat. From such parameters as the acoustic time delay and Doppler-
shifted spectrum the bat can deduce the object’s distance, size and trajectory. Such informa-
tion can guide the bat’s flight in pursuit of a prospective meal or help avoid a collision with
foliage and other stationary objects (cf. [2] for a relatively up-to-date source of information
pertaining to the hearing of bats).

The two chapters in this section describe specific auditory adaptations used to guide the
bat’s flight.

Wotton and colleagues investigate the temporal and spectral cues used by echo-locating
bats for computing the elevation of an object in space. Some of the cues, principally those
based on deep notches in the frequency spectrum (which are largely a function of pinna
reflections), are similar to those used by other mammals (cf. [1]) (including humans, cf. [5]).
Other cues, based on µs-time jitter in the acoustic signal, may be unique to bats. It is likely
that both timing and spectral cues are used in tandem during flight.

Müller and Schnitzler view the bat echo-location system as analogous to optic flow. The
latter is a conceptual framework used to quantitatively describe the set of cues and informa-
tion available to the organism for visual navigation (cf. [4]). One such example is the array
of visual cues associated with driving a car. What distinguishes optic flow from conventional
visual information processing is the importance of time in continually updating sensory
cues. This is essentially a four-dimensional space (where time is the fourth dimension) and
therefore a non-trivial one to model.

The authors make a preliminary effort to model the acoustic analog of optic flow using
principally temporal cues partitioned into narrow-band spectral channels (analogous to the
information available to the bat). In order to constrain the problem to tractable limits, eleva-
tion is neglected. They consider amplitude and frequency modulation cues to be of primary
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importance and propose a neural circuit for extracting such cues. Clearly, the problem of
acoustic flow is both an important and challenging one to model but will require a consider-
able amount of additional research over the coming years in order to provide the sort of com-
putational methods required to predict the bat’s behavior under a wide range of conditions.

The papers in this section provide two different approaches to modeling the bat auditory
system. Wotton and colleagues take a relatively traditional approach in their search for time-
frequency cues associated with a single component of bat flight navigation, namely compu-
tation of acoustic-object elevation. They perform controlled behavioral experiments and
deduce the relevant cues from the performance limitations.

In contrast, Müller and Schnitzler attempt to model future directions in bat research, as
the amount of empirical data currently available to delineate a detailed model of acoustic
flow is strictly limited. Current computational methods may not quite measure up to the task
of simulating the types of neuronal processing responsible for processing and interpreting
the vast array of sensory cues involved in acoustic flow.

Together, the two chapters provide a representative sample of current research using
quantitative approaches to study the bat auditory system. 
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1.    Introduction

Mammalian pinnae act as spatially dependent filters for incoming sound (e.g. human —
[22][29][30][31][40][41]; cat — [24][26]; ferret — [5]; bats – [9][42]) and the information
produced by this filtering is used (at least by humans) to localize the elevation of sound
sources [19][40]. The acoustic signal can, in principle, be described using either time or fre-
quency parameters. Either representation could convey the information required for accurate
sound localization. 

The first detailed study of external-ear cues was based on a time-domain representation
of pinna reverberations [1][2] and a number of subsequent analyses have adhered to this
approach [6][16][45]. Impulse responses of human [16] and bat [42] external ears vary sys-
tematically with sound-source position, and the number and timing of reflected components
in the sound reaching the eardrum could provide cues for sound location.

Most studies of the spatial-filtering properties of the external ear have represented local-
ization cues as systematic spectral changes in the acoustic transfer function (measured at the
eardrum) with changes in sound-source position [40]. The particular features of the sound
spectrum responsible for providing mammalian vertical information are subject to contro-
versy. Some authors stress the importance of spectral peaks [3][17], while others view spec-
tral notches as significant [4][15][26]. Some authors treat all spectral changes as equally
important [40][22].

Spatial information can be described as events in the time waveform or changes in spec-
tral magnitude. However, the way in which the brain encodes localization cues is not known.
Frequency-based descriptions have been more commonly used because the auditory system
is organized in a tonotopic fashion. Neurons are tuned to different frequencies and thus are
able to represent spectral notches and peaks. The cochlea extracts the locations of spectral
notches and peaks from the amount of excitation occurring at different frequencies and the
neural activity at virtually all levels of the auditory system mirrors the spectrum of the
acoustic signal. However, this does not necessarily mean that the distribution of neural activ-
ity across tuned frequencies is the representation of elevation. At some stage of processing it
seems likely that a representation of elevation in spatial coordinates emerges and it is possi-
ble that the auditory system’s peripheral frequency representation of peaks and notches
could easily be transformed into a time-domain metric. 

If the coding at the periphery is spectral, as is generally thought, then how might these
cues be interpreted and utilized? In order to address these questions we need to determine
the spectra received at the eardrum and then conduct behavioral experiments that reveal how
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the cues may be processed. Echolocating bats depend entirely on the auditory system to
localize targets and thus make an ideal model animal for the study of sound localization. The
potential spectral cues received by an echolocating bat, as well as two relevant behavioral
experiments, are presented in this chapter. Bats perform either spectral-discrimination tasks
or temporal-discrimination tasks while the position of the sound source is varied. In both
cases discrimination performance varies with loudspeaker elevation in a manner that con-
forms to predictions based on the spectra of the external-ear transfer functions. 

2.    Spectral Cues for Bats

2.1  Combination Spectra

Interpreting changes in spectra is potentially problematic for many animals because the
source spectrum is usually unknown [21][41]. However, echolocating animals emit a sound
that probes the environment and returns as an echo; thus, both the original source spectrum
and the changes in the spectrum are known. For example, the big brown bat, Eptesicus fus-
cus, emits broadband, frequency-modulated (FM) echolocation signals and uses information
contained within the echoes to find insects. Echolocating bats acquire information that is a
combination of the properties of the sound they emit and the sound received at the eardrum.
The external ears of bats impose spatially dependent spectral cues on the echoes [8][10]
[11][18][25] [42; cf. Figure 1]. The signal emitted by bats also has directional properties
[12][13][14][28] and therefore must be considered in determining the directional informa-
tion available. Potential localization cues are contained in the combination spectra produced
by convolving the magnitude spectra of the emission and the external ear transfer functions.
Changes in sound source position result in systematic spectral changes in the combination
spectra [43: cf. Figure 1].

The left panel of Figure 1 clearly shows a notch (local minimum) in the magnitude spec-
tra of the external ear transfer functions, which decreases systematically in center frequency
(from about 50 kHz to 30 kHz) with decreases in elevation. This notch is referred to as the
“primary” notch. A prominent peak (local maximum) between about 60 and 70 kHz,
(referred to as the “main” peak hereafter) is visible for the higher elevations. Both the pri-
mary notch and main peak are present for a restricted range of elevations. The right panel of
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Figure 1   The magnitude spectra of the transfer functions from one cadaver ear of Eptesicus are shown in the
left panel for seven different sound-source elevations (+30° to -30°) at 0° azimuth [42]. The right
panel shows the echolocation combination magnitude spectra created by convolving these ear func-
tions with emission spectra recorded at the same locations [43]. 
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Figure 1 shows that the primary notch and main peak have been maintained in the combina-
tion spectra. The signal received by the bat has elevation-dependent notches and peaks that
could provide cues for localization.

2.2  Spectral Cue Enhancement

Incorporating emission information into the spectra received by the bat may improve
localization because the peak and notch information appear to be enhanced in the combina-
tion spectra (Figure 2). For all three examples shown in Figure 2, there is a large difference
between the spectra in the range of 45 to 55 kHz, with the magnitude of the echolocation
combination dropping sharply at ca. 50 kHz. As a consequence, in the combination condi-
tion the intensity difference between this frequency region and the main peak is greater and
the rate of change in magnitude is increased. The contrast between the primary notch and the
surrounding frequencies is enhanced by the sharpening of small, adjacent peaks on either
side of the notch.

In echolocation, combination changes in magnitude created by the external ear are
imposed on an FM emission. Rapid changes in level created by steep gradients between
peaks and notches are imposed on the temporal structure of the emission. The ability of
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Figure 2   The magnitude spectra of the echolocation combination compared to the magnitude spectra of the
ear. To facilitate direct comparison, 60 dB was added to the ear functions at elevations +20° and 0°
and 65 dB was added to the function at -20° [43].
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humans to detect glides in frequency or amplitude is very similar, but thresholds tend to be
smaller when both types of glides are combined [7][23]. It is possible that the combination
of amplitude-modulated and frequency-modulated signals produced in the echolocation
combination improve the detectability of the spectral cues. 

3.    Spectral Discrimination

 Behavioral experiments are necessary to reveal the influence of external-ear filtering on
the perception and representation of spatial information. Notch information, which has been
shown to influence human spatial perception [4][15] and which appears to be important for
cat sound localization [26], may also serve as a cue for vertical localization for bats. The
echolocation combination spectra of Eptesicus contain a primary spectral notch that
decreases in center frequency as the elevation of the sound source is decreased. This primary
notch is an obvious feature in these transfer functions (the depth usually is 15-20 dB) and
appears to provide information about the elevation of a sound source located near and below
the horizon [43]. Distortion of the tragus of Eptesicus causes a disruption of the bat’s vertical
angle discrimination [20] and disrupts the systematic changes in primary notch information
[42] [43]. 

A behavioral experiment was designed to examine the influence of sound-source location
on the discrimination of spectral notches by bats [43]. Under free-field conditions an echolo-
cating bat broadcasts a sound which it receives several milliseconds later as an echo from a
nearby object. If a sound similar in spectral composition and FM structure to the bat’s broad-
cast is delivered at a predetermined delay then the bat seems to accept this as an “echo” and
perceives a “phantom” target [32][33]. Bats were trained to discriminate, in a two-alterna-
tive, forced-choice paradigm (2AFC) between two computer-synthesized sounds, one with a
spectral notch and the other without. The external ear of the bat introduced a spectral notch
in both of these signals in addition to the synthesized notch. Effectively, the bats were dis-
criminating between a signal with two notches (one synthesized and the other introduced by
the ear) and a signal with only one notch (introduced by the ear). The vertical location of the
loudspeakers playing the sounds was changed daily, shifting the frequency of the notch
introduced by the ear. At one particular loudspeaker position the external ear notch should
coincide in frequency with the synthesized notch; then both signals would each contain a
spectral notch at the same frequency. The notch discrimination task should be difficult for
the bat to perform at that loudspeaker location. When the sound source is at any other loca-
tion the bat should be able to perform the discrimination because the synthesized and exter-
nal ear notches will be at different frequencies.

Changing the frequency of the synthesized notch should change the vertical location at
which the synthesized and ear notches coincide. A decrease in the frequency of the synthe-
sized notch should result in a decrease in the elevation of the loudspeaker position at which
the task was difficult. The bats’ performance followed this prediction based on the external -
ear transfer-function information. A decrease in the frequency of the synthesized notch
resulted in a decrease in the loudspeaker position that caused confusion for the bats. Figure 3
shows that for each sound source elevation there is only one frequency notch that produces
below-threshold (75% correct) performance. The frequency notch that was poorly discrimi-
nated systematically decreased as the sound source elevation decreased [43].

The no-notch and the synthesized notch signals are represented in the central auditory
pathway by different excitation patterns of frequency-tuned neurons and thus the bat can dis-
tinguish between them. Changing the elevation of the sound source alters the bats’ discrimi-
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nation because the two signals have virtually indistinguishable patterns of excitation at one
sound source location. The signals the bat receives have two sources of spectral
information — the synthesized spectra and the spectra introduced by the ear. The bat is
apparently unable to separate these two independent sources of information and therefore
the discrimination is affected.

4.    Temporal Discrimination

4.1  Jitter Experiment

An experiment paradigm that examines the perception of very small differences in the
delay of echoes has revealed the remarkable temporal acuity of Eptesicus [33][34][35][37].
In this “jitter paradigm” bats are trained in a 2AFC task to discriminate between two stimuli
[33]. The unrewarded stimulus is a signal delivered to the bat at a fixed delay in response to
an echolocation emission. The rewarded stimulus is a signal at one of two different delays
and these alternate with each emission (jittered signal), the difference between these two
delays is varied over a set of trials.

Changing the elevation of the sound source was the manipulation for this particular
experiment. The usual loudspeaker position for this experiment was designated 0°, and the
position of both loudspeakers was changed by either 15° above, or 15° below the usual posi-
tion. Behavioral results of one bat are displayed as the percentage of errors at each delay dif-
ference in Figure 4A. The error curves are reflected about the zero-delay difference.

For all loudspeaker elevations there is a peak in the error at zero-delay difference because
the two signals are indistinguishable. There is also a side peak of errors occurring at a differ-
ent delay for each loudspeaker location. The error side peak for this bat at the 0° elevation
condition occurs at about 35 µs, and this performance curve has a characteristic shape (with
a side peak typically between 30 to 35 µs) that resembles the cross-correlation function of
the emission [33] [35] [37].

In the time-domain representation the impulse response shows the reverberation created
within the external ear by the multiple sound paths to the eardrum. The impulse has a peak
corresponding to the arrival of the incident sound by the most direct path followed by one or
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more delayed versions of the incident sound that reflect from different surfaces of the exter-
nal ear. (In the frequency domain spectral notches are created from an interference pattern
associated with the overlap of signals at a time separation indicated by the impulse
response). The time separation of the primary and secondary impulses is determined by the
elevation of the sound source [1]. In Eptesicus the time separation between the primary and
secondary impulses increases smoothly from ca. 25 µs to ca. 40 µs as the vertical angle falls
from +15° to - 40° (measured with 0° at the eye-nostril plane) [42]. 

The behavioral experiment was conducted on a sloped platform and the loudspeaker
location, designated 0°, was actually about -10° relative to the eye-nostril plane. The time
separation of the two impulse peaks for the external ear filtering at this elevation is about 30
to 35 µs. If the external ear and the emission signal share the same properties described by
the impulse responses (or the corresponding spectra) then perceptual effects attributed to the
emission signal may actually be due to the external ear or to a combination of emission and
ear. If the external ear’s reverberation time contributes to the jitter discrimination curve the
side peak should either shift to an earlier delay of approximately 25 to 30 µs for the loud-
speaker position designated +15° (+5° relative to the eye-nostril plane), or shift to a later
delay of approximately 35 to 40 µs for a loudspeaker position designated -15° (-25° relative
to the eye-nostril plane). Figure 4A shows that this prediction was borne out. In the behav-
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ioral function, the delay of the side peak relative to the main peak corresponds to the delay
of the external ear reverberation, and this shift is in the appropriate direction when the eleva-
tion of the loudspeaker is changed.

4.2  Spectral Conversion

Each behavioral function in Figure 4A is equivalent to the impulse response of the bat’s
performance. To view the behavior in the frequency domain, the error curves have been con-
verted into a spectral representation. Each panel in Figure 4B displays the amplitude spectra
generated for a loudspeaker elevation using the error curves as the time signal. Broad spec-
tral notches are visible in each function. The center frequency of the first notch changes from
ca. 50 kHz to ca. 35 kHz as elevation decreases. 

One echolocation emission was introduced to obtain smoother spectra. An emission sig-
nal (2-ms duration) was aligned at each of the delays provided by the data points for the jitter
performance (Figure 4A), these signals were then added together to reconstruct spectra at
each loudspeaker location. The amplitude of the emission signal was weighted to be propor-
tional to the error performance for each delay value. The incident echo measured at 0° rela-
tive to the eye-nostril plane was subtracted from each function. The difference spectra are
shown in Figure 5 for each loudspeaker location. Each function has two spectral notches that
vary systematically in center frequency with elevation. The notch frequency decreases as the
elevation decreases. This spectral pattern corresponds to the filtering created by the bats’
external ear and is maintained in the echolocation combination (see Figure 1).
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5.    Conclusions

Previous studies have shown the importance of external ear filtering for locating the ele-
vation of sound sources [1][22][31][39]. Cues could take the form of elevation-dependent
spectral changes displayed in transfer functions or changes in the time separation of peaks in
the impulse responses. Models have focused on understanding mechanisms that encode
sound-source elevation along the frequency dimension in the central auditory system [22]
[39][40][3][15]. The notch/no-notch experiment showed that spectral changes imposed by
the external ear are important to bats in localizing the elevation of sounds. However, the jit-
ter paradigm reveals a similar influence of sound-source location on discrimination that is
based on the bat’s perception of time. This experiment suggests that once the initial coding is
parceled into parallel frequency channels the subsequent central auditory display of sound
elevation could be along temporal coordinates.

The results of the spectral discrimination experiment can be explained in terms of the
effects of elevation-dependent filtering of the external ear. Spectral notches created by the
external ear coincide with synthesized notches and make the spectral discrimination diffi-
cult. Because the spectral manipulation is sufficient to influence the bat’s performance it is
tempting to conclude that the processing is purely spectral, ignoring the reciprocal changes
in the temporal domain.

The jitter experiment is a first step in examining this temporal component in the repre-
sentation of elevation. The side-peak of errors occurs at delays that correspond to the delays
in the impulse response at the appropriate elevations. However, the reverberation delays dis-
played in the external ear impulse responses of Eptesicus are shorter than the integration
time for echo reception (300 to 350 µs) [36]. The bat would not receive these impulse peaks
as separate events, rather the echoes would arrive at slightly different, but overlapping times
and the bat would receive a single compound waveform. Spectral effects created from the
interference pattern of the overlapping echoes provide the only representation of the rever-
beration delays available to the bat. Although the jitter experiment is a temporal discrimina-
tion paradigm and the results mirror the impulse response predictions, the initial auditory
representation is apparently spectral.

Interference patterns are sculpted into echoes reflected from closely spaced multiple-
component objects and from the convolutions and ridges of the pinnae. The frequency of
notches and peaks is dependent upon the target’s shape and/or elevation and thus can provide
a signature for these features. Simmons and colleagues [37] presented compound echoes in a
jitter experiment to demonstrate that bats converted the spectral interference patterns of the
echo into an estimate of the time separation between echoes from individual target compo-
nents. Application of the jitter techniques to sound sources that change in elevation reveals
that the side peak in the jitter performance curves in Figure 4A behaves as though its loca-
tion registers the timing of the external ear reverberation. A spectral correlation and transfor-
mation model describes the computation for converting the spectral pattern due to ear
reverberations into echo arrival time [27].
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1.    Introduction

Biological sonar systems reside on organisms which are often endowed with remarkable
mobility. A typical scenario for sensing therefore includes relative motion between transduc-
ers and reflectors while the measurement is in progress. This introduces a time variance into
the sensory input, which is a mixed blessing; on the one hand, additional degrees of freedom
are introduced, which increase the number of signal parameters or measurements as well as
the amount of computation required to extract the desired information. On the other hand,
the ensemble of salient stimulus features may be enriched substantially by motion-induced
cues, which would not have been available otherwise.

In the study of visual perception the use of motion-generated cues has been extensively
pursued, developing it into a research area with an impressive outflow of insight sustained by
mature scientific theory and methodology. Particularly noteworthy are the advances in
understanding conceptual and computational aspects of the problem [8][6]. Optic flow is
defined as the projection of the three-dimensional field of relative velocities between
observer and points in space onto a two-dimensional image plane. It may be used to recover
the egomotion of the observer (e.g. [7]) as well as structural characteristics of the environ-
ment (e.g. [14]). Furthermore, a sensory variable critical to immediate control of action, the
“time-to-contact” (usually designated τ) can be computed directly from the expansion rate of
the optic flow field (e.g. [9]). First order estimates of time-to-contact provided in this way
may form the basis for an assortment of braking strategies [10].

Motion-dependence can be found in acoustic as well as in optic signal properties. For
instance, the readily perceived Doppler effect constitutes a genuinely motion-related prop-
erty, which, unlike optic flow, would be absent in a series of static snapshots taken at succes-
sive points on a trajectory. Therefore, looking for analogies in perceptual utilization of
motion-specific optic and acoustic cues seems obvious. Furthermore, the search for an
acoustic analog to optic flow as well as an auditory analog to perception of optic flow may
even offer the promise of a unified view of sensory system function.

2.    An Acoustic Analog To Optic Flow?

Any expectation of a tight one-to-one correspondence between acoustic and optic flow
and the related perceptual mechanisms may be dismissed readily as overly optimistic, since
obvious limitations to a hypothetical analogy can be derived from three lines of argument:

1) physical properties of light and sound
2) dimensionality of the sensor arrays
3) different behavioral salience of the vision and audition modalities 
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2.1  Physical Properties of Light and Sound

Although light and sound share a common wave nature, there is a radical difference in
wavelength: for visible light it is on the order of magnitude of 10-7 m, bat echolocation oper-
ates in the range 10-3–10-2 m and human hearing is sensitive to sound wavelengths of 10-2–10
m. Many structures which matter in the daily life of bats or humans are close to the wave-
length of sound but thousands of wavelengths across optically. Consequently, diffraction is
much more prominent in the formation of acoustic wave fields [11] and spatial resolution is
in general inferior to optical sensing. Thus, an eventual acoustic flow field evaluation will
have to be based on structural features that are not resolved as well as its optic counterpart.

2.2  Dimensionality of the Sensor Arrays

The auditory sensory epithelia do not represent projected spatial dimensions like the ret-
ina does, but form a map of signal frequency instead. The optic flow field, on the contrary, is
the projection of a three-dimensional velocity field onto the two spatial dimensions of the
retinal image. Since the spatial sampling by the mammalian hearing system is limited to two
points (one at each ear), a hypothetical acoustic analog to optic flow would have to include a
transformation of velocities in the “acoustic array” into non-spatial signal dimensions.

2.3  Different Behavioral Salience of the Sensory Modalities Vision and Audition

While vision as well as audition are conveying spatial percepts, in humans a general divi-
sion of labor between the two seems to exist. Vision plays the leading role in spatial percep-
tion and hearing serves primarily, but not exclusively, functions in the temporal domain, e.g.
alerting to approaches from outside the visual field [5]. The specific role of audition will
doubtlessly limit the applicability of acoustic flow concepts to human perception, but does
not apply to the situation in bats, where audition constitutes a sufficient spatial sense of its
own.

From the given restrictions it is evident that analogies of an eventual acoustic flow con-
cept to optic flow will be confined to a fairly abstract and generalized level. Bearing this pre-
caution in mind, some speculative analogs between optic and acoustic flow may be
formulated, examples of which are listed in Table 1.

3.    Hypothetical Flow Field Parameters in CF-Bats

The species of so-called cf-bats (cf is an abbreviation for “constant frequency”) emit
echolocation pulses dominated by prolonged (duration up to ≈100 ms), narrow-band signals
characterized by a constant carrier frequency and a shallow sloping envelope. Such narrow-
band signals are ill-suited for target localization based on a combination of binaural azimuth
measurements and time-of-flight based range estimates. Pulse trains are usually delivered at
a high duty cycle (up to ≈ 80%) and hence give rise to an almost continuous stream of ech-
oes as the bats are moving through their reflector-rich forest habitats. Taking into account the
peculiar signal design, the non-zero derivatives with respect to the trajectory of the carrier
frequency, induced by Doppler shifts, and envelope amplitude, caused by a time-varying
sound channel gain, constitute promising candidates for sensory variables conveying spatial
information. Here, we restrict ourselves to localization within a plane and express target
positions in Cartesian coordinates d, h (Figure 1).
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Following the approach of “τ-variables,” which specify time-to-contact [10], the propor-
tional changes defined as

; (1)

Table 1: Some speculative analogs between optic and acoustic flow. Abbreviations: ITD = interaural time 

difference, fe = emitted frequency, v speed of observer or target, c speed of sound, f observed frequency 

Optic Acoustic Information content

Local vs. global flow Doppler shift of some or (almost) all 
echoes

Object vs. egomotion

Expansion rate Changes in e.g. intensity, ITD, pitch,
perceived extent of one or more
sources

Time-to-contact

Focus of expansion 
occupied

Cone of high collision risk (static:
frequency band close to fe(1+2v/c),
dynamic: df/dt

Impending collision

Smooth velocity gra-
dient along the image 
of a surface

Shape of the spectral profile Surface slant

Discontinuities in 
flow

Tracking of individual echoes, audi-
tory streaming

Layout of scene, 
depth structure

 Figure 1 Cartoon illustrating the simplified scenario and the hypothetical flow field variables considered in
this study: Target positions d, h in a plane aligned with regard to the animal’s velocity vector  (left
graph) may eventually be recovered using the proportional changes in echo carrier frequency, Ψ,
and amplitude,  (right graph). If, in addition, a third dimension, z (height above ground), is
required, other information sources (e.g. the global spectral shape of noisy returns from the ground)
would have to be evaluated. 
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are considered (Figure 1). fd is the Doppler frequency and P the amplitude of the sound pres-
sure envelope. Usage of the ratios (Equation 1) is beneficial, because in a simplified world,
where targets are point scatters, wave fields have spherical geometry (with some superim-
posed directivity due to the sonar system’s transducers) and the Doppler effect follows the
approximate narrow-band model fd=2v/ccosϕ (ϕ being the target bearing), non-trivial con-
stants, like the target scattering coefficient, cancel.

4.    Characterizing Flow Fields

Acoustic flow fields for the variables Ψ and  are scalar fields, which may be rated in
terms of perceptual salience and estimation accuracy by the values of the variables them-
selves (Figure 2), the magnitude of the respective gradients (Figure 3), the angle subtended
by the gradient vectors of the two fields (Figure 4) and the number of solutions d, h obtained.
The fields depicted are given by

   [m-1] (2)

and

  [m-1] (3)

In Equation 3, ln is the natural logarithm, α(f) is the absorption coefficient (in dB/m) and
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 the joint directivity function of emitter and receiver. A detailed discussion
of these relationships is provided in [12]. The following aspects appear noteworthy:

All functions are bilateral symmetric around the h-axis (Figure 2, Figure 3 and Figure 4
are therefore restricted to the right-hand hemifield.) Consequently, target position estimates
based on Ψ and  display the same symmetry properties and require disambiguation. This
could be achieved either by means of other cues or by testing the updated estimates after a
tentative steering maneuver against the predictions from the previous set of estimates.

The indented shape of the isocontours in Figure 2 and Figure 3 is a consequence of the
assumed joint directivity of receiver and emitter Φ(d, h), which was modeled as a sum of
two Gaussians using data reported in [4]. As obvious from inspection of the isocontour-
shapes, multiple solutions (up to three per hemifield) for target positions will result in the
regions of the indentations. The restricted extent of these regions, however, renders these
effects a negligible nuisance.

For bats inspecting their environment on the wing the forward direction is expected to be
particularly salient, since eventual obstacles straight ahead would require immediate action.
It should be noted however, that the gradients for both flow variables (Figure 3) are not
favorable of a good resolution along the h-axis, although the gradients are orthogonal for
d = 0 (Figure 4).

Using the criteria briefly introduced here, the relative errors in measurements of Ψ and
 should be fairly small (on the order of a few percent) to allow crude localization [12].

Ultimately, the numbers given in Figure 2 and Figure 3 should be compared to the perceptual
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thresholds found in cf-bats in order to determine the precise localization accuracy that is
conveyed by these variables.

5.    Constraints On Extraction

5.1  Implementation Strategies

Obtaining estimates ,  for Ψ(t) and Θ(t) amounts to jointly estimating ampli-
tude and frequency modulations as well as the values of the corresponding carriers. There
are two possible implementation strategies for achieving this goal: a bank of matched filters
and a continuous, “single-track” estimator. A bank of matched filters tests multiple hypothe-
sis for the parameter value in parallel, whereas the “single-track estimator” directly trans-
forms the input signal into an estimate for the parameter of interest. Of course, each of these
two implementations could be supplemented with a conversion stage, which mimics the
other’s output. For instance, the map provided by the bank of feature detectors could be read
out, substituting map position with an estimated value of the parameter. Interpolation could
be included to smooth the resulting continuous estimate. Along the same line of argument,
the output of the continuous estimator could be passed through a quantizer, which converts
each interval of input values into the position of the respective thresholding element. The
difference between the two implementation strategies lies neither in the output format nor in
the basic underlying estimation theory, but in the design considerations for the actual imple-
mentation. The latter will be considered here.
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 Figure 4 Gradient directions for Ψ (black) and  (gray). The definition of the coordinates is provided in
Figure  1.
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Feature maps in the auditory system have been found in numerous experiments, this is
particularly true for the echolocation system of bats (see e.g. the title of [15] for an unequiv-
ocal statement regarding the significance of these findings). Since such maps would consti-
tute the native output format of a matched filter bank, assuming the latter to be the universal
neural estimator implementation is tempting. In modeling of visual perception a bank of
matched filters is a widely accepted approach (motion energy filters [1]), and is also corrob-
orated by experimental findings. The same approach has been suggested for modeling audi-
tory perception [18]. However, the continuous, single-track estimator can be found to be
present in the brain, too, particularly for the purpose of effective perception-action coupling
as for instance required in neural circuits controlling protective reflexes. Single-track estima-
tors may be favorable, when both the implementation of the estimator, as well as deriving a
motor-control signal from its native output format, is straightforward.

As stated above, the echoes uin(t) received in a scenario which includes egomotion, are
simultaneously modulated in amplitude a(t) and frequency Ω(t).

 (4)

The bandpass-filtered signal uout(t) (filtered with transfer function H(f)) is given by

 (5)

Under the narrow-band assumption the envelope is the product of the amplitude modula-
tion, a(t), and the magnitude transfer function . Measuring |uout(t)| in a single chan-
nel does not allow us to distinguish between amplitude and frequency modulation. A
straightforward approach a biological system might take is to estimate the carrier frequency
as the moment of the excitation pattern and use this estimate to correct for the magnitude
transfer function of the filter. The separation of the two forms of modulation makes a 2-
dimensional matched filter superfluous and there is no need to maintain a separate template
for each combination of amplitude and frequency modulation. Thus, a simple single-track
estimator is given preference as a more parsimonious hypothesis.

Utilization of the flow parameters described here is entirely hypothetical and so is any
proposed neural substrate. The sole purpose of the processing scheme shown in Figure 5 is
to demonstrate that the outlined estimation procedure may be readily reconciled with the
basic principles of neural function. The schematic assumes analog waveforms to be decoded
from the spike train of a single neuron, with synapses acting as reconstruction filters [2]. If a
population code was to be assumed instead, each neuron-symbol would have to be replaced
with an ensemble of neurons, leaving the rationale of the diagram unchanged. Computing
the first moment calls for a neural implementation of the expression

 (6)

where xn is the excitation amplitude of the n-th bandpass channel and fn its center frequency.
The denominator in Equation 6 could be computed by a neuron, which sums all its inputs
with unity weight. In order to obtain the numerator, synaptic weights are set to represent the
center frequency of the presynaptic bandpass channel. Thus, the output of this neuron repre-
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sents an estimate of , the carrier frequency of the input signal, without any need for the
physical units of the synaptic strengths to be those of a frequency. Divisions (like the one in
Equation 6) can easily be implemented neurally by a subtraction of log-compressed signals.
The logarithm only maintains the sign, but not the magnitude of the derivatives. This would
have to be taken into account, if further upstream an estimate for the derivative of the
uncompressed function is required. In this case a neuron with a transfer function, which is
exponential over a limited range of input values, is required, forming a compander together
with the compression stages. A neural implementation of a division is also needed to correct
for the influence of the channels’ transfer functions on the envelope amplitude (Figure 5).
This step requires a neural element, which computes the n-th transfer function Hn(f) at the
estimated carrier frequency . A parsimonious solution is to resort to the transfer func-
tion of the synapse over which  is fed back to the envelope-detected output of the
bandpass channels. Once the influence of the individual transfer functions has been cor-
rected for, envelope estimates can be collapsed across channels in order to reduce the vari-
ance (to the extent to which the channel outputs are independent). The concluding steps are
computation of the derivatives (e.g. by a neuron with a differentiator transfer function) and
formation of the ratio described in Equation (1) (another log-compression and subtraction).

5.2  Interferences and Demodulation Distortions

Even though the joint directivity of the emitter and receiver of cf-bats [4] limits the vol-
ume of the bats’ resolution cell (defined as the volume which contributes to the received
echo), the presence of more than one reflector within this cell can hardly be declared an
uncommon occurrence. The bandwidth of the auditory filters are in such a situation easily
permissive of overlapping auto-representations of the individual echoes. This leads to the
formation of oscillatory cross-terms (Figure 6) in the envelope-detected filter outputs 
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where y(t) is the analytic signal formed from the echo, ∆ωmn=ωm-ωn and ∆ϕmn=ϕm-ϕn are the
differences in frequency and phase, respectively and ancos(ωnt+ϕn) is the filter output of the
n-th input signal prior to demodulation. The oscillatory nature of the cross-terms is detri-
mental to the computation of derivatives, which will hardly reflect the changes in gain or
Doppler shift pertinent to the sound channel, when there is interference.

A fairly reasonable model of auditory demodulation is given by half-wave rectification
followed by low-pass filtering [16]. Such a demodulation procedure does not result in a
“clean” frequency shifting of the signal spectrum, if the input consists of several superposed
echoes. Therefore, the initial bandpass filtering stage is critical to reduction of both interfer-
ence and demodulation distortions. In case of the interference, the magnitude transfer func-
tions are clearly not narrow enough in order to provide an adequate remedy. Demodulation
distortions are easier to ameliorate than interferences [13]. Therefore, an additional filtering
stage, e.g. as discussed in [3], may be employed to separate at least the envelope of one
strong signal of interest from attenuated distractors.

6.    Conclusions

The potential existence of an auditory analog to visual flow field perception is an entic-
ing concept. However, analogies have to be confined to a somewhat abstract level, since
some important physical and perceptual aspects of the two phenomena differ fundamentally.
Echolocating animals, which can employ sonar as a sufficient spatial sense, constitute the
most promising candidates for utilization of such analogies.

The model system of cf-bat echolocation allows for the formulation of an operational
acoustic flow hypothesis. The resulting scalar fields for the flow variables proportional
change in Doppler shift, Ψ, and envelope amplitude  can be readily characterized for a
simplified acoustica scenario. The properties of these fields are found to be commensurate
with the requirements of at least crude localization within a plane. This may be sufficient to
meet the requirements of, for instance, obstacle avoidance, where conservative choice of
safety margins may compensate for a large estimator variance.
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Extraction of the hypothetical flow parameters directly from the signal is feasible by a
simple signal processing scheme. There is no need for a bank of matched filters containing a
template for every resolved combination of the two parameters. If transfer functions of con-
nections between neurons could be made use of, only a small number of neurons would be
needed in order to carry out the required transformations. A continuous estimate of the rele-
vant parameters obtained in this way should provide a convenient substrate for the genera-
tion of motor-control signals.

The auditory spectrogram in cf-bats, as represented by the available neurophysiological
data, is susceptible to the formation of cross-terms between multiple echoes. Although appli-
cation of additional smoothing low-pass filters is capable of providing a partial remedy, the
oscillatory nature of these cross-terms will degrade the usability of the flow parameters dis-
cussed. It is therefore hardly conceivable that acoustic flow could provide an analog to the
visual perception of a densely occupied large scale flow field. Coping with a few echoes
spaced favorably in frequency should be achievable, though. The latter scenario is also in
accordance with sonar in air, providing only a limited field of view, thereby windowing in on
a small illuminated volume.
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1.  Modeling Pitch

Why should we study pitch? Why have people paid so much attention to pitch over the
years? Most important to the answer, pitch is one of the most salient perceptions we have of
a sound. Pitch is “that attribute of auditory sensation in terms of which sounds may be
ordered on a musical scale” [1]. 

Pitch means different things to different people. The definition in the previous paragraph
most closely approximates how a musician defines pitch and is based on human perception
[11]. People who work with speech define pitch to be the frequency at which the human
glottis opens and closes during speech—a definition based on a production model of pitch.
Engineers often define pitch to be the fundamental frequency in a Fourier analysis. For sim-
ple sounds the pitch of a signal is well described by the glottis and the fundamental fre-
quency, but these physical measurements are only approximations to the “true” pitch. Thus,
we use the definition based on human perception [10].

Pitch is an interesting aspect of sound both because it is salient and because it has the
potential to tell us so much about how sound is processed by the brain. Most individuals can
make a reliable judgment about which of two sounds has the higher pitch. Thus, psycho-
acousticians use different kinds of sounds to probe the auditory system and tease out its
secrets. In the best experiments, sounds with a clear pitch difference might rule out one
approach and lend support to another 

At this time, models of pitch are commonly based on either spectral or temporal descrip-
tions of the sound. This distinction is hard to resolve because the two representations are
related in a linear system by a Fourier transform. By applying a simple linear transform, we
can make in one mathematical domain any decision that we can make in the other. Yet the
difference between the two approaches has a profound effect on the neural machinery
needed to perceive the auditory signal. I favor a model of pitch based on temporal process-
ing, but that preference is by no means universal. The auditory system is not a linear system,
so perhaps some combination of the two approaches is best [3], [7], [8]. 

2.  Spectral Pitch

We know that the cochlea disperses the frequencies of a sound so that different inner hair
cells respond most vigorously to different frequencies. Spectral models of pitch use this dis-
tributed representation, in which the firing rate of a neuron encodes the amplitude associated
with a specific frequency region, to form a rate profile describing the sound’s spectrum.
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Given the frequencies with the strongest response, there are computational models that will
give a pitch estimate that closely approximates human perception and performance [5].
(Cohen [5] is only the most recent work from this perspective; earlier work is cited in this
paper.)

The spectral models, which determine pitch by the frequencies present in the sound, are
easy to understand. They are most useful for accounting for the pitch of sounds that have
aurally resolved frequency components—i.e., those with component frequencies for which
the cochlea can distinguish clearly between adjacent partials. This is also the region where
the pitch percept is strongest [12].

3.  Temporal Pitch

Temporal models of pitch ignore the spectral profile in favor of the timing information in
auditory firings. The cochlea is not a perfect Fourier analyzer, yet throughout the auditory
system many neurons do an amazing job of preserving the temporal information. Thus, the
inner-hair cells that respond most vigorously to 1-kHz stimuli also tend to fire at the same
point in the input waveform. An ensemble of neurons will tend to fire at intervals of 1 ms
[13].

It is well established (for example, by Cariani [4]), that neural firings contain the tempo-
ral information that models can use to make pitch decisions that match those made by human
judgments. The temporal models of pitch look most promising when the sound has high har-
monics—that is, where the cochlea is no longer able to resolve the frequency components
[9]. Likewise, temporal models work well in many interesting cases where the detail and
robustness of the timing information are an advantage, such as double-vowel simulations of
the cocktail-party effect [2].

4.  Section Overview

The papers in this section discuss two aspects of pitch perception: dichotic pitch and neu-
ral machinery that estimates pitch.

Akeroyd and Summerfield describe an interesting problem that combines pitch and bin-
aural hearing: the dichotic-pitch problem. Most pitch sensations can be heard with either ear
alone or in stereo, but the pitch percept is independent of the perceived location of the sound.
To a first approximation, the machinery that humans use to estimate pitch and to localize the
sound are independent.

There are sounds that evoke a sense of pitch when played to the two ears concurrently,
yet fail to evoke one when played to only one ear. Somehow. the auditory system combines
the information presented to the two ears to derive a common pitch. The best known exam-
ple of such a sound is the Huggins pitch [6]. 

Akeroyd and Summerfield describe a model that predicts both the pitch and perceived
spectral location of a Huggins pitch signal. Their approach assumes that the sound is heard
by the two ears as two different auditory objects; the auditory system cannot analyze the per-
ception as though there were only a single pitch at a single location. Akeroyd and Summer-
field first use a correlogram to estimate the pitch and spatial location of the tonal signal, then
subtract the tonal sound’s effect from the correlogram before determining the location of the
noise percept. In effect, they separate the sound into distinct objects before they determine
the individual locations.

Cai, McGee, and Walsh describe a model that tests whether octopus cells in the cochlear
nucleus could be extracting the information needed to make a temporal-pitch judgement.
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Octopus cells, in particular, are often identified as potential temporal integrators because
they gather information from many different frequencies and their responses are aligned pre-
cisely in time. Could they comprise the machinery that converts temporal information into
pitch?

The Cai model uses input from a broad range of auditory-nerve fibers. The authors apply
the model to harmonic complexes, over a wide range of frequencies, then measure the over-
all response and compare it to that of humans. In only certain cases does the octopus-cell
response approximates human perception.

Computational models of pitch are not yet complete. These two works are good exam-
ples of current research.
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1.    Introduction

The Huggins pitch is the prototypical example of a dichotic pitch: a pitch that can only
be heard when a specially crafted, flat-spectrum noise is presented to both ears simulta-
neously. If only one ear (it does not matter which) is stimulated then just the “shshsh” of the
noise is heard, but if both ears are stimulated a faint tone is also heard against the back-
ground of noise. Although auditory scenes consisting of a tone and a noise are rare in every-
day life, a dichotic pitch is of interest because the percept of pitch is entirely due to binaural
analysis. Thus, an understanding of the perceptual characteristics of dichotic pitches — their
pitch, spatial position, and loudness — may illuminate the action of the binaural auditory
system. This chapter deals with the spatial position of the Huggins pitch. Current models of
spatial position can successfully account for many cases of single sounds (e.g., [24], 25],
[27]), but they fail with respect to the Huggins pitch because two sounds are heard simulta-
neously. This fundamental effect is accounted for in our model by separating the auditory
scene into two distinct objects, the Huggins pitch and the noise, before computing the spatial
position of each object. This new model is offered as an alternative to the only other model
of the spatial position of the Huggins pitch, the “central-spectrum model” (e.g., [21]).

Huggins created his pitch by presenting a white noise over headphones, but with one
channel passed through an allpass filter (Figure 1, left panel) [3], [14]. The filter did not
change the amplitude spectrum of the noise but introduced a progressive change in the phase
spectrum: 0 to 360˚ over a narrow band (ca. 60 Hz) of frequencies centered on 600 Hz (mid-
dle panel). This phase change created a progressive shift in interaural time delay (ITD) near
600 Hz because the other channel was unfiltered (right panel). The phase change could not
be detected monaurally because a phase-shifted white noise sounds identical to any other
white noise. However, the ITD shift can be detected by binaural analysis. The result is a per-
cept of a faint, 600-Hz tone amidst the noise. The term “Huggins pitch” refers to this tone
(the term “Huggins-pitch stimulus” refers to the entire acoustic stimulus as presented: i.e.,
the interaurally phase-shifted noise).

The Huggins pitch is heard within the head, as is usual with headphone-presented
sounds. Some listeners hear the pitch to the far left of the head while others hear it to the far
right. However, all listeners hear the background noise at the center of the head. Importantly,
the spatial position within the head (i.e., the lateral position) of the Huggins pitch can be var-
ied by manipulating the interaural configuration of the noise. For example, if either channel
is inverted, the Huggins pitch is heard near the center of the head and the background noise
is heard diffusely across the head. The perceived pitch is still 600 Hz; all that has changed is
its lateral position. Our discussion of lateralization will concentrate on these two variants of
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the Huggins pitch which, following standard binaural terminology, are termed an N0 Hug-
gins pitch and an Nπ Huggins pitch, respectively.

Raatgever, Bilsen and colleagues ([9], [20], [21], [22]) argued that their central-spectrum
model could account for the pitch and lateralization of most dichotic pitches, including the
Huggins pitch. Their model incorporated a Fourier transform to represent the initial fre-
quency analysis of the inner ear, thus providing much finer frequency selectivity than is
observed physiologically or psychophysically [17]. When implemented using a computa-
tional filterbank incorporating realistic frequency selectivity, however, the central-spectrum
model is inaccurate. Culling et al. ([5], [6]) demonstrated that it predicts the wrong pitch for
certain dichotic pitches and no pitch at all for others. Instead, Culling et al. showed that these
cases can be explained using an alternative framework: the “modified equalization–cancella-
tion” model [4]. This latter model correctly predicts the pitch of a range of dichotic pitches.
It can also account for the binaural masking level difference and the binaural intelligibility
level difference, as well as explain why listeners cannot group simultaneous sounds by com-
mon ITD but can group by common interaural decorrelation [26]. It does not, however, deal
with the lateralization of dichotic pitches. Thus, for the problem of explaining the lateraliza-
tion of a dichotic pitch the central-spectrum model is the only available account to date.
However, if the central-spectrum model is to be questioned, on the grounds that it fails to
correctly predict the perceived pitch of some dichotic pitches, then we are placed in the unat-
tractive situation of having no adequate theory of lateralization. The aim of the present work
is to explore a new approach to accounting for the lateralization for dichotic pitch.

In Section 2 we detail the resulting “reconstruction–comparison model” and show that it
can account for the lateral position of N0 and Nπ Huggins pitches. In Section 3 we briefly
describe the central-spectrum model. In Section 4 we illustrate the predictions of the two
models for Raatgever and Bilsen’s [21] experimental data concerning the effect of the ITD
of the background noise on the lateral position of the Huggins pitch. In Section 5.2 the mod-
ified equalization–cancellation model is briefly outlined.

2.    Description of the Reconstruction–Comparison Model

2.1  Introduction

Modern models of lateralization are based on Jeffress’ [13] hypothesis that a neural net-
work converts interaural time delays into a place code [2]. Spike trains from the left and
right auditory nerves converge on a set of left–right coincidence detectors. An internal time
delay is imposed on one of these spike trains. This internal time delay is progressively varied

Figure 1  Left panel: schematic illustration of the apparatus for creating a 600-Hz Huggins pitch. Middle
panel: phase response of the all-pass filter. Its amplitude response is flat in the illustrated range.
Right panel: interaural time delays introduced by the all-pass filter.
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across the network. The largest number of coincidences occur where the internal time delay
exactly compensates for the ITD of the incident sound. The process is illustrated in Figure 2.
The probability of a spike occurring is shown instead of the spikes themselves, thus allowing
analyses to be based on cross-correlation rather than on coincidence detection. The end
result is the binaural cross-correlation function. 

The internal-delay axis defines the perceptual dimension of lateral position. Lateral posi-
tion is presumed to be determined by the internal delays of the peaks in the cross-correlation
function. All sounds exhibit multiple peaks in the cross-correlation function because of the
short-term periodicities in their waveforms, but most sounds are heard in just one position,
rather than many (c.f. [23]). For a sound such as a pure tone or the Huggins pitch, the lateral
position is primarily determined by the peak closest to 0 µs. The internal delay of this peak
in the cross-correlation function corresponds to the lateral position of the sound. A sound
giving a peak at a positive delay is heard on the right of the head, at a negative delay is heard
on the left of the head, and at zero is heard at the center of the head.

There is an independent set of coincidence detectors for each frequency channel. The
resulting pattern of binaural cross-correlation versus frequency is termed a “cross-correlo-
gram” (cf. Figure 3). Many results on the lateralization of single sounds presented in quiet
can be explained using a complex decision strategy based on an across-frequency compari-

Figure 2   Schematic illustration of the Jeffress–Colburn binaural cross-correlation network. The inputs are the
left waveform (solid line) and right waveform (dotted line) after auditory filtering of the incident
sound. In this example, the incident sound is a sine wave with the right channel assigned an ITD of
1 time unit with respect to the left channel. The input waveforms arrive at cross-correlators after tra-
versing additional internal delays of ±1 time unit, ±2 time units, and so on. The cross-correlators
multiply the two delayed waveforms together. Where the delayed waveforms are in-phase, the mean
cross-correlation is at a maximum. Where they are out-of-phase, the mean cross-correlation is at a
minimum. The delay of the cross-correlator giving the maximum marks the interaural delay of the
incident sound because that internal delay exactly compensates for the ITD. Note that the cross-cor-
relation function is periodic in that additional peaks occur whenever the internal delay puts the
delayed waveforms in-phase. Each peak is separated by the period of the center frequency of the
auditory filter - 6 time units in this example.
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son of the cross-correlogram ([25], [27]). Nonetheless, a simpler strategy, based on averag-
ing the cross-correlogram across frequency, works well for many single sounds (e.g., [24]).
We used a similar strategy in the reconstruction–comparison model.

The reconstruction–comparison model incorporates three stages. First, it generates a
cross-correlogram for the Huggins-pitch stimulus. Second, it separates this correlogram into
two cross-correlograms, one for the Huggins pitch, the other for the background noise. This
stage includes the reconstruction (or “filling in”) of the notch in the noise cross-correlogram
created by the removal of the frequency channels carrying the Huggins pitch. Third, it com-
pares the Huggins-pitch cross-correlogram with the noise cross-correlogram by subtracting
one from the other. It is the position of the peaks in the resulting, “remainder” cross-correlo-
gram that determines the lateral position of the Huggins pitch. Each stage is described in the
following sections (2.2, 2.3 and 2.4) using a 600-Hz N

 

0

 

 Huggins pitch as the example. The
application of the model to a 600-Hz N

 

π

 

 Huggins pitch is outlined in Section 2.5.
The model thus deals with the problem of the simultaneous perception of two distinct

sounds, the Huggins pitch and the noise, by splitting the auditory scene into two separate
objects and then computing the lateralization of the Huggins pitch. In a manner similar to
certain other accounts of the lateralization of multiple sound sources, the reconstruction–
comparison model determines which sound sources are present before it determines where
these sound sources are located [7], [8], [12], [28]. 

 

2.2  Construction of the Cross-Correlogram of the Huggins-Pitch Stimulus

 

The first stage of the reconstruction–comparison model is illustrated schematically in
Figure 3. The incident waveforms at the left and right ears are filtered using a matched pair
of gammatone filterbanks [18], spanning center frequencies of 100 Hz to 1200 Hz at a reso-
lution of 5 filters per equivalent rectangular bandwidth (“ERB”) [10]. The output of each fil-
ter is halfwave rectified and then logarithmically compressed. The binaural cross-correlation
functions are measured for each left/right pair of frequency channels resulting in the binaural
cross-correlogram. The range of internal delays spans –5,000 µs to +5,000 µs at a resolution
of 50 µs (each simulation was run using stimuli digitally sampled at 20,000 samples per sec-
ond). A weighting function is applied to emphasize the contribution of frequency channels
near 600 Hz and to attenuate the contribution of channels at lower and higher frequencies
[19] [21]. 

A gammatone filterbank is commonly used for rapid computational modeling of the fre-
quency selectivity of the inner ear. The frequency range and filters-per-ERB were chosen as
a compromise between speed of modeling and resolution of frequency channels. The half-
wave rectification and logarithmic compression simulate the transduction by the inner hair
cells. Thus, their output represents the probability of a spike event in an auditory neuron (cf.
Figure 2). The frequency-weighting simulates the dominant effect that frequencies near 600
Hz have on the lateralization of a wideband noise [19] and is included for consistency with
the central-spectrum model [21]. 

The cross-correlogram illustrated in Figure 3 is for an N

 

0

 

 noise without any Huggins
pitch. The ridge at an internal delay of 0 µs marks its ITD; when projected onto the fre-
quency-versus-internal-delay plane it lies on a straight line at 0 µs. The other ridges mark the
multiple peaks resulting from the short-term periodicity in the filter outputs; when projected
onto the frequency-versus-internal-delay plane they lie on hyperbolic curves. 

The left panel of Figure 4 illustrates the cross-correlogram for an N

 

0

 

 Huggins-pitch stim-
ulus. The interaural phase shift gives a near-flat cross-correlation function at 600 Hz, thus
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partially filling in the valleys between the ridges of the noise. The right panel of Figure 4
shows the result of averaging this cross-correlogram across frequency (cf. [24]). The straight
ridge gives rise to the large peak at an internal delay of 0 µs, whereas the hyperbolic ridges
cancel out. This averaging strategy was first used by Shackleton et al. [24] in their model of
the lateralization of single sounds. They showed that it gave a successful account of that
problem but it fails in this instance for the Huggins pitch. The peak in the across-frequency
average is at 0 µs, corresponding to the center of the head, and so it marks the lateral posi-
tion of the noise, rather than the Huggins pitch. The failure occurs because the noise domi-
nates the across-frequency average.

 

2.3  Separation into Two Cross-Correlograms and Reconstruction of the Noise Cross-
Correlogram

 

The second stage of the model separates the initial cross-correlogram into two separate
cross-correlograms, one for the Huggins pitch and the other for the background noise. The
cross-correlation functions in frequency channels occurring within ±0.5 ERBs of the center
frequency of the Huggins pitch are placed within the “Huggins-pitch cross-correlogram”
(Figure 5, left panel) while the remaining functions are put into the “noise cross-correlo-

Figure 3   Schematic illustration of the first stage of the reconstruction–comparison model. For visual clarity,
just five frequency channels are shown. In the cross-correlogram, the spacing of frequency channels
is reduced to 2.5 per ERB, the resolution of the internal delay is reduced to 100 µs and the span of
internal delays is limited to ±2000 µs (these values are also used in all subsequent illustrations). The
cross-correlogram is of an N0 noise; the ridges are marked in bold.

Figure 4  Left panel: the cross-correlogram for a 600-Hz N0 Huggins-pitch stimulus. The 600-Hz frequency
channel is highlighted in bold. Compare with the cross-correlogram for an N0 noise shown in Figure
3. Right panel: the across-frequency average of the cross-correlogram.
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gram” (middle panel). The results are a Huggins-pitch cross-correlogram that covers exactly
1 ERB and a noise cross-correlogram with a corresponding notch. This notch is then filled in
by linear interpolation, yielding a “reconstructed noise cross-correlogram” (right panel). 

The use of two separate cross-correlograms implements the idea that the Huggins pitch
and the background noise are separate auditory objects. The range of channels assigned to
the Huggins-pitch cross-correlogram is a free parameter in the model. We used a value of 1
ERB because it is reasonable that a tonal object should have a narrow bandwidth. A compu-
tational strategy for measuring the center frequency of the dichotic pitch is sketched in sec-
tion 5.2. The reconstruction strategy is crucial for the success of the model. It implements
the idea that auditory analysis recreates the parts of the noise hidden by the Huggins pitch.

 

2.4  Comparison of Cross-correlograms and the Calculation of the Lateral Position of the
Huggins Pitch

 

The third stage of the model compares the Huggins-pitch cross-correlogram with the
reconstructed noise cross-correlogram by subtracting the latter from the former. Only posi-
tive remainders are retained (Figure 6, left panel). This “remainder cross-correlogram” is
then averaged across frequency (right panel), and the peak closest to 0 µs is selected. Its
internal delay corresponds to the lateral position of the Huggins pitch.

In the illustration there are two peaks in the remainder cross-correlogram, one at –850 µs
and the other at +800 µs. It should be noted that these peak positions were determined using
a single, 500-ms duration noise as the input to the model. The exact positions vary somewhat
because of random fluctuations inherent in any noise. Repeating the simulation 100 times
showed that the peaks fell into two ranges, of –900 to –750 µs and +750 to +850 µs. There-
fore, it is reasonable to assume that the two peaks are located at about –800 µs and +800 µs
and thus are equally distant from 0 µs. These internal delays correspond to lateral positions
on the far left and far right of the head, respectively. Thus, the reconstruction–comparison
model can account for why an N

 

0

 

 Huggins pitch is lateralized to the edges of the head. In
order to explain why some listeners hear the Huggins pitch on the left but others hear it on
the right, the further assumption is needed, that each listener’s auditory system contains a
bias towards the left or right, perhaps because of small left/right asymmetries in the auditory
pathway. This bias will result in one peak being selected in preference to the other. 

 

2.5  The Reconstruction–Comparison Model Applied to the N

 

π

 

 Huggins Pitch. 

 

Figures 7, 8, and 9 illustrate the set of cross-correlograms for a 600-Hz N

 

π

 

 Huggins
pitch. In the final, remainder cross-correlogram, three peaks are created within the illustrated
internal-delay range. The middle peak is selected as it is closest to 0 µs. In the illustration it

Figure 5   Left panel: the Huggins-pitch cross-correlogram. Middle panel: the noise cross-correlogram. Note
the 1-ERB wide notch centered on 600 Hz. Right panel: the noise cross-correlogram after recon-
struction by linear interpolation. Note that the notch is filled-in.
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is located at an internal delay of +100 µs. Again, the exact position varies somewhat: repeat-
ing the simulation 100 times shows that the range of peak positions varies from –100 µs to
+100 µs. These values bracket 0 µs, and thus the reconstruction–comparison model can
account for why an N

 

π

 

 Huggins pitch is lateralized close to the center of the head.

 

3.    Intermission: the Central-Spectrum Model

 

The analyses above demonstrate that the reconstruction–comparison model can account
for the lateralization of both N

 

0

 

 and N

 

π

 

 Huggins pitches. It therefore provides an alternative
to Raatgever and Bilsen’s central-spectrum model [21]. Before comparing the predictions of
the reconstruction–comparison and central-spectrum models, we briefly describe the con-
cept of a central spectrum. 

A central spectrum is an across-frequency slice of a cross-correlogram – a plot of cross-
correlation versus frequency for a fixed internal delay. There is one central spectrum for each
value of internal delay. Raatgever and Bilsen [20] [21] proposed that a selection mechanism
chooses one or more central spectra, citing harmonicity, modulation depth, the pronounce-
ment of a peak and spectral pattern recognition as possible criteria for selection. A peak in
the chosen spectrum is heard as a dichotic pitch, and the internal delay of the chosen spec-
trum corresponds to the lateral position of the dichotic pitch.

Raatgever and Bilsen [21] argued that the selection mechanism would choose two central
spectra, at ± 800 µs, for a 600-Hz N

 

0

 

 Huggins pitch, but would choose a single central spec-

Figure 6  Left panel: The remainder after subtracting the reconstructed noise cross-correlogram from the Hug-
gins-pitch cross-correlogram. Only positive remainders are shown. The peaks look small because
the vertical scale is the same as in Figures 4 and 5. Right panel: the cross-correlogram after averag-
ing across frequency. The reconstruction–comparison model proposes that the lateral position of the
Huggins pitch corresponds to the internal delay of the peak closest to 0 µs. 

Figure 7   Same as in Figure 4, but for a 600-Hz Nπ Huggins pitch.
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trum, at 0 µs, for a 600-Hz N

 

π

 

 Huggins pitch. The choice is made because these central spec-
tra contain pronounced peaks at 600 Hz (Figure 10) and because they are “characteristic for
the pitch perceived” [21, p. 432]. Because the internal delay of the chosen spectrum is pro-
posed to correspond to the lateral position, without any intermediate processing or analysis
to affect the directness of the correspondence, the choice of central spectrum is critical for
the prediction of lateral position. This choice is correct for N

 

0

 

 and N

 

π

 

 Huggins pitches, in
that the internal delays of the chosen spectra do indeed correspond to their lateral positions.
However, without a principled method for specifying the choice this result may be fortu-
itous. The criteria for choosing a central spectrum must be explicitly defined before the
model’s account of lateralization can be tested rigorously.

 

4.    An Application of the Reconstruction–Comparison Model

 

Raatgever and Bilsen [21] noted that the introduction of an external ITD to a Huggins-
pitch stimulus should result in the corresponding translation of its cross-correlogram along
the internal-delay axis. The spectral profile of the central spectrum chosen by the selection
mechanism would be unchanged, in that the translation will not affect the variety of criteria
upon which the choice is made, but its internal delay will change by an amount equal to the
introduced ITD. Raatgever and Bilsen thus argued that the central-spectrum predicts that the
lateral position of the Huggins pitch depends on the ITD of the stimulus. Numerically, the
ITD corresponding to the lateral position is expected to vary 1:1 with the applied ITD. They
collected experimental data in broad support of this prediction. Raatgever and Bilsen’s pre-
diction, their data and our own predictions using the reconstruction–comparison model are
described in the following sections. 

 

4.1  The Lateralization of an N

 

0

 

 Huggins Pitch

 

The left panel of Figure 11 reproduces Raatgever and Bilsen’s [21] results. In their

Figure 8   Same as in Figure 5, but for a 600-Hz Nπ Huggins pitch.

Figure 9   Same as in Figure 6, but for a 600-Hz Nπ Huggins pitch.
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method they required listeners to manipulate the lateral position of a 600-Hz N

 

0

 

 Huggins
pitch so that it was heard in the same position as a comparison white noise. The manipula-
tion was to vary the external ITD applied to the Huggins-pitch stimulus (“matched ITD”).
The lateral position of the comparison noise was randomly varied across successive trials by
manipulating its ITD (“comparison ITD”). Each symbol in Figure 11 plots the matched ITD
from each trial for two listeners (circles and asterisks). The solid lines show Raatgever and
Bilsen’s own predictions for the central-spectrum model.

Two effects are of interest. First, the matched ITD clearly depends upon the comparison
ITD, thus demonstrating that the lateral position of the Huggins pitch can be varied by
manipulating the interaural configuration of the noise carrier. The pattern of data points
broadly supports the predictions of the central-spectrum model, although the scatter is large.
Second, the sign of the matched ITD could be ambiguous across listeners: compare the cir-
cles with the asterisks at a comparison ITD of 0 µs. This ambiguity indicates that one lis-
tener applied a positive ITD in order to shift the lateral position of the Huggins pitch to the
center of the head but the other listener applied a negative ITD. Thus, the first listener origi-
nally heard the Huggins pitch on the left side of the head but the second listener originally
heard it on the right. 

The right panel of Figure 11 shows the predictions of the reconstruction–comparison
model. The method was to first measure the internal delay of the closest-to-0-µs peak in the
N

 

0

 

 Huggins pitch and then to compute the ITD offset required to shift this peak in order for
its internal delay to be equal to the comparison ITD. The positive/negative ambiguity in the
closest-to-0-µs peak (cf. Figure 6) is illustrated by plotting the results from positive-internal-
delay peaks as open circles and negative-internal-delay peaks as filled circles. The model
was run 10 times for each value of the comparison ITD, each time using an independent

Figure 10  Left column: the selected central spectra for a 600-Hz N0 Huggins pitch. Right column: the selected
central spectrum for a 600-Hz Nπ Huggins pitch. The central spectra are marked in bold on the
cross-correlograms of the Huggins-pitch stimuli shown in the top row. Note that the cross-correlo-
grams and central spectra are based on the output of a gammatone filterbank (cf. Figure 3) instead
of the Fourier transform used by Raatgever and Bilsen [21].
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noise. The radius of each circle is proportional to the number of times that each matched
ITD was found. The diagonal lines again show Raatgever and Bilsen’s [21] predictions for
the central-spectrum model. 

For comparison ITDs within ±800 µs, the predictions of the reconstruction–comparison
model fall close to the diagonal lines. For these stimuli, therefore, the reconstruction–com-
parison model makes the same predictions as the central-spectrum model. By extension, the
reconstruction–comparison model can explain the general pattern observed in the experi-
mental data. 

There are, however, two differences between the predictions and the experimental data.
First, the scatter of predicted data points is smaller than the scatter of the listeners’ matches.
This result occurs because the reconstruction–comparison model is deterministic (the ran-
dom fluctuations inherent in a noise create what scatter there is). In order to generate a scat-
ter comparable to that observed experimentally it would be necessary to add an internal
noise to the model.

Second, if the comparison noise has an ITD less than ca. –800 µs, or greater than ca.
+800 µs, the reconstruction–comparison model predicts that the matched ITD to be ca. 0 µs.
This prediction follows from the fact that the period of the 600-Hz auditory filter is 1667 µs.
Because the multiple peaks in any cross-correlation function are separated by the period of
the auditory filter (cf. Figure 2), the multiple peaks in the 600-Hz cross-correlation function
are separated by about 1600 µs. Thus, there must be a peak somewhere in the range –800 to
+800 µs. This peak will always be selected by the closest-to-0-µs strategy. Consequently, the
largest possible lateralization of a 600-Hz Huggins pitch corresponds to an internal delay of
about –800 or +800 µs, and thus it cannot be accurately matched to a comparison ITD less
than about –800 µs or greater than about +800 µs. The best that the model can do is to leave
the ITD of the Huggins-pitch stimulus fixed at 0 µs. Thus, the matched ITD is predicted to
be 0 µs. Raatgever and Bilsen’s [21] experimental data do not support this prediction. One
strategy for bringing the model into correspondence with the data is to allow the selection of
a peak other than that one closest to 0 µs. Nonetheless, the reconstruction–comparison

Figure 11  Left panel: experimental data pertaining to the lateralization of a 600-Hz N0 Huggins pitch,
redrawn from Figure 7 of Raatgever and Bilsen [21] (reproduced with permission). The task was
to vary the ITD applied to a 600-Hz Huggins pitch until it was heard in the same place as a com-
parison white noise of known ITD. The results are shown for two listeners (circles and asterisks).
The solid lines show the predictions of the central-spectrum model. Right panel: predictions
from the reconstruction–comparison model. The model was run 10 times for each value of com-
parison ITD; the radius of each circle represents the number of times each matched-ITD was
found.
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model offers a successful account of the primary effects observed as the ITD of an N

 

0

 

 Hug-
gins pitch is varied. 

 

4.2  The Lateralization of an N

 

π

 

 

 

Huggins Pitch

 

In a second set of conditions Raatgever and Bilsen [21] repeated the experiment but
required listeners to manipulate a 600-Hz N

 

π

 

 Huggins pitch instead of an N

 

0

 

 Huggins pitch.
The left panel of Figure 12 reproduces their results along with their predictions from the
central-spectrum model. Two effects are of interest. First, the general pattern is shifted by ca.
800 µs (approximately one half-period of 600 Hz) from the general pattern illustrated in Fig-
ure 11. Second, the data points again broadly support the predictions of the central-spectrum
model. 

The right panel of Figure 12 shows the predictions of the reconstruction–comparison
model. For the majority of comparison ITDs, the predictions of the reconstruction–compari-
son model fall close to the diagonal lines marking the predictions of the central-spectrum
model. By extension, the reconstruction–comparison model can explain the primary effects
observed in the data.

 

5.    Discussion

 

Raatgever and Bilsen’s ([21]) central-spectrum model is the only comprehensive account
of the pitch and lateralization of dichotic pitch to have been published. Culling et al. [5] [6]
demonstrated that this model cannot account for the pitch of certain dichotic pitches, show-
ing instead that their modified equalization–cancellation model could account for these and
other cases. We therefore questioned the account of lateralization of a dichotic pitch given by
the central-spectrum model. Our objective in this chapter was to evaluate a computational
model of lateralization that might serve as an alternative to the central-spectrum model. As
demonstrated in Section 4, the resulting reconstruction–comparison model can account for
the major features of the experimental data on lateralization of a Huggins pitch. 

The modified equalization–cancellation model and the reconstruction–comparison
model remain separate because each was designed to explain a different perceptual charac-
teristic of a dichotic pitch. Neither model, considered alone, can offer the comprehensive
account of pitch and lateralization that was the objective of the central-spectrum model. In
the remainder of this discussion we outline a future strategy for combining the two into a

Figure 12   As per Figure 11, but for a 600-Hz Nπ Huggins pitch.
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single, comprehensive model. It is based on the fact that the outputs of the left-right pair of
auditory filters centered on the Huggins pitch are interaurally decorrelated. 

 

5.1  The Source of the Interaural Decorrelation

 

Interaural decorrelation is the opposite of interaural correlation (“loosely defined as the
point-by-point correlation coefficient computed for a stimulus segment after an appropriate
[internal] delay is imposed on one of the inputs to maximize the correlation” [11, p. 302-
303]). For example, if the input to a left-right pair of auditory filters is a noise band with an
ITD of –300 µs, then their outputs also have an ITD of –300 µs, and so delaying one output
by +300 µs will compensate for this ITD. This delay will bring the outputs into exact, sam-
ple-for-sample, correspondence, and so they would be interaurally correlated. If, instead, the
input is a noise band with an ITD progressively increasing with frequency from –300 µs to
+300 µs, no single delay can compensate. The correspondence between the two outputs is
thus minimal, and so the outputs are interaurally decorrelated.

This second example is deliberately similar to that of a 600-Hz Huggins pitch. The intro-
duction of a 60-Hz-wide interaural phase shift creates a progressive shift in ITD (cf. Figure
1). The bandwidth is of the same order of magnitude as the bandwidth of an auditory filter
(for the 600-Hz auditory filter the [equivalent-rectangular] bandwidth is approximately 90
Hz) and so the outputs of the left-right 600-Hz auditory filters will be interaurally decorre-
lated. The decorrelation will be largest at 600 Hz, as that is the center frequency of the inter-
aural phase shift. Consequently, the frequency of the Huggins pitch can be measured using
interaural decorrelation.

 

5.2   The Measurement of Interaural Decorrelation

 

The reconstruction–comparison model requires the frequency of the Huggins pitch to be
known. If it were not known then the model would be unable to separate the Huggins-pitch
cross-correlogram from the noise cross-correlogram because it would not know which fre-
quency channels to separate. In our description of the model (Section 2.3) we assumed that
this frequency is known. Preferably, the modified equalization–cancellation model would be
used to measure the interaural decorrelation.

The modified equalization–cancellation model is based on a frequency-analysis stage
similar to that used in the reconstruction–comparison model (cf. Figure 3). It equalizes the
amplitude of the outputs of corresponding left and right frequency channels and then cancels
the two outputs by subtracting one from the other, sample by sample, as a function of an
internal delay. In essence, the model performs cross-subtraction instead of cross-correlation.
The smallest subtraction remainder in each frequency channel is measured; the plot of small-
est remainder versus frequency is termed the “recovered spectrum.” Culling and Summer-
field [4] have shown that the recovered spectrum is a plot of interaural decorrelation versus
frequency. The recovered spectra for a 600-Hz N

 

0

 

 and a 600-Hz N

 

π

 

 Huggins pitch are shown
in Figure 13. Both spectra contain clear peaks at 600 Hz. Culling et al. [5], [6] demonstrated
that the pattern of peaks in the recovered spectrum successfully predicts the perceived pitch
of several forms of dichotic pitch, including the Huggins pitch. For the Huggins pitch the
peak is at 600 Hz, so determining the frequency of the pitch and allowing the reconstruction-
cancellation model to know which frequency channels to separate.

 

1
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6.    Conclusion

 

We have described a new model of the lateralization of the Huggins pitch. It is based on
three fundamental ideas. The first is that the auditory system creates two objects, one for the
Huggins pitch and one for the noise. The second is that the parts of the noise hidden by the
Huggins pitch are then reconstructed. The third is that the lateralization of the Huggins pitch
is subsequently determined by a comparison of the Huggins pitch with the background
noise. This “reconstruction–comparison model” can account for the overall pattern of listen-
ers’ judgements pertaining to the lateralization of the Huggins-pitch stimulus as a function
of ITD.

The reconstruction–comparison model is offered as an alternative approach to account-
ing for the lateralization to that provided by Raatgever and Bilsen’s central-spectrum model
(e.g., [21]). It remains to be demonstrated that a comprehensive account of both the lateral-
ization and the pitch of a dichotic pitch can be obtained by combining the reconstruction–
comparison model with Culling and Summerfield’s modified equalization–cancellation
model [4] [5] [6] [26].
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Note

 

1.  Because of the random fluctuations inherent in a noise, it is expected that there would be a small variation in
the exact frequency of the peak in the recovered spectrum. In turn, this would create a small variation in
which frequency channels are separated, so leading to an increase in the predicted scatter of the lateraliza-
tions (cf. Figures 11 and 12).
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1.    Introduction

 

It is widely accepted that pitch is an important attribute of speech. However, how pitch
information is processed in the central auditory system is largely unknown. Various models
of pitch perception have been proposed on the basis of psychophysical studies [7][9]
[17][19], but the physiological mechanisms underlying the process are poorly understood.
For example, although responses of neurons in the cochlear nucleus complex (CN) to com-
plex stimuli have been studied [12], their role in processing pitch information remains
unclear.

One of the principle neuronal classes in the posteroventral cochlear nucleus is the octo-
pus cell. Cells in this category respond to tonal stimulation mainly at the time of stimulus
onset and are thus commonly referred to as “onset” responders. Octopus cells are thought to
play an important role in pitch perception [6][10][12]. They carry precise temporal informa-
tion in the timing of action potentials comprising spike trains resulting from acoustic stimu-
lation. This property is determined, at least in part, by a low input impedance and a low-
threshold potassium (K

 

+

 

) channel [2][6][7].
In this study, we used a computer model of octopus cells to examine the processing of

pitch information contained in complex stimuli. Inputs to the model were auditory-nerve
fiber spike trains recorded from anesthetized cats. Harmonic or “inharmonic” stimuli, simi-
lar to those used in psychophysical studies, were used to record data from the cat auditory
nerve as well from the cochlear nucleus of the gerbil. Our simulation results demonstrate
that octopus cells take advantage of converging inputs from an array of auditory-nerve fibers
spanning a wide frequency range to process pitch information. This finding is consistent
with experimental studies of CN neurons 

 

in vivo

 

 and support the hypothesis that interspike
interval information is a correlate of pitch.

 

2.    Methods

 

2.1  The Model

 

The model used in this investigation was developed explicitly to study the mechanism(s)
whereby onset responses are generated by octopus cells [3]. As shown in Figure 1, the model
consists of a soma, an axon, and four identical dendrites. The axon and soma are each repre-
sented by a single compartment and each dendrite is represented by 20 compartments. The
axon and soma compartments contain Hodgkin–Huxley-like sodium (Na

 

+

 

) and K

 

+

 

 channels.
The soma compartment contains two additional active mechanisms: a low-threshold K

 

+
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channel, K

 

LT

 

, and a Cs

 

+

 

-sensitive, hyperpolarization-activated inward rectifier, I

 

h

 

. The den-
drites are passive and have a space constant of 354 µm. The resting membrane potential is

mV.

 

2.2  The Stimuli

 

The inputs to the model were auditory-nerve (AN) fiber spike trains, collected from adult
cats. In addition to tone bursts of different frequencies, responses to harmonic and “inhar-
monic” complex stimuli, similar to those used in psychophysical studies [11][15-20], were
recorded. As shown in Figure 2, two groups of stimuli were employed: in one group (A-E)
the stimuli contained three components centered at 1000 Hz, and in the other group (F-H),
the stimuli contained 6 components between 1000 and 2000 Hz with 200-Hz spacing.
Except for the “inharmonic” complex shown in Figure 2E, which is a frequency-shifted ver-
sion of B, all stimuli produce the same pitch of 200 Hz (equivalent to the fundamental fre-
quency), although the fundamental component is present in only two stimuli (A and F).
Psychophysical studies have shown that the fundamental component is not essential for pitch
perception (the so-called phenomenon of the “missing fundamental”). The frequency-shifted
stimulus (E) was chosen because this stimulus, with a frequency spacing of 200 Hz, yields a
pitch slightly higher than 200 Hz. The amplitude-modulated (AM) stimuli (C and D) have
the same frequency components but their temporal waveforms are inverted versions of each
other. Due to the rectifying characteristic of the inner-hair-cell transfer function, only the
positive portion of the waveform is utilized when generating the spike events on the AN
fibers. Psychophysically both stimuli sound the same despite the difference in temporal
waveforms. The stimulus shown in Figure 2H was generated using the same six frequency
components as those in Figure 2G, except that the phase of each component was randomized
between 0 and 360 degrees, while their counterparts in Figure 2F and G all have a starting
phase of zero degrees. Compared to the zero-phase versions, the random-phase version lacks
temporal periodicity in its waveform. Psychophysical studies suggest that phase has no
effect on the perception of pitch [11]. Except for the AM stimuli, all individual components
have the same amplitude and the sound pressure level (SPL) pertains to the entire waveform. 

62–

Figure 1   A. The octopus cell model. B. Compartmental representation of the model.
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2.3  Auditory Nerve and Cochlear Nucleus Neuron Spike Train Data

 

Standard experimental procedures were used to collect data from the auditory nerve of
cats and the cochlear nucleus of gerbils. Adult cats were deeply anesthetized using sodium
pentobarbital (40 mg/kg, i.p.), the pinna was removed, and a craniotomy was performed to
gain access to the posterior fossa. Cerebellar tissue was aspirated to expose the root of the
auditory nerve. A glass microelectrode filled with 2 M KCl, and with an impedance of 15–20
M

 

Ω

 

, was inserted into the auditory nerve. Before recording, a routine calibration curve was
obtained. Stimuli were generated using both the amplitude and phase characteristics of the
calibration. The stimuli were 50 ms in duration, had a repetition interval of 120 ms, and were
presented 50 times. The same stimulus conditions were used to collect data from each AN
fiber encountered. 

The procedure for collecting responses from CN neurons was similar, but adult gerbils
were used. Sodium pentobarbital (50 mg/kg, i.p.) was used in conjunction with ketamine
HCl (30 mg/kg, i.m.) to anesthetize the animals. The cochlear nucleus was exposed using
standard surgical procedures, and recordings made from the posteroventral division. The
stimuli used to collect data from the AN were also used in recording from the CN. The care
and use of the animals were approved by the Boys Town IACUC.

Figure 2  Temporal waveforms of stimuli used in the collection of auditory-nerve spike trains. The “3-comp”
refers to a three-component complex of 800, 1000 and 1200 Hz, while the “6-comp” refers to a six-
component complex of 1000–2000 Hz with 200-Hz spacing between the harmonics. Except for the
frequency-shifted, three-component complex (E, 850, 1050, 1250 Hz), all stimuli have a fundamen-
tal period of 5 ms. Waveforms are normalized according to their respective peak magnitude and are
shown for a 10-ms time window. Except for the AM stimuli (C and D), all frequency components in
each complex have the same magnitude. F0 refers to the fundamental frequency (200 Hz).
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2.4  Application of Auditory Nerve Inputs to the Model

 

Figure 3 shows the responses of a typical AN fiber to a three-component harmonic com-
plex (cf. Figure 2B) presented at 70 dB SPL. Although synchronization to the fundamental
frequency (200 Hz) can be seen, the temporal response is “noisy” because of synchroniza-
tion to individual harmonic components. Spike trains from six AN fibers were chosen as
inputs to the model in order to mimic the natural input to octopus cells (incorporating a
broad range of characteristic frequencies [CFs] and high spontaneous rates [SRs]). The
fibers selected have CFs between 1050 Hz and 3250 Hz and they all have high SRs. To
increase the number and temporal variability of inputs, we distributed each spike train over
multiple locations. By varying the number of the starting trial and applying the trials in a cir-
cular manner (e.g., trials 7, 8,..., 50, 1,..., 6), we ensured that no two inputs were identical at
a given moment in time. A total of 120 inputs were distributed across different locations of
the model: 40 at the soma, and the remainder at different dendritic compartments. 

Only excitatory inputs were used because there is little evidence suggesting the existence
of inhibitory inputs onto octopus cells. In addition, a previous study showed that inhibitory
inputs are not needed to generate the basic onset response pattern observed in octopus cells
[3]. The dynamics of the synaptic conductance were modeled by an alpha function. The
maximum synaptic conductance, adjusted to produce little or no spontaneous firing, had a
value of 3.68 nS.

 

2.5  Simulation

 

Simulations were performed on a PC running Linux (a PC-based version of UNIX), with a
program developed in our laboratory [2]. Simulation of 50 trials (120 ms per trial) requires
about 13 minutes to complete when running on a Pentium-133 computer. The parameters used
in this study were almost identical to those used in our previous current injection simulations
[3], except for the implementation of faster K

 

LT

 

 kinetics, an adjustment that resulted from
knowledge gained from simulations using spike trains collected with tone bursts of different
frequencies. Octopus cells are typically associated with both O

 

I

 

 (a response peak at stimulus
onset with little or no steady-state response) and O

 

L

 

 response patterns (with steady-state
responses, usually > 10 spikes/s.). We adjusted the model parameters such that the model neu-
ron produced phase-locked responses (entrainment) at lower frequencies (< 500 Hz). This
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Figure 3   Responses of an auditory-nerve fiber (CF = 1050 Hz, SR = 63 spikes/s, threshold = 13 dB SPL) to a
three-component complex (cf. Figure 2B) at 70 dB SPL. The ISIH for spikes falling between 10 and
50 ms from stimulus onset is shown in the insert. The histogram bin width is 0.5 ms. The maximum
bin height in the ISIH corresponds to 60 occurrences and the abscissa ranges between 0 and 40 ms. 
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pattern is typical of responses to low-frequency stimuli. The model neuron mainly
responded at stimulus onset when high-frequency stimuli were used. At 3 kHz the model
produced an O

 

I

 

 pattern at 70 dB SPL (35 dB above rate threshold), with a steady-state rate of
4.5 spikes/s. After the parameter set was established, simulations were performed with spike
trains collected using complex stimuli.

 

3.    Results

 

3.1  Harmonic Complexes With and Without the Fundamental

 

In Figure 4 are illustrated the responses produced by the model when inputs were spike
trains collected using the three-component harmonic complexes. The responses are pre-
sented as post-stimulus time histograms (PSTHs) and interspike interval histograms (ISIHs).
At low sound pressure levels, the model typically responds with a single peak in the PSTH
(at a threshold of 30-35 dB SPL). At higher sound pressure levels, the model neuron also
produced spikes during the steady-state portion of the stimulus (Figure 4A and C). We only
present results obtained at 70 dB SPL in this and all subsequent figures, since it is unlikely
that temporal responses containing an onset spike alone convey pitch information.

The responses of the model to the three-component harmonic stimuli, with or without the
fundamental component, are very similar: strong responses (high, driven discharge rates)
were evoked by both stimuli during the steady-state portion of the stimulus (Figure 4A and
C), and ISIHs exhibited a prominent peak (Figure 4B and D). Average interspike intervals in
both cases were about 5 ms, which corresponds to the fundamental frequency (200 Hz) of
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Figure 4   Responses of the model to three-component complexes with (upper panels) and without (lower pan-
els) the fundamental component f0. The repetition interval was 120 ms, but only the initial 80 ms of
the PSTHs is shown for clarity. The stimulus level used to collect the spike trains was 70 dB SPL.
The bin width of the histograms is 0.5 ms. For ISIHs a window of 4.5–60 ms was used to exclude
the initial peak in the PSTHs from analysis and a vertical dotted line is drawn at 5 ms (correspond-
ing to the fundamental frequency of 200 Hz). This convention applies to all subsequent figures.
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the stimuli. Compared to the inputs (i.e., the AN spike trains; cf. Figure 3), responses pro-
duced by the model showed greatly increased synchrony to the fundamental component.

When the fundamental component was not present in the stimulus, response peaks dur-
ing the steady-state portion (Figure 4C) were relatively higher than those observed when the
fundamental component was present (Figure 4A), although the overall response (i.e., num-
ber of spikes) was about the same. This is reflected in the form of a sharper peak at ca. 5 ms
in the ISIH (Figure 4D). 

 

3.2  AM and Inverted AM Stimuli

 

With AM stimuli, the model responses were synchronized to 200 Hz, the modulation fre-
quency of the signals (Figure 5A). The inverted AM stimulus has exactly the same frequency
components, but its temporal waveform is different: it has two major peaks instead of one in
the positive direction. However, the model neuron seems to more or less ignore the differ-
ence: the peak in the ISIH becomes only slightly wider for the inverted AM stimulus (Figure
5D), and there is little difference in the PSTHs. 

 

3.3  Frequency-Shifted Three-Component Complex

 

When the frequency-shifted, three-component complex was used as the stimulus, the
model produced a less synchronized steady-state response, as shown in the PSTH and in the
broader ISIH peak (Figure 6) as compared to responses to the harmonic three-component
stimuli (cf. Figure 4C and D). Such responses are expected, since the stimulus is “not har-
monic” with regard to 200 Hz. Psychophysical studies have shown that this stimulus has a
slightly higher pitch than the harmonic three-component complex. Computation of the aver-
age interspike intervals in the first peak in the ISIHs (Figs. 4D and 6B) indeed yields a
smaller interval (corresponding to 211 Hz) for the frequency-shifted version.

Figure 5   Responses of the model to an amplitude-modulated stimulus (upper panel) and its inverted version
(lower panel). The stimulus level was 70 dB SPL. 
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3.4  Six-component Complexes

 

The responses of the model to six-component complexes, with and without the funda-
mental component, are very similar to those for the three-component complexes (i.e., the
one without the fundamental produced sharper peaks in the PSTH and a narrower peak in the
ISIH). In Figure 7, we compare responses of the model to two, six-component stimuli, one
in which all the components have a starting phase of zero (Figure 7A and B), and one in
which component phases are randomized (Figure 7C and D). As can be seen, the model pro-
duced fewer discharges and poor synchronization during the steady-state portion when the
random-phase stimulus was used, although psychophysical studies suggest that the two
stimuli are almost identical perceptually.

Figure 6   Responses of the model to a frequency-shifted, three-component complex at 70 dB SPL. 
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Figure 7   Responses of the model to six-component complexes with (lower panel) and without (upper panel)
random phase. The stimulus level was 70 dB SPL.
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3.5  Responses of Cochlear Nucleus Onset Neurons

Responses of cochlear nucleus neurons from adult gerbils were compared with simula-
tion results, using an identical set of complex stimuli as were used in the computer simula-
tion. An example of a response from a cochlear nucleus neuron is shown in Figure 8. Spike
trains of this low-CF (750 Hz) neuron entrained to tones below 500 Hz. For tone bursts at or
above CF the neuron produces an OI pattern (the steady-state rate was 0.9 spikes/s). The
responses of this cell were similar to model outputs (Figs. 5 and 7); both exhibit similar
ISIHs in response to the AM and inverted stimuli (Figure 8A and B, cf. Figure 5B and D)
and different response patterns when the six-component complexes (with either fixed start-
ing phase or with randomized starting phase) were used as stimuli (Figure 8C and D, cf. Fig-
ure 7B and D). When the six-component complex with randomized phases was used, the
neuron generated a poor steady-state response (not shown) and exhibited poor synchrony to
the fundamental component (200 Hz).

Although more data are required to validate the utility of the model, we are encouraged
by the similarities between the model’s output and the actual neuronal responses shown here.

4.    Discussion

Overall, the model neuron studied here produces sharply defined PSTH peaks that corre-
spond with peaks in the stimuli. Additionally, synchrony to the fundamental component is
greatly enhanced in model responses when compared with responses of AN fibers. Using
interspike interval estimates, responses of the model to the frequency-shifted three-compo-
nent complex (Figure 6) correspond to a pitch of 211 Hz, a value very close to that obtained
from psychophysical studies. Estimates for other stimuli yield values ranging from 202.5 to
208.9 Hz. Thus, the reciprocal of the average interspike interval in the model responses
roughly corresponds to the pitch of the stimuli. These results are consistent with results from

Figure 8   Responses of a gerbil cochlear nucleus neuron (CF = 750 Hz, SR = 0.5 spikes/s, threshold = 26 dB
SPL). ISIHs are shown. A and B. AM and inverted AM stimuli, respectively (compare to Figure 5).
C and D. six-component complexes with and without random phase (compare to Figure 7). The
stimuli were presented at 73 dB SPL. 
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experimental studies of CN neurons using complex stimuli [12][13], and suggest that octo-
pus cells are able to process pitch information in complex stimuli. 

4.1  Responses to AM Stimuli

Interestingly, the model produced similar responses to the AM and inverted AM stimuli
(Figure 5). Such model behavior corresponds well with responses observed in onset cells in
vivo (Figure 8). The results are also consistent with the psychophysical observation that the
two stimuli are perceptually similar. According to Brugge et al. [1], auditory-nerve fibers
respond to the envelope of multiple component stimuli. Consistent with that observation, AN
fiber responses (inputs to the model neuron) to AM stimuli appear to “follow” the envelope
waveform. Envelope following was not observed in responses of the model neuron, suggest-
ing that octopus cells extract critical information about the fundamental periodicity of multi-
ple component signals despite a difference in the temporal waveforms (Figure 2C and D)
(i.e., octopus cells do not simply function as a “peak picker” as a simple stimulus “fine,
structure” theory suggests [18]).

4.2  Responses to Harmonic Complexes With and Without Random Phase

The model exhibited less robust responses to six-component complex stimuli with ran-
domized starting phases during the steady-state than it did to stimuli in which all compo-
nents had a starting phase of zero (Figure 7, cf. Figure 2 for waveforms). This was true
regardless of the fact that in psychophysical studies these stimuli produce the same pitch.
The neuronal responses recorded from the gerbil are similar to the results produced by the
model (Figure 8). Although similar results have been reported by Evans and Zhao [4] for
high-frequency onset neurons, our results demonstrate that this response property holds for
lower frequency neurons which, presumably, play a more important role in the perception of
pitch in complex stimuli [15].

Since AN fiber responses are known to “follow the stimulus waveform” faithfully in the
frequency range of interest, these differences in responses can be explained by 

(1) differences in inputs to the model, 
(2) the relatively broad tuning, and 
(3) the onset response characteristics of octopus cells. 

Broad tuning ensures that octopus cells receive inputs from all harmonic components of the
complex stimuli studied here. Consequently, the overall input to the octopus cell would be
less synchronized for the random-phase condition than for the zero-starting-phase condition.
The onset response character of octopus cells ensures that the cell will respond better to
stimuli that are more synchronized (zero starting phases) than to those that are less well syn-
chronized (random-phase version).

4.3  Cellular Basis for Octopus Cell’s Processing of Pitch Information

The ability of octopus cells to process pitch information from complex stimuli appears to
be derived from its basic onset response characteristics. At low frequencies onset responding
neurons entrain to the stimulus. Such onset characteristics are mainly due to a low mem-
brane impedance [3][6][8] and a low threshold K+ channel of the octopus cell [3]. It would
be interesting to study how changes in channel kinetics affect response characteristics of the
model to complex stimuli, especially the seemingly contradictory behavior observed when
the random-phase and AM stimuli are considered (Figs. 5 and 7). For example, a direct rela-
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tionship between the kinetics of KLT channels and spike frequency during the steady-state
has been observed [3]. If the kinetic characteristics of the KLT channel are faster than in our
model, would the response pattern to the inverted AM stimulus change (Figure 2D), and
would average interspike intervals decrease? Our preliminary results suggest that the
model’s response to complex stimuli is less sensitive to changes of model parameters than
are its responses to tone bursts.

4.4  Limitations of the Octopus Cell’s Pitch Processing Ability

Although octopus cells are able to process pitch information contained in complex stim-
uli, the results presented in this chapter suggest that such an ability might be limited. First,
only moderate and high-SPL stimuli produce substantial steady-state responses in octopus
cells, at least in the current model. At low levels the model only responds at stimulus onset,
and it is thought that pure onset spikes convey little information other than the onset of the
stimulus. Second, as demonstrated by both model output and experimental data (Figs. 7 and
8), octopus cells respond poorly to harmonic complex stimuli with randomized starting
phases for each of their components. Third, octopus cells primarily receive inputs from AN
fibers with high-SRs. However, AN fibers with lower SRs also carry pitch-related informa-
tion. These limitations suggest important roles for other neurons within the cochlear nucleus
as well as those located at later stages of the central auditory pathway in processing pitch
information.

Based on the simulations in this study, neurons with onset-like response characteristics
have an advantage over other types of neurons in processing pitch-related information. This
is because onset neurons respond well to synchronized inputs. Low-threshold K+ channels,
which are the main cellular component contributing to the onset responses of octopus cells,
have been found in both the CN and other nuclei of the central auditory pathway. Those
found in higher centers also respond with onset-like discharge behavior and may contribute
to pitch perception.

Responses to harmonic complex stimuli with randomized starting phases were as poorly
synchronized in the model as in the onset neuronal model. In all likelihood, this reflects the
broad tuning of octopus cells and is not characteristic of neurons with relatively narrow tun-
ing characteristics. Fewer inputs converge onto sharply tuned neurons and as a result, inputs
are more synchronized, increasing the probability that spikes will occur. Almost all neurons
in the cochlear nucleus are more sharply tuned than the octopus cells (the exception being
the multipolar stellate cells, a.k.a. onset choppers) and are thus more likely to respond in a
more synchronized fashion than octopus cells to harmonic signals with random phase. Gen-
erally, these neurons have lower response thresholds than octopus cells and presumably play
an important role in the processing of pitch information at low intensities. 

Among the different response types associated with octopus cells and large multipolar
stellate cells (both have relatively broad tuning characteristics), OL and OC types are proba-
bly more important in pitch perception than the OI type, due to their higher discharge rates
during the steady-state portion of the response. Psychophysical studies have shown that the
lower frequency region plays a dominant role in the perception of pitch [15]. Although all
OI, OL and OC units show entrainment at low frequencies (some up to 2 kHz [5][14]), the
OLF (low-frequency onset) units should have an advantage due to lower thresholds in this
frequency region. 
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5.    Summary and Conclusions

An octopus-cell model neuron was used to study how neurons with broad tuning and
transient temporal response properties extract pitch information from complex stimuli. Har-
monic and inharmonic complex stimuli, similar to those used in psychophysical studies,
were used to collect auditory-nerve data from anesthetized cats, and the resulting spike
trains served as input to the neuronal model. The model produced sharply defined peaks in
PSTHs at every cycle of the fundamental component in response to three- or six-component
harmonic complex stimuli, regardless of the presence or absence of the fundamental compo-
nent. In response to a frequency-shifted three-component complex, average interspike inter-
vals decreased slightly, corresponding to an upward pitch shift. The model produced very
similar responses to an AM stimulus and its inverted version, in conformity with psycho-
physical data and responses from in vivo. In all cases, synchrony to the fundamental fre-
quency of the stimulus was enhanced in the model neuron when compared to the responses
of auditory-nerve fibers. These results, consistent with experimental studies of cochlear
nucleus neurons, demonstrate that octopus cells are capable of processing pitch information
in stimuli through the action of converging inputs from auditory-nerve fibers that originate
over a wide frequency range. This result supports the hypothesis that interspike interval
information is a correlate of pitch. However, the poor responses of the model and CN neu-
rons to six-component, random-phase stimuli do not agree with the psychophysical finding
that phase is unimportant in pitch perception. This suggests that other neurons in the audi-
tory system play an important role in pitch perception as well. 
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This section contains four papers concerned with modeling auditory temporal processing
as it is observed in the responses of single cells to sinusoids and in the perception of complex
sounds by humans.

The paper by Peter Heil is concerned with “Aspects of envelope coding in the auditory
system.” The work is motivated in the introduction by the importance of envelope onsets to
the perception of the timbre of musical instruments; the experimental stimuli are, neverthe-
less, bursts of sinusoids. Single-unit responses are recorded from the primary auditory cortex
in cats and they are very interesting inasmuch as these units typically fire only once in
response to a tone burst; this is reliably at the onset of the stimulus, no matter what the best
frequency of the unit or its bias towards laterality. The paper is interesting because, despite
the very low firing rate of the cells, the paper summarizes over 32,000 firings from over 1800
units. Moreover, the firing of the units is extremely precise which enables Heil, with exem-
plary data analyses, to show that the units respond, not to a fixed threshold level, but rather
to the maximum acceleration of peak pressure in the onset. The second half of the paper
describes an intriguing envelope-tracking mechanism that could be assembled from a popu-
lation of these onset units with a range of acceleration thresholds. The system has the poten-
tial to represent the shape of the onset of the envelope of a sound in a way that is largely
independent of SPL, and to represent it with temporal accuracy that far exceeds that sug-
gested by the phase-locking of the individual units. What is not specified, however, is how
the system would respond to the falling portion of the envelope — either the long slow decay
of the gross envelope at the end of a piano note or a vowel, or the more rapid decay within
the period of the note or vowel which contains timbre information about the width of reso-
nances in the source. The units in this study are essentially onset detectors whose response to
continuous tones is actually inhibited for a lengthy period after the initial response, and so
they seem likely to coast over the falling portion of the envelope.

The paper by S. Bleeck and G. Langner is concerned with the “Functional significance of
latencies in the auditory system,” and it is based on the latency data reported by Heil in
response to sinusoids with linear and cosine-squared onset ramps. The paper is particularly
intriguing as a companion to the Heil paper because of the contrasting approaches that the
authors take to modeling their data. In both papers, the authors note that the quasi-hyperbolic
form of the data suggests that the neuron is simply firing at a fixed threshold, and they fit
fixed-threshold lines to the data. They both report that the fit is reasonably good and note that
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the data diverge systematically from the fixed threshold fit in several places. Heil then con-
cludes that the divergence between fit and data is sufficient to reject the fixed threshold
model entirely, and he goes on to develop his hypothesis that the system is concerned to
detect the maximum acceleration of peak pressure. This leads to a power function fit to the
data, which when modified to start from an empirical minimum, provides an excellent fit to
the data. In contrast, Bleeck and Langner take the goodness of the fit as sufficient evidence
of a fixed-threshold process to develop a modified simple-threshold model in the form of a
“leaky integrate and fire neuron.” In the course of the fitting process, they modify the neuron
and in this way they also produce a better fit to the data than a simple threshold model. The
fit does not appear to be quite as good as Heil’s (neither provide measures of the rms error)
but it has the obvious advantage of providing a physiological description of neural
responses.

What these papers do not explain, however, is why these neurons only fire once to sinu-
soids as long as 170 ms in duration. Heil’s power function and Bleeck and Langner’s leaky
integrate neuron have no temporal parameters that extend to any significant duration and
there is no lockout-and-reset mechanism in either case. This raises the interesting question as
to how long the sinusoid would have to be to produce a second firing and what would the fir-
ing rate be if the sinusoid were left on indefinitely? Is the lockout mechanism in the circuit
before the cortical neuron, or in the neuron itself, or in a feedback circuit beyond the neuron?

The paper by M. Unoki and M. Akagi describes “A computational model of Co-modula-
tion Masking Release (CMR)” — the fact that a sinusoid presented in a band of modulated
noise is more detectable when the flanking noise bands beside the signal band are co-modu-
lated. The computational model is a combination of a Power-Spectrum (PS) model of mask-
ing like those proposed by Patterson and Moore [4], and a model of stream segregation
based on Auditory Scene Analysis (ASA) [1]. The models are combined by the simple expe-
dient of running them in parallel and then selecting the result of the model that gives the
lower estimate of signal threshold. The power-spectrum model gives the lower values when
the noise bandwidth is less than the width of the auditory filter centered on the tone (130 Hz
at 1.0 kHz). The segregation model gives the lower values when the noise bandwidth is
greater than the width of the auditory filter. The function produced by the two together is
quite similar to the original results presented by Hall et al.[2]. There is one aspect of the
architecture of the computational model that may be puzzling to auditory readers and which
is perhaps worth explaining. This is the fact that the component models are run in parallel,
both operating separately on the input. This is non-auditory. Moreover, whereas the spectral
analysis in the ASA model is performed by a state-of-the-art wavelet transform with a gam-
matone kernel, the spectral analysis in the PS model is performed by a single auditory filter
centered at the signal frequency (1 kHz). The first thing to note is that in this version of the
PS model, the calculation is performed in the time domain with a gammatone auditory filter.
So the calculations in the PS model are based on the same filtered wave as that flowing from
the wavelet filter centered at 1 kHz in the ASA model. This raises the question as to why
they did not simply use the wavelet filter as the basis for the PS model calculations. In this
case, both models would use the same initial spectral analysis and the model would be much
more plausible auditorily; the parallel processing would be in the “central processor.” The
answer to this question is, of course, simple; the model is intended to prove the concept of a
CMR model with parallel processing and for this purpose it does not matter where in the sys-
tem the parallelism arises. It is important, however, to note these differences in modeling
style in order to understand the purpose of the model.
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The paper by Peter Cariani is entitled “Neural timing nets for auditory computation.” The
topic is motivated in the first three sections of the paper by a) drawing attention to the corre-
spondence between ‘all-order, interspike interval histograms’ and perceptions of pitch and
timbre, b) noting that no delay lines of the sort that might convert temporal phase locking
into place information through a process like autocorrelation, have been found to date, and c)
noting that reasonably good temporal information persists in one way or another up to the
thalamus. There are many contentious statements in these sections which should not distract
the reader from the main point of the paper which is the intriguing neural timing nets pre-
sented in Sections 4 and 8. 

The feed-forward net in Section 4 has an initial stage that is like the coincidence mecha-
nism suggested by Jeffress [3] for the detection of interaural time differences. Note, how-
ever, that this net is not a binaural processing; the binaural delay lines found in the medial
superior olive are only a millisecond long and so there are never multiple pulses in either of
the input lines The full feed-forward net is essentially a time-interval sorter; it is interesting
because it is simple yet it operates like an autocorrelator, and so it can extract the periodici-
ties associated with the pitch and timbre of vowels (Sections 5 and 6). Do not pay too much
attention to the details of the net in Section 4 and autocorrelation functions in Sections 5 and
6; the latter were not calculated with the former. The net would operate on unipolar neural
pulses and produce entirely positive autocorrelations; the population autocorrelations were
calculated from the wave and so contain negative as well as positive values. Note also that
the coincidence-array input lines for pitch would have to be on the order of 33 ms long if the
model were to account for the lower limit of temporal pitch (30 Hz).

The recurrent-timing nets in Section 8 are a form of reverberation network in which there
is an array of neural loops of different lengths — one for each periodicity. Although it is not
specified, the delay line is usually assumed to be a cascade of neurons, in which case it is
easy to imagine extending the length of the chain to the long delays required to explain the
lower limit of pitch. It would be interesting to see how the number of cells in the chain and
the cumulative timing variability along such a chain would relate to the resolution of pitch
perception and the variability of pitch matching. In summary, the networks are interesting as
they show how simple neural arrays could perform many of the time-interval calculations
required for pitch extraction. As the author says at the end of the discussion, however, “This
present treatment of timing networks barely ventures beyond an outline of the idea and what
kinds of operations might potentially be carried out.”
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1.    Introduction

Sound consists of very rapid pressure fluctuations (the “fine structure” or “carrier”) with
superimposed overall changes of the amplitude of the carrier on a slower time scale (the
“envelope”). The envelope, or boundary of the stimulus waveform, is a construct and not
part of a signal’s frequency spectrum. Yet envelope characteristics have perceptual corre-
lates, such as timbre. For example, a signal whose spectrum is composed of frequencies
which are integer multiples of a fundamental frequency has a temporal envelope that fluctu-
ates periodically, and a human listener perceives a harmonic sound whose pitch corresponds
to the fundamental frequency (“periodicity pitch” or a percept of the “missing fundamental”)
[31]. The number of spectral components and their relative amplitudes and phases affect the
shape of the periodic envelope fluctuations and as well as the sound´s timbre [18][29][30],
not its pitch which is largely determined by the fine structure [1][31][37]. 

In complex signals such as speech, animal communication sounds or music, the spectral
composition changes as a function of time (i.e., such signals are composed of independently
varying envelopes in different spectral bands). The significance of the details of these enve-
lopes for recognition of speech sounds has been convincingly demonstrated. For example,
when speech signals are split up into a number of frequency bands and the envelope of each
band is then low-pass filtered (“smeared”), severe reductions in sentence intelligibility and
in phoneme identification can result, depending on the number of bands and cut-off frequen-
cies [2]. Conversely, when temporal envelopes from broad frequency bands are extracted
and used to modulate noises of the same bandwidths, nearly perfect speech recognition can
result when temporal envelope cues are preserved in only a small number of contiguous
spectral bands [35]. Thus, the specifics of the changes in temporal envelopes in narrow fre-
quency bands and the relationships of temporal envelopes across different frequency bands
are of prime importance for the information conveyed by complex acoustic signals.

In music the temporal envelope contributes significantly to the identification of instru-
ments. When asymmetrically shaped temporal envelopes of sounds produced by instruments
[21] or of sinusoids [22][23] are played backwards, they sound quite different making it dif-
ficult for listeners to recognize the instrument, although the longer-term spectra of original
and time-reversed versions are identical. Thus, the details of the onset seem crucial. For
example, it is possible to transform the perception of a trumpet into that of a violin, and vice
versa, by manipulating the properties of the signal during the initial 50 ms or so [7]. Gener-
ally, rapid changes in a signal’s envelope, particularly at onset (“attack”), as well as changes
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in harmonic structure during onset are primary sources of acoustic information that contrib-
ute to the timbre of sounds [18][29].

The auditory system’s representation of the details of temporal envelopes, either at onset
or afterwards, is not well understood. This is due to the fact that most studies of envelope
coding have focussed on the modulation frequency of periodically amplitude-modulated sig-
nals [19]. The potentially confounding effects of concomitant changes in the shape of tem-
poral envelopes have largely been neglected. Only very few studies have compared the
neuronal responses to signals amplitude-modulated by different envelopes (i.e., in essence
have examined effects of timbre [3][6][20][33]). There are only few studies which have
addressed the effects of manipulation of stimulus onset on neuronal responses [6][8][17][24]
[28][36].

This chapter summarizes and elaborates on some recent ideas of how the details of the
onset (i.e., the time course of the initial segment of the envelope) may be encoded by neu-
ronal populations [9][10][12][13][14]. The basic concept is derived from a detailed analysis
of the responses of neurons in the cat’s auditory cortex to tone bursts and differs from previ-
ous approaches in two important respects. First, the analysis of response properties focusses
on stimulus properties at stimulus onset. This focus is essential, because nearly all neurons
of the auditory system respond vigorously to a tone’s onset, but paradoxically onset response
properties have previously been analyzed with respect to parameters characteristic of the
steady-state of the stimulus, such as the sound pressure level (SPL). Consequently, the
changes in neuronal onset responses observed with changes in stimulus SPL have been inter-
preted as significant for intensity coding [16][25][32][34]. However, dynamic properties
such as the rate of change and the acceleration of amplitude (peak pressure) have been inad-
vertently co-varied with SPL when the rise time is held constant. As this is routinely the
case, standard experimental conditions are ambiguous with respect to the relevant stimulus
parameter(s). To address this issue I have used tones of different steady-state SPL, rise time
and rise function (linear and cosine-squared). The second novel aspect of the concept pre-
sented here is that the proposed high-fidelity representation of the initial envelope incorpo-
rates the response latency, the precision of response timing and the response magnitude (all
of which are stimulus-dependent) of a population of neurons. I will argue that these response
properties should be considered jointly.

2.    Sound Onset Parameters Shaping Onset Responses

2.1  Response Latency and Precision of Response Timing

2.1.1   Stimulus Parameters Determining First-Spike Latency

Figure 1 shows, for a single neuron from the primary auditory cortex (AI) of a barbitu-
rate-anesthetized cat, the dependence of first-spike latency on various parameters associated
with sinusoidal signals presented at the cell’s characteristic frequency (i.e., “CF” tones). Fig-
ures 1A and B plot the mean first-spike latency (computed from responses to 20 repetitions
of each stimulus) as a function of SPL for different rise times of tones shaped with either lin-
ear (A) or cosine-squared rise functions (B). For each rise function and rise time, latency
decreases with increasing SPL. However, for any given SPL latency also decreases with
decreasing rise time. For linear-rise-function tones, the rate of change of peak pressure
(RCPP) co-varies with SPL (upper inset in C) and with rise time. When the latency data of
Figure 1A are plotted against this derived parameter, they form an invariant function of
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Figure 1 Mean first-spike latency of a single neuron to CF tones shaped with linear (left column) and with
cosine-squared rise functions (right column). Tones differ in SPL and rise time (legends in A and
B). In A and B, latency is plotted as a function of the steady-state level, and in C and D as a function
of the rate of change of peak pressure (RCPP; C) and against the maximum acceleration of peak
pressure (APPmax; D) occurring at tone onset. These parameters covary with SPL and rise time.
Note the close alignment of the latency functions for different rise times. Upper insets in C and D
show the envelopes of signals of different SPL and identical rise time. Lower insets show the enve-
lopes of signals with identical RCPP (C) or APPmax (D). The continuous lines, without symbols in
C and D, represent the best fit of the fixed threshold model to the data. E and F show the deviations
of the data from this model. Note the systematic nature of these deviations.
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RCPP (Figure 1C). For cosine-squared rise function tones the latency data of Figure 1B form
an invariant function of the maximum acceleration of peak pressure (APPmax) at stimulus
onset, a feature derived from the second derivative of the envelope, which co-varies with
SPL (upper inset in D) and rise time (Figure 1D) [9][11][12][13]. These findings reveal that
the latency of the first spike is determined by dynamic properties of the stimuli at their very
onset.

2.1.2   Rejection of the Threshold Model

Linear and cosine-squared rise function tones, sharing a common RCPP and APPmax,
respectively, differ in rise time and in SPL. Therefore, response latency is independent of
rise time or SPL per se. However, the initial time course of the envelopes of such tones are in
close register (lower insets in C and D). It may therefore be argued that the response of a
given neuron is triggered whenever the signal reaches a fixed threshold amplitude during the
rise time. Changes in latency co-occurring with changes in stimulus parameters would then
reflect the fact that this amplitude is reached at different times, depending on SPL, rise time,
RCPP, or APPmax. The lines without symbols in Figure 1C and D, which are somewhat diffi-
cult to see, represent the best fit of this fixed-threshold model to the data. At first sight the
model appears to provide a reasonably good description of the data. However, a closer look
reveals systematic, rather than erratic, deviations of the data from the model. Figures 1E and
F show that at low and at high values of RCPP and APPmax latencies are consistently shorter,
and at intermediate values consistently longer than predicted by the model. This is due to the
fact that the curvatures of the latency versus RCPP or APPmax functions are shallower than
predicted by the model (cf. Figure 1C and D).

The general validity of this mismatch between a fixed-threshold model and the data is
illustrated in Figure 2. The latency versus RCPP functions of 36 AI neurons were fitted with
the equation:

L-Lmin = (RCPP/RCPP(0))
 -c (1a)
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Figure 2 Scatter plots of the exponent c, obtained from the fits of equations (1a) and (1b) to the latency versus
RCPP and versus APPmax functions with linear and cosine-squared rise functions, respectively
against the number of initial spikes having contributed to each fit. Dashed horizontal lines mark the
exponents which are expected if a fixed threshold model would explain the latency data.
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and the 93 latency-versus-APPmax functions obtained from 65 AI neurons were fitted
accordingly — 

L-Lmin = (APPmax/APPmax(0))
-c (1b)

where Lmin represents a constant “transmission delay” (i.e. the minimum against which the
latency L converges asymptotically at high values of RCPP and APPmax (cf. Figures 1C, D)).
RCPP(0) and APPmax(0) identify the rate (in Pa/s) and maximum acceleration of peak pres-
sure (in Pa/s2), respectively, for which the difference between the latency and Lmin is 1 ms.
Thus, a low value of RCPP(0) or APPmax(0) indicates that a neuron´s response to signals of
any given RCPP or APPmax is triggered early during the onset. In other words, a low value of
RCPP(0) or APPmax(0) identifies a high sensitivity of a neuron to such transients and a high
value indicates a low sensitivity.

If the fixed-threshold model were correct then the exponent, c, of equations (1a) and (1b)
should be 1 and 0.5 for linear and cosine-squared rise functions, respectively. Figure 2 plots
the exponents obtained from the fits against the number of initial spikes having contributed
to each fit. It is readily seen that the vast majority of exponents is smaller than predicted by
the fixed threshold model (dashed lines). Only those fits based on a small number of initial
spikes (and hence being less reliable) yield exponents greater than or equal to those pre-
dicted by that model. 

In summary, the observed changes in response latency with changes in the rate or maxi-
mum acceleration of peak pressure are incompatible with a fixed threshold model of latency.
The incompatibility is even more pronounced when membrane accommodation and adapta-
tion are taken into account [11][12]. Phrased differently, these results show that the first
spike is triggered at an instantaneous amplitude that varies systematically with a variety of
stimulus parameters.

2.1.3    A Common Shape of Latency versus APPmax Functions

Figure 2 also reveals that the distribution of the exponents are rather narrow. This reflects
the fact that the latency-versus-RCPP and latency-versus-APPmax functions for various neu-
rons are of strikingly similar shape. This is illustrated for the latter functions in Figure 3.
Figure 3A shows mean latency versus APPmax functions of five different neurons, obtained
from four different cats with tones of very different frequencies (CFs range from 2.3 to 30
kHz) and with different laterality of presentation. The functions differ in their positions
within the coordinate system of latency and APPmax. These positional differences reflect dif-
ferences in Lmin and APPmax(0). The functions also differ in extent, but their shapes are virtu-
ally identical. This is more clearly illustrated in Figure 3B. Each latency versus APPmax
function was again fitted with equation (1b) but this time the exponent c was fixed at 0.4.
This number represents the distribution’s average when each individual exponent is
weighted by the number of first spikes having contributed to the fit (cf. Figure 2). Then, the
difference between the measured response latency and the neuronal Lmin, as obtained from
this fit, is plotted against the ratio of APPmax of the stimulus and the neuronal APPmax(0),
also obtained from the fit. In this plot, the fitted function traverses the coordinate point (1,1).
Next, the data from all 65 neurons tested with cosine-squared rise functions were plotted in
this way. Figure 3B shows the result for means of first-spike latencies based on a response
probability of ≥ 0.5 (i.e., on ≥10 initial spikes out of 20 trials). The approximately 1800 data



194 P. Heil / Envelope Coding in the Auditory System

                             

0,0001

0,001

0,01

0,1

1

10

100

0,01 0,1 1 10 100

SD of 1st spike latency (ms)

A
bs

.D
ev

ia
tio

n
of

(L
-L

m
in

)
fr

om
fit

(m
s)

-20

0

20

40

60

80

100

120

1E-6 1E-4 1E-2 1E+0 1E+2 1E+4

APPmax/APPmax(0)
L-

Lm
in

(m
s)

P> 0.5
Fit: L-Lmin=
[APPmax/APPmax(0)]-0.4

N= 1800
n= 32000

0

20

40

60

80

100

120

140

1E-3 1E-1 1E+1 1E+3 1E+5 1E+7

APPmax (Pa/s²)

La
te

nc
y

(m
s)

95-98/16; 2.3 kHz,
binaural

95-98/08; 9.8 kHz,
contra

95-92/21; 16.4 kHz,
binaural

95-95/03; 21.7 kHz,
contra

95-91/29; 30.0 kHz,
ipsi

-10

-8

-6

-4

-2

0

2

4

6

8

10

1E-6 1E-4 1E-2 1E+0 1E+2 1E+4

APPmax / APPmax(0)

D
ev

ia
tio

n
of

(L
-L

m
in

)
fr

om
fit

(m
s)

APPmax / APPmax(0)

CD

A B

Figure 3 Latency versus APPmax functions have identical shape. A. Latency-versus-APPmax functions of

five auditory-cortex neurons obtained from four different cats with tones of frequencies between

2.3 and 30 kHz, and with different laterality of presentation. Data obtained from a given neuron

with tones of different SPL, but of the same cosine-squared rise time, are connected. Note the

common shape of the latency functions. Differences in the positions of functions along the ordi-

nate reflect differences in transmission delay (Lmin) and along the abscissa differences in transient

sensitivity APPmax(0), with a low value of APPmax(0) defining a function in a more leftward posi-

tion. B. Plots of L-Lmin against APPmax/APPmax(0) for some 1800 mean first-spike latencies, each

based on a response probability ≥ 0.5. Lmin and APPmax(0) were obtained from the fits of equation

(1b) with c = 0.4 (the weighted average of the distribution) to the data from each neuron and stim-

ulus condition. Note that points form a narrow band, and a fit of these data with Equation 1b yield

an exponent, c, again of 0.4 (thin solid line). C. Deviations of the 1800 means from this line of

best fit. Note that the points scatter unsystematically around this line. D. Scatter plot of the size of

the deviations of the data in B and C from the line of best fit against the standard deviation (SD) of

first-spike latency. The continuous line represents the diagonal.



P. Heil / Envelope Coding in the Auditory System 195        

points, based on about 32,000 initial spikes, form a very narrow band, and a fit of these data
with equation 1b yielded an exponent, c, of again 0.4 (thin solid line in Figure 3B). 

Figure 3C shows the deviations of the 1800 means from this line of best fit. The points
scatter unsystematically around this line, in stark contrast to the results obtained with the
fixed threshold model (cf. Figure 1F). More than 92% of the points fall within ± 2 ms and
81% within ± 1 ms of the fit, while with the threshold model this applies to only about 56%
and 25%, respectively. Figure 3D shows that the absolute magnitudes of the deviations of the
mean data in Figure 3C from the fit are mostly less than one standard deviation of the mean. 

In summary, the latency versus APPmax functions of different neurons obtained under
different stimulus conditions have essentially the same shape, but differ in extent and posi-
tion within the coordinate system. The shape of the function is well-described by the power
function given by equation 1b and an exponent of 0.4.

2.1.4   Frequency-Dependence of Transmission Delay and Transient Sensitivity

Across different neurons and stimulus conditions Lmin decreases with increasing CF, but
for a given CF, Lmin differs widely [9]. APPmax(0), a measure of the neuron´s transient sensi-
tivity, also varies with CF (Figure 4). The transient sensitivity is highest (i.e., APPmax(0) is
smallest) around 20 kHz and decreases steeply towards higher frequencies and less steeply
towards lower frequencies. For a given neuron, the transient sensitivity varies as a function
of stimulus frequency in a similar though not identical manner to threshold tuning curves.
Data from two neurons are shown by interconnected open symbols in Figure 4.

2.1.5   Precision of First-spike Timing

The standard deviation of first-spike latency also decreases with increasing RCPP or
APPmax for linear and cosine-squared rise functions, respectively - roughly proportional to
the slope of the corresponding latency functions. Hence, the standard deviation increases
with mean latency. Data from a representative neuron are shown in Figure 5. In other words,
the precision of spike timing is high when the latency is short and vice versa [9][27]. Over-
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all, the temporal precision of first-spike timing in AI was found to be as good as [26], or even
better than, in the auditory nerve [13], depending on stimulus conditions.

2.2  Response Magnitude 

For tones of a given frequency and rise function, the number of spikes discharged by any
given neuron varies with SPL. However, for both rise functions, rise time has manifold, and
in many cases profound, effects on all properties of such conventional response functions
[10][14][24][28][36]. Data, all obtained with cosine-squared rise function tones, from two
neurons are shown in Figure 6A and C. In general, threshold SPL, dynamic range and the
lowest SPL at which monotonic spike count functions saturate, all increase with lengthening
of rise time (e.g. 95-98/10; Figure 6A). In neurons with mostly non-monotonic response
functions, “best SPL” increases and the descending high-SPL arm flattens, so that functions
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obtained with shorter rise times may be highly non-monotonic whereas those obtained with
long rise times may be monotonic, and the “tuning” to SPL is less sharp for longer-rise-time
tones (e.g. 95-98/14; Figure 6C). Systematic effects of rise time persist when spike counts
are plotted as a function of the rate of change or as a function of the maximum acceleration
of peak pressure (not shown here, cf. [10]). However, the spike count functions obtained
with different rise times, and even with different rise functions, are in close register, when
spike counts are plotted as a function of peak pressure at the instant of response generation,
rather than as a function of steady-state SPL (Figure 6B,D) [10][14]. The instant of response
generation is, of course, given by the difference between the response latency, L, and the
transmission delay Lmin. This suggests that the stimulus-dependent component of the
latency, viz. L-Lmin = [APPmax/APPmax(0)]

-0.4 (ms), can be viewed as a window during
which the rate of change of peak pressure is integrated. The window commences with tone
onset and its duration is inversely related to the RCPP or APPmax for linear and cosine-
squared rise functions, respectively, and to the neuron’s transient sensitivity to that stimulus,
quantified by either RCPP(0) or APPmax(0). 

In a sense the peak pressure at the instant of response generation is the threshold peak
pressure of the neuron to a given stimulus. The fact that this threshold peak pressure varies
with stimulus parameters (see Figure 6B,D) is therefore closely related to the finding that a
fixed threshold model is not sufficient to explain the change in latency with stimulus param-
eters (cf. Figures 1C-F, 2). If the fixed-threshold model were correct, then spike count data
would, of course, all fall on a vertical line when plotted against the peak pressure at the
instant of response generation. The position of this line along the abscissa would mark the
fixed threshold peak pressure.

When compared to the conventional spike-count-versus-level functions, particularly to
those obtained with tones of longer rise times, the functions relating spike counts to the peak
pressure at the instant of response generation are often characterized by relatively narrow
dynamic ranges and, in case of non-monotonic functions, relatively sharp tuning (cf. Fig. 6B
with A and D with C). These properties might be useful for the coding of instantaneous peak
pressure with high resolution.

3.    An Envelope-Tracking Mechanism

The joint consideration of the neuronal response properties and of their stimulus depen-
dencies outlined above suggests a high-resolution envelope-tracking mechanism as
described in the following and illustrated in Figures 7 and 8. 

The response functions of a given neuron obtained with tones of a given frequency but of
different rise times and rise functions are in close register when plotted as a function of peak
pressure at the instant of response generation (rather than as a function of steady-state SPL)
[10][14] (Figure 6). Therefore, a neuron’s onset response represents a sample of the tone’s
envelope taken at a particular time, viz., the instant of response generation. For a given neu-
ron, that specific instant in time depends on the dynamics of the amplitude at onset (Section
2.1). The magnitude of the neuron’s response depends on the amplitude of the tone at that
instant (Section 2.2.). The response of an individual neuron may be ambiguous with respect
to the instantaneous peak pressure. For example, a neuron with non-monotonic spike count
functions will give the same response to two different peak pressures on either side of the
one producing the maximum response. Unequivocal coding of the instantaneous amplitude
could be achieved by computing the ratio of the responses of a sub-population of neurons
whose responses are generated at the same instant (i.e., neurons with identical transient sen-
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sitivity to that particular stimulus) and whose response functions partially overlap (Figure
7D). In the auditory cortex such neurons are topographically organized along the isofre-
quency contour of the tonotopic map [16][32]. For a given stimulus, the time of response
generation varies for different neurons, depending on their transient sensitivity (i.e. RCPP(0)
or APPmax(0)) to that stimulus (see Sections 2.1.3 and 2.1.4 as well as Figure 7A,B). Thus,
sub-populations with somewhat lower transient sensitivities to that stimulus generate their
responses at successively later instances (Figure 7C) and could represent the instantaneous
size of the envelope at these later instances in an analogous fashion. For a tone of a given fre-
quency, this would involve neurons with CFs increasingly distant from the stimulus fre-
quency, because for a given neuron the transient sensitivity varies with stimulus frequency
(Figures 4 and 7A). In this way a population of neurons with different transient sensitivities
could sample the changing envelope point by point and so track its time course (Figure 7).

This is illustrated in more detail in Figure 8. Panels A and B illustrate those portions of
the transients and initial segments of the steady-state that are sampled by the population,
depending on stimulus conditions (SPL and rise time). The continuous lines in A and B show
the onset envelopes of tones, all of which have the same frequency but are shaped with
cosine-squared rise functions of 20 ms (A) and 4-ms rise time (B) and differ in SPL. Differ-
ent symbols represent different neurons, each with its own transient sensitivity to the tones,
and identical symbols represent the same neuron. For clarity, some neurons are labeled with
numbers and their symbols are interconnected. Each symbol indicates when relative to stim-
ulus onset (and consequently at what instantaneous peak pressure) the response of a particu-
lar neuron is generated. These instances were calculated using Equation 1b, with c equal to
0.4 and a range of transient sensitivities corresponding approximately to that found around
20 kHz in the population of AI neurons (cf. Figure 4). Transient sensitivities of different neu-
rons are equally spaced on a logarithmic axis, as illustrated in panels C and D, which plot the
peak pressure at the instant of response generation as a function of those sensitivities. These
panels also show that the ratio of peak pressure at which any two neurons generate their
responses is largely invariant as a function of SPL. For example, the response of neuron 7 is
generated at an instantaneous peak pressure about three times that of neuron 1, relatively
independent of SPL. Near-constant ratios are also obtained for other neuron pairs, as evident
from the relatively straight and parallel functions in these double-logarithmic plots. Ratios
vary with SPL only at low intensities and when neurons are considered whose transient sen-
sitivities are low (i.e., with high APPmax(0)), because their responses are generated during the
initial portion of the tones´ steady state. However, these neurons respond very weakly or not
at all to low-SPL stimuli [9]. Thus, in general it seems that the response of each individual
neuron is generated at an instantaneous peak pressure that varies with stimulus parameters,
such as SPL and rise time (Figures 6 and 8). However, the responses of any two neurons are
generated at instantaneous peak pressures with a fixed ratio, largely independent of SPL.
Hence, the neuronal population would provide a similar relative resolution of amplitude for
stimuli of different SPLs. 

The functions of latency versus RCPP or APPmax of different neurons are of essentially
identical shape (Figure 3) [9][13][14]. Consequently, and as long as jitter in spike timing is
not taken into account (see below), the temporal sequence with which different neurons will
generate their spikes will remain constant when the time course of the envelope is altered
(e.g., by a change in the SPL or in the rise time of the signal, or both). Note that in Figure 8
the response of neuron 1 is always generated before that of neuron 2, and that of neuron 2
always before that of neuron 3, etc., independent of the signal’s SPL or rise time.
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However, due to the (common) shape of the latency functions, the intervals between the
first spikes of different neurons (i.e., the sampling rate) will vary. When the envelope has a
shallow slope or a low acceleration (and hence has a slowly changing time course) the inter-
vals between the onset responses of different neurons are long (i.e., the sampling rate is low).
When the envelope has a steep slope or a high acceleration, and hence has a more rapidly
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varying time course, the sampling rate is high (Figures 7B, C and 8). This certainly holds
with respect to different signals. Whether this also applies to the changing time course of any
given signal, as Figures 8A and B suggest, depends on details of the distribution of transient
sensitivities to the signal and also depends on whether the changing amplitude is viewed on
a linear or on a logarithmic scale. In any event, the degree of temporal dispersion of the
responses of different neurons would contain information about the time course of the enve-
lope, even though such responses might appear largely synchronous [4][5].

This proposed tracking mechanism relies on the orderly temporal sequence of initial
spikes in the responsive population of neurons. Consequently, the representation of fine
stimulus details would be limited by the precision of spike timing relative to the sampling
rate. The precision of spike timing is high when the latency is short and vice versa (Figure 5)
[9][13][14][26]. This is important, because the change in the precision of spike timing coun-
teracts an increase in the temporal overlap of response initiation among the successively
activated neurons that occurs with an increase in the rapidity of the transient (e.g., by an
increase in a signal’s SPL (Figure 7)). It is remarkable that neurons with poorly timed onset
responses (prevalent in the cat’s posterior auditory field) often do not respond to rapid tran-
sients, such as the onsets of tones of high SPL and short rise time [14] or rapid frequency-
modulations [15], a correlation which is meaningful in the context of an envelope tracking
mechanism. 

4.    Summary and Conclusions

The joint consideration of response latency, precision of response timing and response
magnitude of neurons in the cat’s auditory cortex as well as the elaboration of the stimulus
and neuronal properties on which they depend, suggest the operation of an envelope-tracking
mechanism. This mechanism is characterized by automatic adjustments in sampling rate and
precision of spike timing, as well as roughly constant ratios of instantaneous amplitudes at
which the responses of any two neurons are generated. These properties make this envelope
coding mechanism rather robust against variations in the rapidity of the envelope, brought
about by changes in a signal’s SPL. The spatio–temporal response patterns produced by var-
ious onset envelopes involve both the tonotopic and the isofrequency axes of cortical maps.
It appears that such a mechanism could be of a temporal resolution that is orders of magni-
tude greater than those inferred from the phase-locking capabilities of neurons to amplitude-
modulated or other periodic signals, and thus may contribute to the instantaneous coding of
transients thought to underlie the categorical perception of speech and certain nonlinguistic
sounds. Future research will show whether, and to what extent, the mechanism proposed in
this chapter applies to the coding of various periodically amplitude-modulated sounds and
thus might contribute to mechanisms mediating pitch and timbre.
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1.    Introduction

Temporal processing became an important topic in auditory research when it was discov-
ered that nerve fibers can code signals by firing action potentials at precise points during a
stimulus. It soon became evident that temporal delays in the range of a few milliseconds play
an important role in auditory processing. It appears that delays and latencies are not disturb-
ing physical restrictions but may contain information useful for the analysis of sound. It is
therefore interesting to study latencies at every stage of auditory processing. Latencies are
defined here as the time between the start of a stimulus and when the neuron fires. Possible
sources for latencies are propagation delays on dendrites and axons, physical restrictions of
the motion on the basilar membrane, inhibitory effects from other neurons and intrinsic neu-
ronal properties like integration times, intrinsic oscillations or secondary messenger cas-
cades. 

The following examples speak for the importance of latencies in the auditory system.

1.1  Direction

The superior olivary complex is known to be responsive to interaural disparities in inten-
sity and timing [21]. The direction of a sound source can be detected by correlating the tim-
ing information from both ears. The underlying mechanism is a network of neurons that
receives input from both ears with varying latencies. These latencies are produced by delays
between cochlea and olivary neurons. When a signal arrives at one ear with a certain time
delay relative to the arrival at the other ear, a neuron with interaural delays appropriate for
this condition is activated. Such neurons are said to code the direction of a sound in space on
the basis of its different input latencies. The task of these delays is to compensate for the dif-
ferent arrival times of signals from both ears, so that coincidence detection can be per-
formed. The temporal precision for this mechanism is on the order of microseconds for barn
owls [6].

1.2  Periodicity

A map of latency was described in the inferior colliculus of the cat [16][22]. Latency was
defined as the time difference between tone onset and the first spikes of the response. The
latency axis was orthogonal to the tonotopic axis in the IC [23]. A correlation between
latency and best modulation frequency indicates that latency is important for periodicity
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analysis [15]. Moreover, the range of latency between 7 and 18 ms, and the orientation of the
latency maps, are comparable to the periodicity map found in the same region. 

1.3  Echolocation

In a similar fashion, delay-tuned neurons in the midbrain of the big brown bat are also
arranged in a map in the IC [9]. Delays are defined here as the time between two particular
FM components of a pulse-echo pair [5]. Delay tuning means that neurons are characterized
by a specific “best delay” response that is facilitated by a pair of stimuli. Each stimulus was
characterized by a pair of particular frequencies and amplitudes and separated by a specific
delay. The map of delay was arranged orthogonal to the map of frequencies. Such delays are
in the range from 0.8-50 ms, which corresponds to a echo range of 0.3 to 16 m. 

1.4  Autocorrelation

Autocorrelation is a powerful tool to analyze acoustic stimuli as well as neuronal
responses to acoustic stimuli. Moreover, some authors believe that autocorrelation holds the
key to deciphering auditory processing [1][2].

Latencies are an essential part of every correlation function in general and autocorrela-
tion in particular. The autocorrelation function

  

describes the similarity of the function f(t) (spike train, sound, etc.) with itself after a time
t+τ. When for a delay τ the result of the correlation is high, then the function is similar to
itself with a period of τ. If f(t) is a sound, the correlation is sufficiently strong and τ is in the
proper range, we perceive a pitch corresponding to 1/τ.

The parameter τ describes a temporal delay. This delay is the significant variable in the
correlation. When we assume that such a correlation of spike trains is performed by neurons,
then delays must be present somewhere in the neuronal system. 

Many theories of acoustic perception use the (auto)correlation function to determine the
perception of the pitch of a complex tone [17][1][20] or of other auditory sensations like
rhythms [24] or binaural space location [5]. It is striking that temporal delays in all these
examples range from 0.8 ms to 50 ms. This corresponds to the range of the repetition rate of
periodicity pitch between 20 and 1250 Hz. Likewise it is the important range of echo delays
for bats to detect prey in the distance between 0.3 and 16 meters.

2.    Latencies Measured in Auditory-Nerve Fibres

Auditory-nerve fibers are capable of coding various temporal and static aspects of the
stimulus. Well-known features are frequency (by spike intervals) and volume (by spike rate).
In addition, more complex stimuli properties like periodicity are coded temporally by audi-
tory nerve fibers [1]. Even complex perceptional features such as the pitch shift are coded in
the spike train of auditory-nerve fibers and if analyzed by autocorrelation, may be explained
by a correlation analysis in the auditory system [17][2][19]. 

Heil proposed recently [11][12][also this volume], that a hitherto ignored feature is
coded in the temporal course of the spike train: the temporal derivatives of the stimulus
envelope.

In the following, we discuss measurements of latencies from neurons in the auditory cor-
tex of the cat. Figure 1 shows a plot of the data we will model (from [12][14]). All data are

y τ( ) 1
T
---

T ∞→
lim f t( ) f t τ+( ) td

0

T

∫=
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taken from [12]. The stimuli in this experiment were pure tones with different onset enve-
lopes. Because we are only interested in the beginning of the signal, the only important
parameters for the present discussion are maximum amplitude, Amax, risetime, Trise and the
shape of the envelope during the rise time. Two different envelope shapes were used by Heil:
linear and cos2-rise functions (see Figures 2 and 3). The left side shows the results of an
experiment with linear rise functions. The right side shows experiments with cos2-rise rise
times. Two different neurons are shown here. These data were chosen because they were pre-
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Figure 1   Original data from a cat with (A) a linear rise function [12], neuron 95-95/04) and (B) cos2-rise
function [14] neuron 97-107/35). Top: First-spike latency obtained with tones of different rise
times plotted as a function of amplitude. Bottom: First-spike latency plotted as a function of the
velocity of the envelope (linear) and maximum acceleration (cos2).

Figure 2   Sketch of the situation for the linear rise time paradigm. The amplitude rises to the final amplitude
Amax during its rise time. The threshold Q is reached after a time, which is defined as the latency L.
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sented in great detail in the original papers. Nevertheless, by selecting the data inaccurately,
a small deviation from the original data might exist, especially for small latencies.

In the upper part of Figure 1 the latency is plotted versus the signal’s amplitude. Differ-
ent rise times are indicated by different symbols. The stimuli on the left side consisted of
sinusoidal signals with cos2-rise functions and rise times between 1.7 ms and 85 ms. On the
right side are shown the sinusoidal signals with a linear rise function between 1 and 100 ms.
As can be seen, the latency of the first spike depends not only on the amplitude of the stimu-
lus, but also on its rise time. Latency decreases with increasing amplitude, but increases with
rise time even for the same maximum amplitude. In the lower picture the data are plotted in
a different way — latency is now plotted against (in Heil’s terms) “maximum acceleration of
peak pressure” (cos2) or “rate of change of peak pressure” (linear), instead of amplitude as in
the upper pictures. Now all the data overlap in a single curve. The upper and lower figures
show the same data; only the x-values are different. 

The maximum acceleration of a cos2-function is reached at the beginning of the stimu-
lus. As shown in Section 3.2, it can be computed from rise time (Trise) and maximum ampli-
tude (Amax) by  It therefore seems reasonable to say that acceleration (or
velocity, depending on the actual rise function) is a better parameter for latency than the sig-
nal amplitude and risetime. The primary aim of this chapter is to discuss this assumption in
detail.

In the case of cos2-rise time signals, the curves for different rise times overlap when plot-
ted versus the maximum of the second temporal derivative of the stimulus envelope (the
acceleration). In the case of linear rise time, there is no acceleration but now the curves over-
lap when plotted versus the first temporal derivative, which is the velocity of the envelope.
The velocity of the envelope of the linear rise function is a constant during the rise time and
is equal to 

In the following section we will show why a simple threshold neuron is able to explain
the measured data with high fidelity.

3.    A Simple Threshold Model

We consider a very simple model of a neuron which fires always at the monent when it
reaches its threshold. We assume that the current envelope of the stimulus is somehow trans-
lated instantaneously to the membrane potential of the model neuron. When the membrane

Figure 3   A sketch of the situation for the cos2-rise-time paradigm as in in Figure 1. The threshold, θ, is
reached after a certain time which is the latency L.
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potential reaches the neuron’s threshold, the model neuron immediately fires an action poten-
tial. No further latencies and no adaptation mechanisms are needed. The threshold is fixed to
a constant value. Of course, this is a very simple model of a neuron, but we will see how
much of the data we can explain. In the following sections we will explore several features of
this model by testing on the data obtained with linear- and cos2-rise functions.

3.1  Envelope, Threshold and Temporal Derivatives

3.1.1   Linear Rise Functions

For linear rise times the time course of the envelope Alin(t) is 

  

Here, and in the following, Alin(t) means the temporal course of the linear envelope. Amax is
the maximal amplitude of the envelope, A(t), that is reached (and held) after the risetime. Trise
is the risetime, that is, the time from A(0)=0 to A(t=Trise) = Amax. Our simple neuron fires
when the envelope reaches its threshold, Θ:

.

Solving for t, which is, by definition, the latency Llin, gives

The latency describes the time between tone onset (A(t) = 0) and the time of the spike. The
threshold, Θ, must be smaller than A, otherwise the neuron would never react. In reality,
spontaneous activity sets an upper border to the latency. 

The first temporal derivative of the linear rising envelope during the rise time is 

 

which is constant in time.

3.1.2   Cos2-Rise Functions

In the cos2-case, the stimulus envelope is described by

Again the simple threshold neuron always fires when it reaches its fixed threshold, Θ: 

or solved for t = Lcos
2:
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.

Figure 3 shows a sketch of the cos2-rise function. Assume that the maximum amplitude
is much higher than threshold (Θ << A). Then the term can be approximated by 

Figure 1 shows the latency for cos2-rise functions versus the maximum acceleration of
peak pressure (or the second temporal derivative of the envelope). 

The second temporal derivative of the cos2-function is equal to

The maximum acceleration is reached when . This is true already at the

beginning of the stimulus (t=0). Therefore, the maximum acceleration simplifies to 

3.2  Transforming the Data

The amazing property of the data in Figure 1 is that they converge onto the same curve
when plotted versus the appropriate variable. For the cos2-case this is maximum acceleration
and in the linear case it is the velocity of the envelope. In the following, we will show that
this is a simple result of the threshold model. 

3.2.1   Linear Rise Function

If we plot the latency achieved from the simple threshold model over maximum ampli-

tude we obtain hyperbolas of the form . From the first temporal derivative of

the envelope  we see, that   .

In other words, when data from an experiment with a linear rise function are plotted ver-
sus the first temporal derivative of the envelope, they follow a single 1/x function. In other
words, when we use a transformed x-axis for plotting, all of the data converge onto a single
curve. The resulting curve is a 1/x function, which is no longer an explicit function of Amax
and Trise. The only free parameter in this equation is the threshold, Θ, which in the threshold
model is a constant. Therefore, all measurements of latencies using different combinations
of Amax and Trise result in the same curve.

Note that the velocity of the envelope is not an explicit parameter of the threshold model.
Therefore, the only information signaled by a spike of such a neuron is that its threshold was
reached at a certain time, but not which velocity was present. 

Access to the velocity requires prior knowledge, in this instance, that the stimulus is a
linear-rise function.
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3.2.2   Cos2-Ramp

Above, we found the latency of the threshold  model for a cos2-rise  function  is  equal  to

  

and the second temporal derivative is equal to

 

We can therefore write the neuron’s latency as

 .

This means that latency can be written as function of acceleration. Neither amplitude nor
rise time is an explicit parameter anymore. The resulting function is of the form . In
other words, the threshold model predicts that when data from an experiment with a cos2-
rise function are plotted over the maximum second temporal derivative of the envelope they
are modeled by a single  curve. The resulting function is no longer an explicit func-
tion of Amax or Trise. All other parameters in the equation are constant. Therefore, all combi-
nations of Amax and Trise leads to the same curve. The response of the neuron does not
indicate that a certain acceleration was present, but only, that its threshold was reached.

3.3  Comparison with the Observed Data

We are now able to predict from the threshold model the measured latency of the neuron.
For a given rise function, the calculated latency can be written as a function of the temporal
derivatives. 

The computations above showed that the threshold model predicts that the data for first
spike latency can be fitted to a function of  or the velocity for linear envelopes.
The form of the resulting function is 1/x. For the cos2-rise function, we expect a -
function to fit the data when plotted over , which corresponds to the accelera-
tion of the envelope at t = 0

3.3.1   Linear Rise Function

Figure 4 (replotted from Figure 1) shows the experiment with linear rise functions. The
measured latencies are plotted over . Additionally, a fit with a 1/x-function is
plotted. This fit is the prediction from the simple threshold model, assuming a fixed thresh-
old. In this case the assumed threshold was 38.8 dB and the minimum latency Lmin was 13.6
ms. 

Figure 5 shows the measured latencies plotted versus the calculated latencies. Addition-
ally a straight line with a slope of one is plotted. The fit is quite good, but there are system-
atic errors of this simple model. For very short and very long latencies the calculation
slightly overestimates the measured values. For latencies between 1 and 6 ms the predictions
from the threshold model underestimates the observed latencies of the neuron.

3.3.2   Cos2-case

Figure 6 data shows the data from the experiment with cos2 -rise function, together with
the proposed fit from the simple threshold model. The assumed threshold was 31.1 dB and
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Figure 4   Data from the linear case shown in Figure 1 are plotted against A/T. Additionally, the fit with a 1/x
function is plotted.

1E-5 1E-4 1E-3 0.01 0.1 1

0

20

40

measured latency for linear case
fitted latency using the simple threshold model

la
te

nc
y

velocity of envelope or Amax/Trise
2 (Pa/s2)

Figure 6   Data from the cos2 case obtained from Figure 1 are plotted against Amax/Trise
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the minimum latency 3.16 ms. The fit has the form of a - function as explained
above. Data are plotted against .

Again, we can calculate how long the latency should be, assuming a fixed threshold. Fig-
ure 7 shows the result of this comparison. The calculated latencies are compared directly
with the measured latencies. Additionally a straight line with a slope of one is shown. As can
be seen, the prediction from the threshold model is very good. But again the latencies are
systematically underestimated for latencies in the medium range. 

4.    Modification of the Simple Threshold Model

The calculated fits are already quite good, especially for the cos2-case. They cover most
of the characteristics of the measured data. However, the systematic deviations suggest that
it might be possible to make a more accurate model. In the following a fit is presented that is
derived from a more complex model for the linear-rise data.

The fit for the threshold model chosen for the data in Figure 8 is not the optimal fit shown
in Figure 5. Instead, the minimum latency was chosen to be equal to 11 ms, a little bit
smaller than before, so that most of the calculated data had a positive deviation from the
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Figure 7   Plot of the measured latencies in the case of the cos2-rise function over the calculated latencies. The
straight line has a slope of one. 
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measurement. Only 3 points with very high 

 

A

 

max

 

/T

 

rise

 

-relation, which are not plotted, had a
negative calculated difference.

As we can see, the calculated data differ slightly but systematically from the measured
data. It is therefore straightforward to include a time constant in the simple model. Such a
time constant should lead to delayed responses for slower rise functions. 

In the following we present a leaky, integrate-and-fire model with fixed threshold (Figure
9) that has several time constants that might explain the prolonged delays. The new model
has the disadvantage of increased complexity in comparison to the simple threshold model,
but the advantage that all its parts are associated with parts of real neurons.

Because we are interested in the precise timing of firings, it is necessary to use a neural
model that is dynamically coupled to the transmitter concentration in the synaptic cleft. The
spike generating part is designed as a leaky, integrate-and-fire unit. The main parts of the
neuron membrane model are the membrane capacity, C

 

m

 

, and the leaky conductance, g

 

0

 

. To
simulate the transmitter input we use the controlled membrane conductance, 

 

g

 

m

 

, which is
coupled with the steady-state potential, V

 

0

 

.

 

 

 

The membrane conductance depends on the
amount of transmitter in the synaptic cleft. 

Assume that the amount of transmitter released per time in the synaptic cleft is propor-
tional to the amplitude of the stimulus , where 

 

T(t)

 

 is the amount of trans-
mitter in the synaptic cleft and 

 

A(t) 

 

is the stimulus amplitude. We further assume that
transmitter is lost over time at a rate proportional to the amount of the transmitter present.
The temporal change of the amount of transmitter in the cleft is therefore 

 

For the case of linear rise functions, solving for 

 

T(t)

 

 in this differential equation gives the
amount of transmitter in the cleft time 

 

t:

 

The conductance of the membrane 

 

g

 

m

 

 is proportional to the amount of transmitter
, where 

 

χ

 

 

 

is a constant factor. We can now define the membrane time con-
stant  and the conductance value 

The potential of the whole membrane is described by the difference equation:
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Figure 9   The implementation of a leaky, integrate-and-fire neuron used in the simulation Cm = membrane
capacity, gm = controlled membrane conductance = f(transmitter in cleft), g0 = leakage conduc-
tance,  V0 = steady state potential, Vm = membrane potential.
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where 

 

U(t)

 

 describes the potential of the membrane. The neuron fires again when it reaches a
fixed threshold. The task is therefore to find an equation for 

 

U(t) 

 

and to then solve 

 

U(t)=

 

Θ

 

 

 

to
find 

 

t

 

. The resulting time, 

 

t,

 

 is the latency, 

 

L. 

 

Surprisingly, we can solve the equation analyti-
cally for 

 

U(t)

 

, but the result is not shown due to a length limitation on this chapter. Unfortu-
nately, it is not possible to solve the result for the latency 

 

L 

 

analytically. Therefore, we
simulated the system numerically. With the constants 

 

V

 

0 

 

= potential of sodium (Na

 

+

 

)=60mV
and 

 

SR

 

 = sampling-rate (45.45 µs), 

 

C

 

m

 

 = 0.8 µF, 

 

g

 

0

 

 

 

=10 µS the membrane potential is given
by discretization of 

 

U(t).

 

 The result of the discretization is an iteration formula, which
describes how large 

 

U(t)

 

 is after one time step 

 

U(t-SR).

U(t)

 

 is 0 at 

 

t = 0

 

. The simulated neuron fires every time when its membrane potential
exceeds the threshold of the neuron. The “zero”-threshold, 

 

Θ

 

0

 

, was set to 14.8 mV. When
modeling onset latencies only the first spike is important. Therefore, in this case the thresh-
old is a constant. For linear-rise functions we simulated rise times from 1 ms to 100 ms over
a wide range of amplitudes. Results of the simulation are shown in Figure 10. As can be
seen, the fit for the simulated data is indeed better then the fit from the simple threshold
model, which is indicated in Figure 10 by a line.

Figure 11 shows the remaining error between a fit of the measured data and the calcula-
tion from the modified-threshold model. The first three values with very small velocities are
not present in the plot, because their deviation is more then 30 ms and would require a differ-
ent scaling. But all data with higher velocity have a deviation smaller than 1 ms. By choos-
ing different parameters for the leaky, integrate-and-fire model the deviation might become
even smaller. 

U t( )
V 0 SR γ t( )τ t( )+⋅
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-------------------------------------------- U t SR–( )⋅=
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Figure 10   Result obtained from the simulated neuron with a fixed threshold for linear rise times. The open
circles represent the simulation data from the leaky, integrate-and-fire neuron. Filled squares are
the original data from Figure 1. The line indicates the prediction from the simple threshold
model.
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If we simulate more complex situations, when more than the first spike is important, the
threshold change in dependent on spikes in τ seconds in the past according to

where Tlast is the time of the last spike and TabsRef is the absolute refractory period. A small
Gaussian noise is then added to the threshold in the simulations. This noisy behavior gives
the neuron a small “memory” for the history of what it has done in the past. As mentioned
previously, this changing threshold is probably not important for the observed first spike
latency. Any model however, that models more then the first spike should be able to deal
with changing thresholds.

5.    Discussion

5.1  The Threshold Models

The simple threshold model is able to predict the first-spike latency of the observed neu-
rons in general fashion. The result might be satisfying or not, depending on how precise a
description of the onset latency is required. A more realistic and therefore more complex
simulation of a leaky integrate-and-fire neuron is able to predict the latencies better. How-
ever the principal idea of a fixed threshold remains untouched. Consequently, it is possible to
predict the latency of a neuron with high accuracy using a model that assumes a fixed thresh-
old. The simplicity of this idea is striking.

It might be possible to provide a better fit to the data with different values for the numer-
ous parameters. The idea however, that a neuron fires with a latency that is determined
mainly by a fixed threshold is even more likely. It is not necessary (and conceptually mis-
leading) to use other stimulus parameters such as the temporal derivatives to describe onset
latency. It is, of course, not surprising that a model that includes a larger number of (and
superior) selected parameters, as in the simple threshold model, leads to a better prediction
for latency. 
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Figure 11   Comparison of the simulated data and a fit of the original data.
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The temporal derivatives of the envelope rise functions are not an explicit feature of the
integrate-and-fire model. It is a coincidence that they supply a convenient way of plotting
latency data. The latency of the first spike is therefore determined only by the threshold and
not by any derived envelope features.

It is not satisfying that specific forms of envelope rise functions should have any influ-
ence on the model parameters determining latency. The leaky integrate-and-fire neuron uses
the same set of parameters for all rise functions, while the general interface between the neu-
ron and the stimulus is given by the equation .

Several interesting questions arise if the hypothesis that latency is determined by maxi-
mum acceleration of the envelope is true. Because the maximum acceleration is reached at
the beginning of the stimulus, neurons would need to calculate their precise latencies during
the first few milliseconds of the stimulus without knowledge of the signals time course in the
future. Furthermore, at that moment the signal amplitude is zero. So, actually, no signal is
present at all. This is a puzzling contradiction. 

5.2  The Role of Delays for Information Processing

Intensity, frequency, and periodicity of a stimulus are coded by the rate and statistics of
spikes. It is, however, possible to code temporal features such as the envelope waveform of
the signal by using additional delays. Let us assume that every neuron has a fixed threshold.
Every time the neuron reaches its threshold, it fires an action potential, as long as it is not in
any absolute or relative refractory period. Furthermore, it takes some time for the spike to
travel to the succeeding postsynaptic neuron. These two assumptions are realistic for real
neuronal networks. The two free parameters, threshold and minimum latency, in this model
correspond to the two free parameters in the threshold model. 

Figure 12 shows how such an information coding could be performed. Several neurons
with different thresholds fire at different times during the time course of the stimulus. In this
example, thresholds increase from neuron A to neuron E. Neuron A reaches its threshold

Ṫ gain t( ) A t( )∝

 

  

B
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C
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E

Figure 12   Hypothetical model of a “sampling” network. Several neurons (A-E) fire with different thresholds
and their spikes arrive at a coincidence neuron with different delays.
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first, when the amplitude of the stimulus is low. The delay between the neurons in this exam-
ple and a coincidence neuron are chosen such that their spikes will arrive at the coincidence
neuron at the same time. Neuron A has the lowest threshold, but its spikes arrive with the
longest delay, while neuron E reaches its threshold at last, but its spikes arrives at the coinci-
dence neuron with the shortest delay. Finally, all spikes arrive at the same time. By this
mechanism it is possible to take a sample of the temporal waveform. If a certain coincidence
neuron is active, the corresponding waveform have activated the neurons in this channel. It is
known from physiology that auditory-nerve fibers indeed have different thresholds, filling
the hearing range uniformly [8]. 

Several problems arise with such a system when used for signal detection: detection
depends on signal amplitude and the phase of adjacent frequencies. It would be surprising if
such a system would be sufficient to detect real, noisy signals. Nevertheless the given coinci-
dence scheme is a simplified description of an auditory processing mechanism. The resulting
correlation of input neurons should take place in more or less narrow frequency regions to
avoid phase effects. This supposition corresponds to the idea of critical bandwidths. Fre-
quencies outside a critical bandwidth do not show interaction in phase [21].

Simple coincidence neurons are sufficient to detect such temporal coincidences. Such a
hypothetical coincidence neuron would fire after a particular complex waveform has acti-
vated more peripherally located neurons. Many such neurons together would be able to pro-
vide a sample of the whole waveform. But only when they are analyzed together does it
become apparent which signal they code. While a record of a single neuron would bear only
limited information about the signal. An interesting point about the sampling network is that
single neurons do not code extracted signal features like periodicity, intensity or frequency
directly. Instead, many neurons together code the whole signal temporally. The quality of the
sampling depends only on the number of neurons used. If half of the neurons are removed,
the sampling is of lesser quality. The described sampling mechanism might exemplify neu-
ronal behavior at every level of the auditory pathway, since data from the auditory nerve up
to auditory cortex show the required temporal behavior in high precision [11]. Every single
spike has its own history. It is therefore straightforward to think of a model of auditory short
term memory. 

5.3  A Neuronal Network that can Handle Delays

Information coded by delays could be extracted from spike trains by neuronal networks
that are sensitive to temporal delays. A possible implementation of such a network is shown
in Figure 13. This network is a modification of a classical feed-forward network with spiking
neurons and delays added between the neurons. When a neuron fires, the spikes arrive at the
connected neurons after fixed delays. Weights and latencies are altered by learning rules in a
simple fashion. The temporal learning rule in the model could be a variation of the Hebbian
rule, “Fire nearby, fire closer,” (i.e., the latency of a connection is altered with a probability
that depends on the number of spikes arriving in the (near) past [14]). Due to inherent delays
this model is designed to find not only simple temporal features, but is able also to perform a
correlation between different signals. Therefore, it is adequate to detect periodicity or echo
delays. With the correct learning rule it can learn, in a self-organized way, temporal proper-
ties of the incoming signals. At present, the model is able to detect specific temporal features
in a continuous spike-train. In the future, more complex stimuli will be presented to our net-
work with the task of localizing stimuli and to detect periodicity. A simple enhancement to
the model introduces recursive (inhibitory) connections.

,
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The task of the model is to stay as simple as possible and to modulate complex timing
behavior of neurons. 

Neurons are viewed here as minimal parts of a distributed system in which no part has
any information other then the temporal input from other neurons, either inhibitory or exci-
tatory. The only informations are the spikes that travel from one neuron to another, and a
learning rule that says what to do with synapse strength and latency. Except for potential
information about its own location, this view of real neurons is an adequate description of
what a real neuron sees. In any further model many parameters can be influenced by the
location of the neurons: threshold, time constants, preferred input and so on. Since the
described process is nothing more than a correlation function between several input func-
tions (spike trains), it can be used as a minimum model for all latency-related phenomena
described in the introduction. 

6.    Summary

Latencies are an important feature in auditory neuronal systems. These latencies can be
used by neurons to produce delays and to analyze an input stream like sound for temporal
features. Data that are obtained from measurements of first spike latency are in good corre-
lation with a simple model of a neuron that has a fixed threshold and always fires when it
reaches its threshold. An even better fit is possible when a more complex model is used that
includes intrinsic time constants. The resulting neuron model is able to describe the mea-
sured data with a good fit. More complex envelope features like the acceleration or the
velocity are not necessary to describe latencies. 

Features of sound like direction and periodicity can be detected by neurons or networks
of neurons that handle delays.
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1.    Introduction

In investigations of the frequency selectivity of the auditory system, the power-spectrum
model of masking [6] is widely accepted as an explanation of the phenomenon of masking.
This model assumes that when a listener tries to detect a sinusoidal signal amid background
noise he makes use of the output of a single auditory filter having its center frequency close
to the signal frequency and having the highest signal-to-masker ratio. In addition, it assumes
that the stimuli are represented by long-term power spectra, and that the masking threshold
for the sinusoidal signal is determined by the amount of noise passing through the auditory
filter. With these assumptions, the power spectrum model explains many masking phenom-
ena such as simultaneous masking. However, this model cannot explain all masking phe-
nomena because it ignores the relative phases of the components and the short-term
fluctuations in the masker.

In 1984, Hall et al. demonstrated that across-filter comparisons can enhance the detec-
tion of a sinusoidal signal in a fluctuating noise masker [3]. The crucial feature for achieving
this enhancement is that the fluctuations are coherent or correlated across different fre-
quency bands. They called this across-frequency coherence in their demonstrations “co-
modulation.” Therefore, the enhancement in signal detection obtained using coherent fluctu-
ation, i.e., this reduction in masking threshold, was called “Co-modulation Masking
Release” (CMR). Many psychoacoustical experiments were carried out [7][4][9] and the
same phenomenon was repeatedly demonstrated. The experiments revealed the condition
when CMR can occur. But so far, no computational model has been proposed that takes
advantage of across-frequency coherence.

On the other hand, the human auditory system can easily segregate the desired signal in a
noisy environment that simultaneously contains speech, noise, and reflections. Recently, this
ability of the auditory system has been regarded as a function of an active scene analysis sys-
tem. Called “Auditory Scene Analysis” (ASA), it has become widely known as a result of
Bregman’s book [1]. Bregman reported that the human auditory system uses four heuristic
regularities related to acoustic events to solve the problem of Auditory Scene Analysis.
These regularities are (i) common onset and offset, (ii) gradualness of change, (iii) harmo-
nicity, and (iv) changes occurring in the acoustic event [2]. 

In this work we tackle the problem of segregating the desired signal from a noisy signal
[8] using Bregman’s regularities [2]. We stress the need to consider not only the amplitude
spectrum but also the phase spectrum when attempting to completely extract the signal from
noise, both of which are present in the same frequency region [8]. Based on this approach,
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we seek to solve the problem of segregating two acoustic sources — the basic problem of
acoustic source segregation using regularities (ii) and (iv) of Bregman’s principles [2].

This paper proposes a computational framework for CMR that consists of two models —
our auditory-motivated segregation model and the power spectrum model of masking pro-
posed by Patterson et. al. — followed by a selection process.

2.    Computational Model of CMR

Our computational model of CMR is shown in Figure 1. It consists of two models (A and
B) and a selection process. In this model, we assume that  is a sinusoidal signal and

 is one of two types of noise masker (bandpassed random noise and AM bandpassed
random noise) whose center frequency is the same as the signal frequency. We also assume
that the sinusoidal signal  is added to . Since the proposed model can observe
only the mixed signal , it extracts the sinusoidal signal  using the two models (A
and B). Model A is the auditory-motivated segregation model we proposed earlier [8].
Model B is the power spectrum model of masking [6]. 

We propose a computational framework for CMR, where these two models work in par-
allel and extract a sinusoidal signal from the masked signal. Here, let  and 
be the sinusoidal signals extracted using models A and B, respectively. The fundamental idea
arises from the fact that the masking threshold increases as the masker bandwidth increases,
up to the bandwidth of the signal auditory filter (1 ERB) and then it either remains constant
or decreases depending on the coherence of the fluctuations. Thus, model B can explain part
of CMR by using the output of a single auditory filter when the masker bandwidth increases
up to 1 ERB. Model A can explain part of CMR by using the outputs of multiple auditory fil-
ters when the masker bandwidth exceeds 1 ERB.

3.    Model A: Auditory-Motivated Segregation Model

The auditory-motivated segregation model shown in Figure 2 consists of three parts: (a)
an auditory filterbank, (b) separation block, and (c) grouping block. The auditory filterbank
is constructed using a gammatone filter as an “analyzing wavelet.” The separation block uses
physical constraints related to heuristic regularities (ii) and (iv) proposed by Bregman [2].
The grouping block synthesizes each separated parameter and then reconstructs the
extracted signal using the inverse wavelet transform.

f 1 t( )
f 2 t( )

f 1 t( ) f 2 t( )
f t( ) f 1 t( )

f̂ 1 A, t( ) f̂ 1 B, t( )

Model A
 Auditory-motivated 
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 Power spectrum
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   process    +

f1(t)                                                                                      f1,A(t)

f(t)

f2(t)                                                                                      f1,B(t)

f1(t)

^

^

^

Figure 1 Computational model of CMR. This model consists of two models — our auditory-motivated segre-
gation model (model A) and the power spectrum model of masking (model B) — followed by a
selection process that selects one of their results.



M. Unoki and M. Akagi / Co-modulation Masking Release 223        

3.1  Auditory Filterbank

An auditory filterbank is constructed using the wavelet transform, where the basic func-
tion  is the impulse response of the gammatone filter [5] which is represented using the
Hilbert transform.

,  (1)

where  and . This is a con-
stant Q filterbank having a center frequency  of 1 kHz, a bandpass region from 100 Hz to
10 kHz, and 128 channels. The bandwidth of each auditory filter is 1 ERB. In addition, we
compensate for the group delay by adjusting the peak in the envelopes of Equation (1) for all
scale parameters, which is called “alignment processing,” because a different group delay
occurs at each scale.

3.2  Separation and Grouping

First, we can observe only the signal , where ,  is the
desired signal and  is a noise masker. The observed signal  is decomposed into its
frequency components by an auditory filterbank. Second, the output of the k-th channel, cor-
responding to  and , are assumed to be narrow-band sinusoids

,  (2)

and 

. (3)

Here,  is the center frequency of the auditory filter and  and  are the input
phases of  and , respectively. Since the output of the k-th channel  is the
sum of Equations (2) and (3),
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Figure 2 Model A: an auditory-motivated segregation model. This model consists of three parts: (a) an audi-
tory filterbank, (b) separation block, and (c) grouping block.
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. (4)

Therefore, the amplitude envelopes of the two signals  and  is equal to

, (5)

and

, (6)

where  and . Since the amplitude envelope
 and the output phase  are observable, then if  and  are deter-

mined,  and  can be determined using the equations above. Finally, all the com-
ponents are synthesized from Equations (2) and (3) in the grouping block. Then  and

 can be reconstructed by the grouping block using the inverse wavelet transform. Here,
 and  are the reconstructed versions of  and , respectively.

In this paper, we assume that the center frequency of the auditory filter corresponds to
the signal frequency. Therefore, we consider the problem of segregating  from 
when  and .

3.3  Calculating the Four Physical Parameters

The amplitude envelope  and phase  of  are determined using the
amplitude and phase spectra. Since , we must find the input phase . It
can be determined by applying three physical constraints, derived from regularities (ii) and
(iv), as shown below [8]. 

Constraint 1. Gradualness of change (slowness)

Regularity (ii) means that “a single sound tends to change its properties smoothly and
slowly (gradualness of change)” [2]. The first constraint we describe as “slowness,” is

, where  is an R-th-order differentiable polynomial. By
applying this constraint to Equation (5), and solving the resulting linear differential equa-
tion, we obtain 

,  (7)

where . Here, we assume that in a small segment, ,
.

Constraint 2. Gradualness of change (smoothness)

The second constraint we describe as “smoothness.” At the boundary ( ) between
the earlier segment ( ) and succeeding segment ( ),
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(9)

(10)

From the above relationships, we can use this constraint to determine , which must
satisfy . The variables  and  are the upper and lower values of

 when  is determined by substituting any value of  for  and then
Equations (8)–(10) are satisfied.

Constraint 3. Changes occurring in an acoustic event (regularity)

Regularity (iv) means that “many changes take place in an acoustic event that affect all
the components of the resulting sound in the same way and at the same time” [2]. The third
constraint, which we describe as regularity, is 

,  (11)

where L is the number of adjacent auditory filters.
Here, a masker envelope  is a function of  from Equations (6) and (7). We

consider this constraint to select an optimal coefficient  using 

, (12)

where  is the masker envelope given by any , and 

. (13)

Hence, the above computational process can be summarized as follows: (a) a general
solution of  is determined using physical constraint 1; (b) candidates of  that can
uniquely determine  are determined using physical constraint 2; (c) an optimal 
is determined using physical constraint 3; and (d)  is uniquely determined by the
optimal .

In this chapter, we consider the problem of segregating a masked sinusoidal signal in
which the localized signal  is added to the noise . Therefore, when we solve the
above problem using the proposed method, we must know the duration for which two acous-
tic signals overlap. This can be determined by detecting the onset and offset of . By
focusing on the temporal deviation of  and , we can determine onset  and
offset  of  as follows:

1. Onset  is determined by the nearest maximum point of  (within 25 ms)
relative to the maximum point of .

2. Offset  is determined by the nearest maximum point of  (within 25 ms)
relative to the minimum point of .

The segregated duration is .
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4.    Model B: The Power Spectrum Model of Masking

In the power spectrum model [6], we assume that when a listener is trying to detect a
sinusoidal signal with a particular center frequency amid background noise, he uses the out-
put of a single auditory filter whose center frequency is close to the signal frequency, and
which has the highest signal-to-masker ratio. Therefore, we assume that only the component
passed through a single auditory filter affects masking. In particular the masking threshold
for a sinusoidal signal is determined by the amount of noise passing through the auditory fil-
ter. 

The power spectrum model consists of model B as shown in Figure 3. This filter consists
of a gammatone filter whose center frequency is 1 kHz and bandwidth is 1 ERB. In this
model, the sinusoidal signal  extracted from the masked signal  is the output of
the single auditory filter .

5.    Simulations

5.1  Co-modulation Masking Release

Hall et al. measured the masking threshold for a sinusoidal signal in one of their experi-
ments as a function of the bandwidth of a continuous noise masker. They used a center fre-
quency of 1 kHz, a duration of 400 ms and kept the spectrum level constant [3]. They used
two types of masker — a random noise masker and an amplitude modulated random noise
masker — which were both centered at 1 kHz. The random noise masker had irregular fluc-
tuations in amplitude, and the fluctuations in different frequency regions were independent.
The amplitude-modulated masker was a random noise that was amplitude modulated at an
irregular, slow rate; a noise that was lowpass filtered at 50 Hz was used as a modulator.
Therefore, fluctuations in the amplitude of the noise in different spectral regions were the
same. 

Figure 4 shows the results of that experiment. For the random noise (denoted by R), the
signal threshold increased as the masker bandwidth increased up to ca. 100–200 Hz, and
then remained constant. This is exactly as expected from the traditional model of masking.
The auditory filter at this center frequency had a bandwidth of ca. 130 Hz. Hence, for noise
bandwidths up to about 130 Hz, increasing the bandwidth increased the noise passing
through the filter, so the signal threshold increased. In contrast, increasing the bandwidth
beyond 130 Hz did not increase the noise passing through the filter, so the threshold did not
increase. The pattern for the modulated noise (denoted by M) was quite different. For noise
bandwidths greater than 100 Hz, the signal threshold decreased as the bandwidth increased.
This indicates that subjects could compare the outputs of different auditory filters to enhance
signal detection. The fact that the threshold decreased with increasing bandwidth only with
modulated noise indicates that fluctuations in the masker are critical and that the fluctuations
need to be correlated across frequency bands. Hence, this phenomenon has been called “co-
modulation masking release” (CMR). The amount of CMR in that experiment, defined as the
difference in thresholds for random noise and modulated noise, was at most 10 dB [3].

f̂ 1 B, t( ) f t( )
Xk t( )

f(t) Auditory filter f    (t)1,B

Ψ(t)

^

Figure 3 Model B: a power spectrum model of masking.
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5.2  Simulations for Model A

5.2.1 Stimuli and Procedure

We considered conditions equivalent to the experimental ones used by Hall et al. In this
simulation we assumed that  was a sinusoidal signal, where the center frequency was 1
kHz, the duration was 400 ms, and the amplitude envelope was constant, and the masker

 was two types of bandpassed noise having its center frequency close to the signal fre-
quency. One was a bandpassed random noise  and other was an AM bandpassed ran-
dom noise . The AM masker was calculated by amplitude modulating , where
the modulation frequency was 50 Hz and the modulation rate was 100%. Here, the power of
the noise masker  was adjusted so that . Moreover the power
ratio between  and , i.e., the SNR (signal-to-noise ratio), was –6.6 dB.

In this simulation, we must determine the number of adjacent auditory filters, L, to use in
Equation (11). However we don’t know this number when CMR occurs. We don’t know
which channels actually contribute to the CMR effect observed in psychoacoustics. We
assume that the number of relevant auditory filters required in this model is simply deter-
mined by the total masker bandwidth. To realize the different experimental conditions, the
initial bandwidth of the masking noise(  and ) was kept constant at 1 kHz, and
only the number of auditory filters to be processed by the model was adjusted. The mixed
signals were  and , corresponding to the
stimuli in Figure 4 labeled R and M, respectively. Simulation stimuli, consisting of 10 sinu-
soidal signals, were formed by varying the onset. 30 maskers of the two types were gener-
ated by varying the random seeds. Thus, the total number of stimuli was 300. For example,
one of the two types of mixed signals is shown in Figure 5. Here, a sinusoidal signal  is
masked visually in the all-mixed signal, but we can hear the sinusoidal signal from 
because of the CMR. However, we cannot hear the sinusoidal signal from  because of
the masking.

f 1 t( )

f 2 t( )
f 21 t( )

f 22 t( ) f 21 t( )

f 2 t( ) f 21 t( )2 f 22 t( )2⁄ 1=
f 1 t( ) f 2 t( )

f 21 t( ) f 22 t( )

f R t( ) f 1 t( ) f 21 t( )+= f M t( ) f 1 t( ) f 22 t( )+=

f 1 t( )
f M t( )

f R t( )

Figure 4 Results for CMR (Hall et al, 1984). The points labeled ‘R’ are thresholds for a 1-kHz signal cen-
tered in a band of random noise, plotted as a function of the bandwidth of the noise. The points
labeled “M” are the thresholds obtained when the noise was amplitude modulated at an irregular,
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I n  t h i s  pape r,  we  s e t  t he  pa r ame te r  a s  ,
,  ,  ,  and   i s  t he

maximum of . In their demonstration of CMR, Hall et al measured the masking
threshold as a function of the masker bandwidth.

In their demonstration of CMR, Hall et al measured the masking threshold as a function
of the masker bandwidth. Our simulation conditions are equivalent since we measured the
SNR of the extracted sinusoidal signal  as a function of the number of adjacent audi-
tory filters L, which is equivalent to the masker bandwidth, where the masker bandwidth is
fixed. Therefore,  is uniquely determined by the amplitude envelope  as a func-
tion of L from Equations (7), (12), and (13). The bandwidths related to L=1, 3, 5, 7, 9, 11 are
207, 352, 499, 648, 801, 958 Hz, respectively.

5.2.2 Results and Discussion

Simulations were carried out according to the conditions described above. The results are
shown in Figure 6, where the vertical and horizontal axes show the improved SNR of the
extracted sinusoidal signal  and the bandwidth related to L, respectively. Moreover,
the line and the error bars show the mean and standard deviation of the SNR of the signal

 extracted from 300 mixed signals, respectively. It was found that for the mixed sig-
nal , a sinusoidal signal  became detectable as the number of the adjacent
auditory filters L increased, but for the mixed signal ,  was not detectable as L
increased. Therefore, the results show that a sinusoidal signal is more detectable when the
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Figure 5 Stimuli: a sinusoidal signal  (left-top), a bandpassed random noise  (left-middle), and
an AM bandpassed noise  (left-bottom). Mixed signals  (right-top) and  (right-
bottom).
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components of the masker have the same amplitude modulation pattern in different fre-
quency regions or when the fluctuations in the masker envelopes are coherent. Hence, model
A simulates the reduction of masking using the outputs of multiple auditory filters.

5.3  Simulations for Model B

5.3.1 Stimuli and Procedure

These simulations assumed that  was the same 10 sinusoidal signals as those used
as the stimuli in model A and that  was 45 bandpassed random noise maskers of two
types formed by varying random seeds (five types) and by varying the bandwidth (nine
types). Thus, the total number of stimuli was 450. The masker bandwidths were 33, 67, 133,
207, 352, 499, 648, 801, and 958 Hz because we don’t need to determine the number of
adjacent filters, L, and we can control the masker bandwidth directly. Three of these band-
widths were related to 1/4, 1/2, and 1 ERB, respectively. The remainder were the same band-
widths used in the simulations for model A.

In model B, in order to measure the masking threshold as a function of the masker band-
width, we measure the SNR of the extracted sinusoidal signal  from noise-added sig-
nal as a function of the masker bandwidth, using the same evaluation measure of masking
threshold in model A.
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Figure 6 Relationship between the bandwidth related to the number of adjacent auditory filters and the SNR
for the extracted signal . The vertical and horizontal axes show the improved SNR of the
extracted sinusoidal signal  and the bandwidth related to L, respectively. The real line and
the error bars show the mean and standard deviation of the SNR of the signal  extracted
from 300 mixed signals, respectively.
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5.3.2 Results and Discussion

Simulations were carried out according to the descriptions above. The results are shown
in Figure 7, where the vertical and horizontal axes show the improved SNR of the extracted
sinusoidal signal  and the masker bandwidth, respectively. Moreover, the line and
the error bars show the mean and standard deviation of the SNR, respectively. Figure 7
shows that the SNR for the extracted sinusoidal signal  increased as the masker
bandwidth increased, independent on the type of masker. In particular, as the masker band-
width increased up to 1 ERB the masking threshold (SNR) increased and then remained con-
stant. Hence, model B simulates the phenomenon of simultaneous masking using the output
of a single auditory filter.

5.4  Considerations for Computational Model of CMR

The results of simulations for the two models show two types of CMR behavior. Model
A simulates the phenomenon of CMR/simultaneous masking by using the coherence of the
fluctuations in the amplitude envelope of a masker as the masker bandwidth increases above
1 ERB. By contrast, model B simulates simultaneous masking in which the threshold
increases as a function of the masker bandwidth as the masker bandwidth increases up to 1
ERB and then the threshold remains constant. The selection process therefore selects the
lowest of these masking thresholds. In other words, it selects the highest SNR of the signal
extracted from  and , and then  is the extracted signal with the high-
est SNR. Thus, based on the results in Figures 6 and 7, the proposed model has the masking
threshold shown in Figure 8. In the selection process, the extracted signal with the lowest
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Figure 7 Relationship between the masker bandwidth and the SNR for the extracted signal . The ver-
tical and horizontal axes show the improved SNR of the extracted sinusoidal signal  and the
bandwidth related to L, respectively. The real line and the error bars show the mean and standard
deviation of the SNR of the signal  extracted from 300 mixed signals, respectively.
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threshold is selected from the signals extracted using the two models. These characteristics
show that the phenomenon of CMR is similar to Hall et al.’s results. Hence, the proposed
model is a computational model of CMR. The maximum amount of CMR in Hall et al.’s
demonstrations was about 10 dB, whereas in our model it is about 8 dB.

6.    Conclusions

In this paper, we have proposed a computational framework for CMR. This framework
consists of two models, our auditory-motivated segregation model (model A) and the power
spectrum model of masking (model B), as well as a selection process that selects one of their
results. The mechanisms for extracting a sinusoidal signal from a masked signal work as fol-
lows: model A uses the outputs of multiple auditory filters and model B uses the output of a
single auditory filter. 

Simulations of the two models were carried out using two types of noise masker, the
same as Hall et al.’s demonstration conditions: bandpassed random noise and AM band-
passed random noise. In model A, the signal threshold decreased depending on the type of
masker and the masker bandwidth. In the case of bandpassed random noise, the signal
threshold did not vary as the masker bandwidth increased. In contrast, for AM bandpassed
noise, the signal threshold decreased as the masker bandwidth increased. In model B, the
signal threshold increased as the masker bandwidth increased up to 1 ERB and then
remained constant for both noise maskers. The selection process then selected the highest
SNR from the sinusoidal signals extracted from the two models. As a result, the characteris-
tics of the proposed model show that the phenomenon of CMR closely corresponds to Hall
et al.’s results. The maximum amount of CMR in the proposed model was about 8 dB.
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Figure 8 Relationship between the masker bandwidth and the SNR for the extracted signal. This characteris-
tic was obtained from the result of the selection process from Figures 6 and 7.
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Hence, the proposed model is a computational model of CMR. We also showed that sig-
nal slowness and smoothness — related to regularity (ii) — and the same fluctuation pattern
in different frequency regions — related to regularity (iv) — are all important cues to
explain CMR.
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1.    Introduction: Temporal Coding of Auditory Qualities

Pitch, timbre, and rhythm are basic auditory qualities that are fundamental to the percep-
tion of speech, music and environmental sounds. These perceptual qualities have much in
common: 

(1) they are very precise (subtle discriminations can be made), 
(2) they are largely invariant in the face of large changes in stimulus intensity, location in

auditory space and background noise levels, and
(3) they are apprehended by a wide variety of animals.

A central goal for auditory physiology has always been to understand the nature of the
neural codes, representations and processing architectures that subserve these auditory form-
percepts. Many auditory physiologists and psychoacousticians have recognized the perva-
sive parallels that exist between auditory percepts on one hand and the temporal discharge
patterns of auditory neurons on the other. On many levels, the properties of neural represen-
tations based on the stimulus-locked character of neural discharge patterns (spike timings,
synchronicity, interspike intervals) mirror those common properties listed above. 

The strongest candidate neural codes for pitch at the level of the auditory nerve and
brainstem are those based on all-order, interspike-interval distributions of populations of
auditory neurons (“population-interval distributions”). Historically a diverse array of models
and simulations has pointed to the use of interspike-interval information by the auditory sys-
tem in explaining the various pitches that are heard [33][34][37][39][43][56], as well as the
precision with which they can be discriminated [21][43][55]. While a large number of neu-
rophysiological studies of the auditory nerve have examined the interspike-interval corre-
lates of pitch perception and frequency discrimination, it has only been relatively recently
that population-interval distributions have been estimated from auditory-nerve data
[10][11][45]. In our own investigations [10][11], we found that features of population-inter-
val distributions estimated from observed responses of 50–100 single auditory-nerve fibers
of Dial-anesthetized cats closely parallel those of human pitch perception [10][11]. With
very few exceptions, the most frequent interval in the auditory nerve at any given time corre-
sponds to the pitch that is heard. Many complex pitch-related phenomena are readily
explained in terms of these population-interval distributions: the pitch of the missing funda-
mental, pitch equivalence, relative phase and level invariance, non-spectral pitch, pitch shift
of inharmonic tones and the dominance region. 

We have also observed empirically that patterns of major and minor peaks in population-
representations resemble those of their respective stimulus autocorrelation functions [9]. In
retrospect, it has become apparent that this similarity is a general consequence of the phase-
locking of neural discharges. Because phase-locked responses are found in many other sen-
sory systems, such as vision, mechanoreception, and electroreception, this finding has broad
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implications outside of the auditory system [4][7][47]. To the extent that a receptor system
produces neural discharges whose timings are highly correlated with stimulus time structure,
distributions of all-order, interspike intervals resemble the stimulus autocorrelation function.
In the auditory system, by virtue of the phase-locking abilities of auditory neurons, popula-
tion-interval distributions provide very general autocorrelation-like representations for stim-
ulus periodicities up to the limits of phase-locking.

Population-interval distributions representations are also capable of representing the tim-
bre of stationary sounds, such as vowel quality [4][9][25][37][40][45]. These timbres are
associated with shapes of spectral envelopes, which manifest themselves in autocorrelation
functions as patterns of minor peaks (Figure 3). To the degree that each stimulus component
produces phase-locked discharges, it contributes its time structure to the population interval
distribution. Consequently, in the auditory nerve, different vowels, with different sets of
dominant frequency components, produce population-interval distributions with characteris-
tic patterns of short intervals that reflect their respective formant structures. Changes in these
population-interval patterns closely follow vowel-identification boundaries [25].

Population-interval distributions thus appear to be capable of subserving a wide variety
of auditory qualities associated with pitch and timbre. These strong psycho-neural corre-
spondences beget questions of whether the central auditory system, in fact, utilizes this inter-
val-based information, and if it does, how does it use it. Related to these questions are still
others that concern the fate of neural timing information as one ascends the auditory path-
way. Is the neural timing information that is so precise and robust, and in such abundance at
the level of the auditory nerve, converted to across-neuron patterns of activation in higher,
central auditory stations? Or is the temporal structure preserved in some way, perhaps in less
synchronous and more spatially distributed form than is found in lower stations? If temporal
information is in fact available in central auditory stations at the level of the midbrain, thala-
mus, and/or cortex, what kinds of neural processing architectures would be needed to make
use of it?

This paper explores some possible means by which neural networks might analyze dis-
tributed, population-based temporal representations of auditory qualities. For the most part
we will put aside for the present questions of where these neural networks might be con-
cretely located, in favor of more functionally oriented ones devoted to exploring their poten-
tial information-processing capabilities. Whether these kinds of neural computations are in
fact carried out in central auditory structures are empirical questions that can only be
answered through directed neurophysiological experiments. While a detailed understanding
of how the auditory portion of the brain works as an information-processing system remain
our ultimate goal, we can only direct our neurophysiological lenses effectively if we already
have some strong ideas about the kinds of neural computational mechanisms that might be
possible.

2.    Time-to-Place Conversions

In the past virtually all of the temporal theories of hearing have assumed that the tempo-
ral information found at the level of the auditory nerve is converted to spatial patterns of acti-
vation somewhere higher in the auditory pathway. Many of the first neural networks that
were proposed for auditory computation, such as the Jeffress model for auditory localization
[27] and the Licklider duplex model for pitch perception [33], were time-delay neural net-
works whose purpose was to carry out this conversion. It was generally assumed that the out-
puts of such networks would then be analyzed via traditional, channel-coded connectionist
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networks in more central stations. For example, Licklider’s time-delay architectures [33][34]
converted temporal input patterns to spatialized autocorrelation profiles by means of delay
lines and coincidence detectors. However, sharply tuned autocorrelator-like periodicity
detectors have yet to be found in the auditory pathway. Likewise, neurophysiological investi-
gations in the auditory cortex have failed to find other kinds of simple pitch-detection units
[54]. The most promising evidence for a time-to-place transformation has involved the mod-
ulation-tuning properties of central auditory neurons [32][53]. However, modulation-tuning
tends to be relatively coarse, and to weaken at higher levels and in background noise
[48][49]. Moreover, as one ascends the auditory pathway to auditory midbrain, thalamus,
and cortex, best modulation frequencies (BMFs) generally decline, with progressively fewer
BMFs covering the periodicity pitch range (50-500 Hz). This shift towards lower BMFs par-
allels declines in average discharge rates and synchronization indices that are seen. Finally,
modulation-based representations, like first-order interval detectors, sometimes diverge from
the autocorrelation-like behavior that characterizes pitch judgments (e.g. de Boer’s rule for
pitch shifts of inharmonic AM tones). 

3.    Neural Timing Networks: Time-Time Comparisons

A second possible strategy for representing and analyzing auditory forms is to retain
temporal information in one form or another, and to perform comparisons between different
time patterns by observing their interactions. For example, one can detect extremely subtle
differences in frequency by binaural comparisons in which one listens for the presence of
binaural beats. A major question for such an approach concerns the availability of temporal
information to be analyzed. Unfortunately, the existence limits of neural timing information
in the auditory pathway are still not well established. Pitch-related temporal patterns are
omnipresent in the auditory nerve and cochlear nucleus [5][51] and are still quite evident in
the auditory midbrain [22][32]. Although neural interspike interval information present in
single units thins out dramatically as one proceeds from brainstem to thalamus to cortex, it is
nevertheless possible that the requisite timing information to support central time codes for
pitch and timbre exists in thalamocortical loops. Roughly half of all units encountered in
lightly anesthetized auditory thalamus show significant phase-locking (synchronization
index > 0.3) to pure tones of 250-500 Hz, while roughly 10% phase-lock to 1-2 kHz tones
[20]. Response periodicities of several hundred Hz are observed in unanesthetized primary
auditory cortex [20][57]. To the extent that interspike-interval information exists in many of
these stations, it remains precise, robust and faithful to the autocorrelation-like behavior of
pitch. It is important to remember that the timing information present in the auditory nerve
far exceeds that required for human frequency discrimination [21][55]. Accordingly, only a
small fraction of the timing information available at the auditory nerve need be faithfully
transmitted and preserved for central auditory analyzers in order to realize the perceptual
capabilities that are observed for the organism as a whole. 

 If the interval-based information is indeed available in central auditory stations, what
kinds of neural networks are required for its analysis? Alongside traditional connectionist
networks and time-delay networks, neural timing networks can be envisioned that operate on
time structure in their inputs to produce interpretable temporal patterns in their outputs
(time-to-time mappings). Their closest precursors are simple functional models of neural
computation for which fine time structure is of primary importance [1][3][12][27][34][35]
[36][38][46][50][58]. Some of these precursors were themselves inspired by the functional
anatomy of cortical structures [3][50][58].
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4.    Simple Feedforward Timing Nets

Consider an array of coincidence detectors that have inputs from two sets of tapped delay
lines arranged in anti-parallel orientation (Figure 1). The configuration is reminiscent of both
the Jeffress binaural localization model [27] and the Braitenberg cerebellar timing model
[3]. Many relative delays are realized by the slow conduction times across the array such that
each position along the tapped delay line corresponds to a particular relative delay between
the input signals. Thus, all relative delays are realized up to the conduction time across the
array. Each coincidence detector requires nearly simultaneous arrival of a spike in both lines
in order to fire. Consequently, each spike in the output of the coincidence array represents
the joint occurrence of spike arrivals in the two inputs (or the multiplication of binary inputs,
Si(t)*Sj(t-τ)). A further consequence is that each interspike interval or higher-order spike
arrival pattern appearing in a given output channel must also be present in each of the two
inputs. Thus the array functions as a temporal sieve, passing those temporal patterns that are
common to both sets of inputs. Several basic computations can be carried out. First, the
cross-correlation function of the two inputs can be computed by counting the number of
spikes in each output channel as a function of relative delay. Their convolution can be com-
puted by summing across relative delay channels for each time step. Similarly, the summary
or population-autocorrelation of the outputs can be computed by summing the autocorrela-
tions of each of the output channels. 

The conduction time across the array implements a temporal contiguity window; those
inputs that arrive within this time window interact, while those arriving at different times do
not. All intervals from each set of inputs that arrive within the temporal contiguity window
cross their counterparts, such that if one input has M intervals of duration, τ0, and the other
has N such intervals, then M*N τ0  intervals will appear in the outputs. Within the temporal

Figure 1    Simple feedforward timing net consisting of an array of coincidence detectors and two sets of 
tapped delay lines through which input signals Si and Sj arrive.
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contiguity constraints, the coincidence array therefore performs a multiplication of the auto-
correlations of its inputs. 

The population-autocorrelation output of such a coincidence array is largely phase-
insensitive. Because all of the intervals in the two input lines arriving within the time win-
dow cross their counterparts somewhere in the array, the short-term temporal ordering of the
intervals within each incoming pulse train signal has little effect on the population-autocor-
relation of the output. This behavior is qualitatively similar to the phase-insensitive character
of auditory form perception: in general, we have great difficulty distinguishing pitches or
timbres of complex tones that differ only in their phase spectra. Temporal contiguity con-
straints also exist in pitch and timbre perception. Pitches associated with the missing funda-
mental can be evoked for sets of harmonics that are presented successively, but disappear
when brief periods (> 10 ms) of silence are inserted between them [24]. Similarly, two sin-
gle-formant vowels do not produce a two-formant vowel quality unless the waveforms corre-
sponding to the two formants arrive within a similarly brief time window [13][14]. Provided
that their waveforms overlap in time within this window and have the same fundamental,
one cannot generally distinguish between combinations of single formant vowels with dif-
ferent relative delays among the vowels. The phase-insensitive nature of this coincidence
array means that the mechanism can accommodate a good deal of asynchronous, temporal
shifting among its inputs.

5.    Recognition of Common Pitch Irrespective of Timbre

Coincidence arrays can extract those periodicities common to their inputs, even if their
inputs have no harmonics in common. This is useful for the recognition of common pitches
irrespective of differences in timbre (e.g. two different musical instruments playing the same
note). As an example, two amplitude-modulated (AM) tones were passed through the coinci-
dence array (Figure 2). The fundamental frequency (f0) of an AM tone is equal to its modu-
lation frequency (fm). AM tones produce strong pitches at their fundamental frequencies,
despite the lack of any stimulus energy at that frequency (i.e., AM tones produce pitches at
various “missing fundamentals”). For this example, the fundamental frequencies of the two
signals were both set to 125 Hz, such that the signals produce the same low pitch at that fre-

Figure 2    Effect of passing two signals through the coincidence array. The stimuli are two AM tones with dif-
ferent carriers (fc = 500 Hz, 1250 Hz) but the same modulation frequency (fm = 125 Hz). The AM
tones have no harmonics in common, but they produce a common low pitch at their “missing funda-
mental (f0 = fm = 125 Hz, dotted lines). Right: Population autocorrelation of the output of the coin-
cidence array. 

Population-
autocorrelation

Feed-forward
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Figure 3    Left: Waveforms, power spectra, and autocorrelation functions for four vowels. The vowel set con-
sists of combinations of two different fundamental frequencies (f0 = 100, 125 Hz) and two formant
structures. Horizontal arrows above waveforms and vertical lines in autocorrelations indicate funda-
mental periods (1/f0 = 8, 10 ms), which correspond to voice pitch periods. Shaded bars indicate
periodicities associated with formant structures that give rise to differences in vowel quality (tim-
bre). Right: Population autocorrelations of the output of the coincidence array for all vowel pairs.

quency. Despite their common fundamental, the two signals have different carrier frequen-
cies (fc = 500 Hz vs. 1250 Hz) and therefore have different spectral energy distributions.
Such signals would produce different timbres. When the two signals are passed through the
array, the resulting population autocorrelation is dominated by intervals at the common fun-
damental period, 1/f0 = 8 ms. The array thus extracts those periodicities that are common to
the two signals, and the form of those common temporal patterns appears directly in its out-
put.

6.    Recognition of Common Timbre Irrespective of Pitch

Coincidence nets can also extract common periodicities that are associated with different
timbres or vowel qualities. This is useful for recognizing common timbres irrespective of
differences in pitch (e.g. the same musical instrument playing different notes, or two differ-
ent people speaking the same vowel). Four synthetic vowels consisting of combinations of
two fundamental frequencies (f0s) and two sets of formants (F1, F2, F3, F4, F5) were con-
structed (Figure 3). These signals correspond to the vowels [ae] (as in “hat”) and [εr] (as in
“herd”). Their waveforms, power spectra, and autocorrelation functions are shown in Figure
3 (left). Each vowel evokes a “voice pitch” at its fundamental. Fundamental frequencies (f0)
correspond to spacings between adjacent harmonics in the power spectra; fundamental peri-
ods (1/f0) correspond to major peaks in the respective autocorrelation functions. Each vowel
also has a characteristic tonal quality (“timbre”) which determines whether it will be recog-
nized as an [ae] or an [εr] (or some other vowel). The general shape of the power spectrum
(spectral envelope) largely determines the timbre of a stationary sound; the spectral enve-
lope, in turn, is largely shaped by positions and magnitudes of spectral peaks (formants).
Different combinations of formants produce characteristic patterns of short time intervals in
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the autocorrelation functions. Similar characteristic patterns corresponding to the fundamen-
tal and to formant combinations are observed in population-interval distributions at the level
of the auditory nerve [4][8][9][37][45].

All combinations of the four waveforms were passed pairwise through the coincidence
net (Figure 3, right panel). Population autocorrelations produced by vowels paired with
themselves are equivalent to their own autocorrelations squared. Those vowel pairs that had
common fundamental frequencies and similar voice pitches produced large peaks at their
common fundamental periods. Those vowel pairs that had common formant structures (com-
mon vowel quality or timbre) produced common patterns of short intervals that correspond
to their respective formant structures. Those vowel pairs that had neither common funda-
mental frequency nor common formant structure (different voice pitches and timbres) pro-
duced only small peaks associated with overlapping subharmonics.

Thus, a simple, feedforward coincidence array can operate on two sets of temporally
coded inputs in order to extract common periodicities underlying common pitches and tim-
bres. This permits a common pitch to be recognized independent of timbre, and a common
timbre to be recognized independent of pitch. Further, both operations can be realized using
the same, simple mechanism that operates on the interspike-interval statistics of an entire
ensemble of neural elements.

7.    Binaurally Created Pitches

The feedforward coincidence operations outlined above require the two sets of inputs to
be simultaneously present in the network in order to effect pitch and timbral comparisons.
The most obvious locations in the auditory system where one has simultaneous phase-locked
inputs, tapped delay lines, and arrays of coincidence detectors are structures in the auditory
brainstem that receive binaural inputs. Low pitches and rhythmic binaural beats can be cre-
ated by binaural interactions within these structures [15]. Historically, the existence of “bin-
aurally created pitches” was used to argue against temporal models for pitch that required
interaction of neighboring harmonics within the same cochlea (e.g. Schouten’s theory of
‘residue’ pitch [18]). Houtsma and Goldstein [26] showed that binaural combination of two
harmonics of a common fundamental could give rise to a binaurally created pitch at the
missing fundamental. The existence of these pitches was explained in terms of a spectral-
pattern analysis of harmonic structure in a “central spectrum” representation. The feedfor-
ward operation outlined above provides a temporal account of the generation of such
pitches. Here the two sets of inputs to the coincidence array come from the auditory path-
ways originating in each ear. As with the two AM tones illustrated above, when two harmon-
ically related pure tones are passed through such a coincidence network, the population
autocorrelation function of the output produces a maximum at their common fundamental
period. A similar result is obtained if the two harmonics are band-passed filtered, half-wave
rectified, and the output of each channel is passed through a similar cross-correlation array
[6]. The time-structure of the respective tones are impressed on swaths of frequency chan-
nels that overlap and these beat at the fundamental frequency. In those channels, binaural
coincidence detectors consequently produce many intervals at the “missing” fundamental
period. According to a general temporal autocorrelation theory of pitch, such a population-
interval pattern would then be interpreted by central analyzers, much in the same way as
monaural pitches, with the result that a binaural interaction pitch at the missing fundamental
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should be heard. These observations notwithstanding, there are other temporal mechanisms,
such as a simple central addition of the monaural population-interval distributions, that
would also produce these pitches. 

There are also other kinds of pitches that are created through binaural phase differences
[2][16] that create troughs in the population autocorrelations of binaural cross-correlation
arrays. These troughs correspond to the pitch periods that are heard. Such pitches therefore
require cancellation or anti-correlation operations rather than simple coincidence operations
[17][19]. Such operations could be incorporated into feed-forward timing nets by adding
anti-coincidence detectors that produce output pulses when there is an incoming pulse in
only one of the two input lines (an XOR operation). Once both coincidence and anti-coinci-
dences are computed, timing networks attain the means of computing both temporal similar-
ities and differences present in their inputs.

8.    Simple, Recurrent Timing Nets 

The simple feed-forward networks outlined above carry out comparisons between inputs
that are simultaneously presented. In order to perform delayed matching tasks, such net-
works would require some mechanism for maintaining a working memory representation of
what came before. Perhaps the simplest means of storing time patterns, either in the form of
post-stimulus-time patterns or interval statistics, is to let the signals themselves circulate in
recurrent sets of delay lines (Figure 4). A reverberating memory is thereby created in which
the signal itself serves as its own temporal memory trace. Incoming time patterns can then be
compared with those that are circulating using the kinds of feed-forward correlational opera-
tions outlined above. Matching of pitches or timbres in such a system then involves maxi-
mizing the correlation between the stored temporal pattern and the incoming one. 

In such a system, recognition operations can be carried out if there are central neural
assemblies that can produce temporal patterns that are characteristic of the objects to be rec-
ognized (e.g., interval distributions characteristic of particular vowels). Neural responses
consistent with this notion have been observed in some neurophysiological conditioning
studies [29][44][58], where stimulus-related temporal patterns are “assimilated” by individ-
ual neurons and “readout” at different times. If the outputs of an ensemble of such assem-
blies are cross-correlated with incoming temporal patterns and fed back into the loop, then
those incoming patterns that resonate most strongly with those produced by neural assem-
blies will build-up the fastest. Strongly activated central temporal pattern templates can steer
the build up of circulating patterns, such that the resulting resonances resemble the intersec-
tion of the incoming pattern with the stored templates, thereby creating “perceptual magnet
effects.” 

A considerable body of psychological evidence exists for mechanisms that build-up,
store, and read-out temporal expectations. Studies of conditioning [28][42][58], music per-
ception [30][31], and rhythm production [52] suggest that temporal relationships are explic-
itly encoded in memory, and that these relationships create sets of temporal expectancies.
Recurrent timing nets implement reverberating memories [58] that can dynamically create
short-term expectancies and build up temporal patterns that recur over time. 

Perhaps the simplest example of a reverberating memory is the recurrent timing net
shown in Figure 5. This network cross-correlates incoming time patterns with previous, cir-
culating ones in order to build up those temporal patterns that recur. The network consists of
an array of coincidence detectors which all receive the same external signals. Each coinci-
dence detector has an associated delay loop with a different recurrence time. Coincidence
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detectors temporally cross-correlate incoming signals with those that are arriving via the
delay loop. As a first step, pulse trains with repeated, randomly selected pulse patterns (e.g.
100101011-100101011-100101011...) are presented to the network. At each time step, the
incoming pulse train is multiplied by the circulating pulse train arriving in each respective
delay loop and the resultant signal is fed back into the loop. In the absence of pulses arriving
through the delay loop, the incoming pulse train is fed into the loop. If there are coincident
pulses from both inputs, the amplitude of the output pulses that are propagated through the
loop is increased by 5%. Coincidences, therefore, build up the strength of the circulating pat-
tern.

In such a network, periodic pulse patterns invariably build up fastest in the delay loop
whose recurrence time matches their repetition time. In their respective loops, rhythmic
input patterns create temporal expectancies (when pulses traveling through the loop arrive
back at the coincidence detector that generated them) that are reinforced when they are satis-
fied. Thus, recurrent time patterns are repeatedly correlated with themselves to build up to
detection thresholds. In effect, the recurrent cross-correlation loops dynamically create
matched filters from repeating temporal patterns in the stimulus. Thus, temporal-pattern
invariances are enhanced relative to aperiodic transient activity, such as noise. Similar strate-
gies for periodicity detection were explored in the 1950s [41].

More elaborate recurrent timing nets would also incorporate anticoincidence elements
that compute the difference between expectation and the incoming signal. Once both corre-
lation and anti-correlation operations are in place, these networks begin to resemble simpli-
fied, time-domain versions of adaptive resonance networks [23]. In place of spatialized input
patterns and spatial pattern correlation operations for comparing them, timing nets utilize
temporal input patterns, delay lines and coincidence detectors to do the comparisons in the
time domain. Temporal correlation and anti-correlation take the place of excitation and inhi-
bition. Both kinds of networks utilize recurrent bottom-up, top-down interactions to build up
resonant patterns of activity. When inputs confirm top-down expectations, those expectations
are reinforced; when inputs diverge from expectations, their differences form new expecta-
tion patterns that can then subsequently be built up. 

These simple recurrent timing networks can also separate multiple time patterns with dif-
ferent repetition periods. When two repeating pulse patterns, each with its own repetition
period, are summed and presented to the network, the two patterns invariably build up in the
two different delay paths that have the corresponding recurrence times. These recurrent tim-
ing architectures were inspired by rhythm perception and production (e.g., [30][31][52]),

Figure 4    Temporal memory traces, matching tasks, and the build-up of perceptual forms
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and phase-sensitive processes in auditory temporal integration [46]. While they were con-
ceived to operate over longer time windows associated with these phenomena (> 30 ms),
many parallels exist between rhythm and pitch, such that these general processing strategies
appear to be potentially applicable to pitch-related separations as well. 

Two vowels with different fundamental frequencies (f0 = 100 Hz, 125 Hz) were summed
together and presented to the recurrent network (Figure 6). Each period of the two vowels
has its own invariant waveform pattern. The internal relations within the vowel periods of
each waveform remain constant from period to period, whereas the relation between the two
vowel-period waveforms change over time - the vowel periods precess relative to each other,
creating “pitch period asynchronies.” Similar precessions and perceptual separations occur
when an individual frequency component of a harmonic complex is mistuned. As with pairs
of repeating pulse patterns, the two vowels build up their respective waveform patterns in the
corresponding delay loops. (A potential problem with this multiplicative [vs. additive]
buildup is that successive multiplications alter relative amplitudes of waveform peaks,
although zero-crossings remain intact.) Thus, multiple auditory objects with different repeti-
tion periods (i.e. fundamentals, rhythms) can be segregated into different delay paths. Fusion
is the consequence of recurrent, invariant temporal relations, while segregation is the conse-
quence of changing temporal relations (precession of vocalic periods relative to each other).

Segregation by temporal pattern invariance constitutes an extremely general strategy for
the formation and separation of perceptual objects. Traditional strategies for scene analysis
are based on channel selection. First, a local feature analysis is carried out on incoming sen-
sory patterns and an attempt is made to select subsets of feature channels that should be
grouped together or separated to form different objects. For concurrent vowels, this has
meant detecting which frequency channels share common f0-related modulations and group-
ing them together (e.g. [40]). The correlational strategy proposed here instead groups pat-
terns of spikes rather than patterns of channels. Here no explicit feature detection is required
prior to the formation of auditory objects — the temporal patterns build themselves up and
sort themselves out in their respective delay channels. 

0

2

3

1 = 11 timesteps = recurrence time

of repeating 10101100101 pattern

Buildup
of activation
in loop with
recurrence time
of 11 timesteps

Input pattern: 1010110010110101100101101011001011010...

1

Timesteps
0 200100

30

1

C
h
a
n
n
e
l  

  
  
 r

e
cu

rr
e
n
ce

 t
im

e

Running cross-correlations of
incoming and circulating signals

Figure 5    Behavior of a simple recurrent timing net for periodic pulse-train patterns.
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Both feed-forward and recurrent timing networks share a number of general functional
properties that are highly desirable in the context of neural computation in the brain: 

1) no highly tuned delay lines, periodicity detectors, or clocks are needed because no
explicit time measurements are made,

2) representational precision resides in spike timings instead of in neural activation pro-
files, 

3) harmonic relations implicit in time intervals are preserved (e.g. octave similarities, char-
acteristic musical interval patterns), and 

4) population-wide operations that make use of all neural responses, even weak ones, obvi-
ate the need to select relevant subpopulations for analysis. 

Population-based temporal representations permit information from whole neural popu-
lations to be exported en masse to other regions. Coincidence networks permit comparisons
between activity patterns of neural populations without the necessity of precise point-to-
point mappings between them and/or highly regulated synaptic weightings. These properties
may greatly simplify the coordination of information processing in large numbers of semi-
independent, largely asynchronous populations of neurons. 

How such computational strategies might scale up for large numbers of inputs, delay
paths and coincidence elements remains to be explored. Simultaneous arrival of incoming
pulses in three sets of inputs as a requirement for coincidence leads to higher-order, triple-
correlation functions [59] that carry temporal sequence and phase information. Recurrent
delay loops can be implemented by multisynaptic pathways, provided that the build-up of
jitter can be constrained through general connectivity rules (e.g., fan-in/fan-out factors) or
through adjustments of specific connectivities and time delays. If jitter builds up with the
average number of synapses traversed and this is, in turn, roughly proportional to the time
delay needed to encode a particular duration, then one has a potential explanation for the
constant Weber fractions that are observed in discriminations of rhythms and other time
intervals [52]. A theory of timing relations in arbitrary conduction networks would clearly be
helpful.

This present treatment of timing networks barely ventures beyond an outline of the idea
and what kinds of operations might potentially be carried out. Certainly, inhibitory inputs
and anticoincidence operations need to be incorporated into such networks, and feedforward

Figure 6    Separation of two auditory objects, with differential fundamental frequencies, in a simple recurrent net.
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and recurrent architectures need to be combined. Once these primitive networks are devel-
oped more fully and their behavior understood more deeply, then more realistic psychoneu-
ral models can be entertained that point to empirically testable hypotheses that address the
real workings of the brain.

9.    Conclusions

In the auditory nerve there is an abundance of temporal information that precisely and
robustly encodes many perceptually relevant aspects of acoustic stimuli: periodicity, spectral
shape, speech modulations, rhythms, and still longer time patterns. Most central models of
auditory processing that utilize this timing information have assumed that a time-to-place
transformation must occur in the ascending auditory pathway, such that central representa-
tions of auditory forms are based on excitation profiles of frequency- or periodicity-tuned
units. In these models auditory discrimination and recognition is performed by comparing
stored excitation profiles with incoming ones.

However, if neural mechanisms exist by which timing information can be preserved and
stored centrally, then purely temporal analyses of similarity and difference can be carried out
by temporal-correlation operations. We have outlined two basic processing architectures that
could realize such operations. A simple, feedforward neural timing architecture has been
presented that utilizes coincidence detectors and tapped delay lines to perform cross-correla-
tion and/or convolution operations on two sets of inputs. Only those periodicities that are
common to both inputs appear in the time structure of the outputs. The array functions as a
temporal sieve whose summary autocorrelation function is the product of the autocorrela-
tions of its inputs. To the extent that time structure of inputs reflect those of stimuli, such
arrays can compute pitch similarity irrespective of timbre and timbral similarity independent
of pitch. A simple recurrent timing architecture consisting of an array of many different
delay loops is presented that amplifies and separates recurring time patterns. 

These purely temporal modes of analysis are carried out on population-wide bases that
obviate the need for precise point-to-point connectivities, explicit measurement of local fea-
tures and/or internal clocks. Timing nets constitute a new and general neural network strat-
egy for performing a host of basic auditory computations: extraction of common
periodicities, detection of recurrent time patterns and separation of auditory objects. While
the examples considered here are very rudimentary, they nevertheless afford glimpses of the
kinds of perceptual computations that might be realized using temporal codes and timing
nets. 
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The auditory cortex is critically involved in complex perceptual tasks such as timbre and
pitch processing and the localization of sound sources. Its exact role in accomplishing these
tasks, however, remains largely uncertain. A fundamental reason is that physiological
responses to standard test paradigms with tones, noise, and other “stationary” well con-
trolled stimuli have not been easily interpretable. For example, single-tone tuning curves and
response areas measured in the auditory cortex do not usually resemble the classic V-shapes
seen on the auditory-nerve. Instead, cortical cells, if they respond at all, exhibit complex
variations on a theme, with tuning curves of different bandwidths, asymmetries, thresholds,
and multiple excitatory areas. To add to this complexity, cortical responses are also variable
in their temporal coarse, some being very basic (with only a few onset spikes) while others
exhibiting sustained but oscillatory response. Similar difficulty in interpreting or eliciting
responses has been encountered with other relatively simple stimuli such as noise, AM, FM
tones. 

Another conceptual difficulty concerns the fundamentally different nature of cortical
responses compared to those of the early auditory stages. In the periphery, auditory
responses are generally vigorous and phase-locked to noise-like stimuli, and hence are
readily suited for generic systems analysis methods such as the reverse-correlation method.
These methods have yielded interesting insights into the nature and shape of unit response
areas in the auditory-nerve and cochlear nucleus. To adapt the same general methods to cor-
tical physiology, it was necessary to adopt a paradigm shift because cortical units respond
relatively poorly to noise stimuli, and rarely phase-lock to their acoustic waveforms. Instead,
cortical units respond well to other “higher level” features of the stimulus, and hence our
noise waveform must be “noisy in that feature space,” and all analysis must abstracted and
performed in this feature space. 

For example, several investigators have recently observed that cortical units respond well
and phase-lock to “modulations” on the spectral envelopes of broadband acoustic stimuli. If
one treats these spectral modulations as the “driving stimulus” to the cortical unit, then one
can abstract to this “modulation domain” and apply the same standard analysis methods
described above. For instance, we can measure the tuning of cortical cells to spectral modu-
lation rates, and use the reverse correlation method to measure the response field of these
units. 

The paper described in this section provides a nice illustration of these ideas, and their
utility in addressing more complex questions such as the origin of cortical response proper-
ties, their relationship to pre-cortical stages such as the thalamus, and the transformations
that occur at the various auditory stages. The experiments illustrate that without the notion of
a stimulus with a dynamic spectrum, it is difficult (or even meaningless) to talk about a cor-
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tical response field. Furthermore, they also demonstrate that using an apparently more com-
plex stimulus (the dynamic ripple), one gains an elegant intuitive interpretations of cortical
mechanisms that is beyond reach in the responses to simple tones and noise. 

A particularly interesting finding of this paper is the relationship between the thalamo-
cortical “intrinsic” (non-stimulus related, and presumably non-functional) oscillations to the
responses evoked by complex dynamic stimuli. It seems that when the thalamocortical sys-
tem is engaged by stimulus driven oscillations, the system suppresses its non-functional syn-
chrony. Such suppression is not observed when simple tonal stimuli are used, reflecting
perhaps the relative functional significance of these stimuli to the central auditory system.
An exciting extension of this finding is to assess their perceptual relevance, that is, whether
suppression of intrinsic oscillations can be related in some reliable way to perception, and in
turn to the functional relevance of different thelamocortical structures to these percepts. As is
usual with interesting and profound findings, these data spark more ideas and questions than
they manage to answer.
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1.   Introduction

Computational approaches to auditory function are intended to illuminate with modeling
and mathematical rigor certain properties of the auditory system that would otherwise have
remained obscured. In this chapter, we describe how a modified Wiener-systems approach
provides such insight into central auditory representations. Our discussion is two-pronged,
alternating between the rationale for using certain stimuli and the interaction such stimuli
have with the dynamic state of the system — in this instance, the thalamocortical loop. We
begin with the relative merits of conventional, simple stimuli and the effects they have on
thalamocortical oscillatory synchrony. Then we motivate the use of parameterized, naturalis-
tic stimuli suitable for Wiener-systems analysis and describe the very different effects these
sounds have on the dynamic state.

2.   Simple Stimuli and the Thalamocortical Dynamic State

2.1  Conventional Simple Stimuli.

Much central auditory research has traditionally involved probing a neuron’s receptive
field with rather simple stimuli [3] [14] [24] [27]. For instance, pure tones have been widely
used to probe a neuron’s spectral response preferences and repetitive clicks have been used
to examine temporal response properties. Many variants of these two stimuli, from ampli-
tude-modulated tones to frequency-modulated sweeps and noise bursts of varying duration
have also been used. Because of their simplicity and their prevalence in the literature we
describe only pure tones and clicks. The loose dissociation between spectral and temporal
properties suggested by these stimuli is conceptually appealing, but as described below, cen-
tral auditory representations do not necessarily maintain this dissociation. 

2.1.1   Pure Tones

Pure tones are, in many respects, the simplest possible stimuli for the auditory system.
Conceptually (given the transduction of sounds in the cochlea) pure tones of low and moder-
ate intensity should be the only stimuli that excite a relatively local portion of the sensory
epithelium with a constant driving force. In exploring a neuron’s response properties, tones
are often presented over a range of frequencies and intensities, yielding the receptive-field
measure known as the frequency response area. This is simply the firing rate of the neuron
plotted on an ordered array of frequencies and intensities. Auditory neuroscientists have
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learned a tremendous amount about frequency representations in the central auditory system
by using pure-tone stimuli. Due to the tonotopic nature of the entire lemniscal pathway,
tones will continue to be the stimulus of choice for anatomists and physiologists orienting
themselves within an auditory neural structure.

In addition to their intuitive application for characterizing frequency responses, tones
may also be used to probe temporal response properties. They have been used, for instance,
as sinusoidally amplitude-modulated tones [28], by presenting different tones simulta-
neously and in quick succession [5] [6], or by assessing interaural phase differences (which
are important for sound localization) [25]. In central stations of the auditory pathway, how-
ever, it is also common to use brief, broadband stimuli to probe temporal responses. 

2.1.2   Clicks

Clicks are, in a sense, the simple complement to pure tones. Rather than being spectrally
compact, they are spectrally very broad. The energy in an ideal click is, in fact, equally dis-
tributed across all frequencies. Thus, clicks should excite the entire sensory epithelium
impulsively. They are consequently of little use in probing a neuron’s frequency response
area, but they are well-suited for studying a neuron’s temporal response properties. For
example, clicks can help illustrate whether a neuron responds better to certain stimulus repe-
tition frequencies than to others and whether certain temporal patterns tend to facilitate or
suppress neural responses [12].

2.1.3   Assumptions in Using Simple Stimuli

Regardless of the intuitive appeal of certain stimuli, when we choose them to probe the
workings of a real neural system, we must consider how well our characterizations general-
ize to other kinds of stimuli or to other states of the system. In other words, how much do we
learn about the neural representations of complex, natural sounds by studying the represen-
tations of very simple sounds? The underlying assumption is that we learn a considerable
amount about how the auditory system responds to more complex stimuli, which are, in the-
ory, a superposition of many simple stimuli. In systems analysis terms, we assume that the
system is linear in some important ways. If we assume the system is perfectly linear, then
either pure tone stimuli or clicks ought to provide a complete and general description of the
system. We will show why this assumption is unwarranted. Another expectation we hold
when using simple stimuli is that the neural system has only one possible dynamic state or
mode of response. This is similar to an assumption of stationarity, under which the system’s
basic dynamics or statistics of response remain constant through time. We will also show
that even this assumption fails to hold under some conditions.

2.2  Effects of Simple Stimuli on Dynamic State

Beyond the theoretical merits of simple stimuli one may also ask whether they capture a
system’s dynamics accurately and consistently. The thalamocortical network provides a
striking challenge as a neural system since it has more than one basic dynamic mode. These
modes, moreover, may change during a given stimulus condition. 
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2.2.1   Spontaneous Conditions: Global, Synchronous Oscillations (7–14 Hz)

Global, synchronous oscillations have been observed in about 30% of recordings from
auditory cortex [13] and in the thalamocortical system [22] of the ketamine-anesthetized cat
under spontaneous conditions. The oscillations usually fall within the 7-14 Hz range and the
thalamic and cortical cycles tend to be in phase. Figure 1 shows cross-correlograms of spike
trains recorded simultaneously in MGBv and AI in silence. The central peaks’ location at or
near zero reflects the zero-phase relation within and between thalamus and cortex, and the
first side-peaks at ca. 115 ms delay reflect the ca. 9-Hz periodicity of the oscillations.

Shown in Figure 2 are the spectrotemporal receptive fields (STRFs) of the same neurons
illustrated in Figure 1. The STRF describes to a first-order approximation a neuron’s pre-
ferred spectro-temporal stimulus (a complete description of STRFs is provided in Section
3.1.3). In this case, while the two thalamic neurons share many preferences, the thalamic and
cortical neurons differ in some marked respects, such as temporal modulation rate and FM
sweep speed and direction. Yet, despite this receptive field disparity, strong correlations
occur among all of these cells under spontaneous conditions in the form of global, synchro-
nous oscillations, both within and across the thalamus and cortex. It appears that the pres-
ence of oscillatory synchrony does not depend on the similarity or disparity of the
participant neurons’ receptive fields.

Figure 1   Thalamocortical correlograms under spontaneous conditions. Auto-correlograms for the three cells
(two thalamic, one cortical) are plotted on the diagonal; cross-correlograms among the cells are
plotted off the diagonal. These correlograms are typical in that their oscillatory frequency falls
between 7 and 14 Hz. A similar structure is often seen under pure-tone driven conditions as well.
Dashed and dash-dotted lines are expected values and 99% confidence limits, respectively, based on
a null hypothesis of independent, Poisson spike trains.
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2.2.2   Under Stimulation with Simple Stimuli

Synchronous oscillations in the 7-14 Hz range are not only observed under spontaneous
conditions. They have also been observed across the primary auditory cortex of anesthetized
cats under simple stimulus conditions [13] [22], as well as in the thalamocortical system of
the anesthetized rat when driven by tones or clicks [11]. As is the case with spontaneous
conditions, however, the oscillations are not always present (Eggermont observed them in
ca. 60% of recordings [13]). In the next section we explore the implications of a dynamic
state that is unpredictable.

2.2.3   Potential Difficulties with Oscillatory Dynamic

It is reasonable to assume that the presence of global, synchronous oscillations in the 7-
14 Hz range is indicative of a certain thalamocortical dynamic state [19] [29] [30] and that
their absence is indicative of a different state. However, this assumption raises the following
difficulty: oscillatory synchrony across the thalamocortical system is commonly but sporad-
ically present in the ketamine-anesthetized cat under spontaneous and tone-driven condi-
tions. That is, under the same experimental conditions, the system is apparently not always
in the same state. Without knowing which state the system is in, we may unwittingly pool

Figure 2   Spectro–temporal receptive fields (STRFs) for the units shown in Figure 1. Frequency, in octaves
above 500 Hz, is represented along the ordinate (3-5 octaves corresponds to 4-16 kHz), and the time
preceding a spike is represented along the abscissa. The STRFs are expressed in differential spike
rates, with respect to the mean rate during the stimulus presentation. Thus, brighter areas denote
spectro-temporal features that increase the firing rate above the mean, and darker areas denote those
that reduce the firing rate. While the two thalamic units share some spectro-temporal preferences,
the thalamic and cortical units differ markedly in many respects, including temporal modulation
preference and FM-sweep speed and direction.
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data pertaining to spectral and temporal receptive field properties gathered from what may
be considered effectively different neural networks, thereby confounding or washing out any
effects that may differ among states. This is the bane of an uncontrolled experiment, where
effects cannot be unambiguously assigned to certain experimental causes.

We first consider a principled approach to more complex, naturalistic stimuli. We then
revisit the issue of dynamic states with these new methods in hand.

3.   Naturalistic Ripple Stimuli and their Effects on Dynamic State

3.1  Dynamic Ripple Stimuli

3.1.1   Rationale for Using Dynamic Ripple Stimuli: A Naturalistic Alternative

In the real world humans and other animals are exposed to a variety of dynamic sounds
which contain time-varying spectra. Features such as spectral modulations of formants, tem-
poral modulations, clicks and FM sweeps are commonly observed in natural sounds and are
thought to convey much of the content-carrying information. It is well known that the tem-
poral and spectral dimensions of the auditory stimulus are important since neurons at all lev-
els of the auditory pathway can respond selectively to temporal and spectral stimulus
features. Such response properties are known to be associated with auditory percepts such as
pitch and timbre. 

Under a naturalistic stimulus scenario, neurons in the central auditory pathway are
exposed to continuous stimulation and are dynamically bombarded with stimulus onsets and
offsets which can coexist along the temporal and spectral dimensions of the stimulus. How-
ever, neuronal response properties associated with spectral and temporal features of acoustic
stimuli are traditionally studied independently using “laboratory type” stimuli such as tone
bursts, modulated tones, broad-band noise and clicks. Such stimuli have envelopes that are
highly biased and generally fail to jointly excite and probe the physiologically relevant
modes of the system along the spectral and temporal dimensions. Given the complexity of
the auditory neural network and the highly non-linear stimulus-response relationship
observed even at the earliest stages of auditory processing [15] [16], we speculate that using
naturalistic stimuli can alter the response dynamic of the central auditory system. The main
goal of this section is to focus on the design of an acoustic stimulus that is theoretically
sound, so as to retain an unbiased spectral and temporal modulation spectrum allowing us to
explore a more naturalistic scenario of auditory processing.

One may argue for using specific natural stimuli directly instead of generic naturalistic
stimuli as a means of investigating neuronal dynamics and selectivities. We avoid the use of
natural sounds and animal vocalizations directly because neuronal responses to such stimuli
are difficult to quantify and interpret (since the envelope features in natural sounds are inher-
ently biased). Our choice of stimulus is motivated by the ripple spectrum noise used to
obtain spectral and temporal receptive fields in the ferret and cat auditory cortex [20] [26].
The ripple stimulus is designed so that the stimulus spectrum is a sinusoidal grating on a log-
frequency and log-intensity axis. It is analogous to the spatial sinusoidal gratings that are
commonly used in visual experiments to investigate neural sensitivity [8] [9]. Figure 3A
shows the spectro-temporal envelope of a segment of the dynamic moving ripple stimulus.
At any instant of time (Figure 3c) the envelope takes a sinusoidal shape on a log-log axis
where the envelope frequency, Ω(t) (units of cycles per octave), varies dynamically with
time. Along the temporal axis (Figure 3B), the envelope is seen to turn on and off dynami-
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cally so that the temporal modulation rate, Fm(t) (units of Hz), varies as a function of time.
The dynamic ripple stimulus is of particular interest since it mimics the dynamic spectral
profiles created by formants (spectral resonance) in speech production and animal vocaliza-
tions.

In addition to preserving stimulus features that are common to natural sounds, the
dynamic ripple stimulus is designed to retain the basic properties of white noise that are nec-
essary for obtaining reverse-correlation measurements: (1) a flat power spectrum and impul-
sive auto-correlation function, R(τ), in the vicinity of τ = 0, (2) a flat envelope spectrum and
impulsive spectro-temporal envelope auto-correlation functions. We distinguish these two
constraints and note that property (1) is imposed on the signal carriers requiring that they
have a white-noise character. To account for the fact that the auditory sensory epithelium is
arranged logarithmically in the basilar membrane the acoustic stimulus is designed so that
requirement (1) is satisfied on a octave-frequency axis. Constraint (2), on the other hand, is
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Figure 3   (a) The dynamic ripple spectro–temporal envelope, SDR(t,Xk), showing the ripples (the peaks along
the spectral axis) which move downward or upward in time (creating FM sweeps) depending on the
sign of the modulation parameter, Fm(t). (b) At a given frequency, the shape of the temporal enve-
lope changes dynamically with time because of the time-varying nature of the parameters Fm(t) and
Ω(t). (c) At any given instant in time the spectral envelope assumes a sinusoidal shape on an octave-
frequency versus decibel-amplitude axis as described by equation (2). The spectral separation of
adjacent peaks is determined by and is inversely related to the ripple frequency, Ω(t), at that specific
time instant. (d) The sound pressure waveform is obtained by multiplying each carrier frequency by
the corresponding temporal envelope and summing across all frequencies (as described by Equation
(1)). The acoustic waveform has a “white noise” character since the phase components of each car-
rier are chosen independently from a random distribution. Each of the representations (b)-(d) is
closely related to the spectro-temporal envelope (a). For example, at moments where the ripple fre-
quency parameter is close to zero, as it is around time = 1.1 sec., the short-time spectrum in (a)
becomes very broadband. At that moment, the structure in the temporal envelope can be observed
as a sequence of clicks in the sound pressure waveform (d).
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imposed on the spectro-temporal stimulus envelope, a second-order property of the stimulus
[7] [18]. We require that the stimulus envelope is globally unbiased, so that all spectral enve-
lope and temporal modulation frequencies are equally represented within the physiologically
relevant range. In addition, it is required that the stimulus be globally uncorrelated along
these two dimensions, hence allowing us to perform reverse correlation measurements with
respect to the stimulus spectro-temporal envelope. We note that despite this global correla-
tion property, the dynamic ripple stimulus is locally correlated at any time-frequency instant
(as is the case with many natural stimuli [23]), where the localized correlation structure of
the stimulus changes dynamically and is determined by the spectral envelope frequency,
Ω(t), and temporal modulation rate, Fm(t), at that given instant.

3.1.2   Design of the Dynamic Ripple Stimulus

We consider the class of acoustic noise stimuli which take the functional form:

(1)

where SDR(t, Xk) is the dynamic ripple spectral profile (spectro-temporal envelope), fk is the
center frequency of the k-th sinusoid carrier component, and Xk = log2(fk/ f1) is the k-th fre-
quency component defined on an octave frequency axis relative to the first component. To
satisfy the flat-power-spectrum criterion (1), it is required that the carrier frequencies, fk, be
geometrically spaced (carrier frequencies are separated by 0.0223 octaves and span a total
range of 5.32 octaves) so that they obey an equal energy-per-octave rule. The required
“white noise” correlation properties of the stimulus are obtained by allowing the carrier
phase, φk, to be randomly chosen for each carrier, fk, from a uniform distribution in the inter-
val [0, 2π]. The acoustic noise stimulus, (1), from this point of view is generated via a bank
of L = 240 chromatically spaced sinusoid carriers of frequency, fk (ranging from 0.5 to 20
kHz) which are individually amplitude modulated by the dynamic ripple envelope,
SDR(t,Xk), and randomly phase shifted by φk. 

The dB-spectral profile for the dynamic ripple stimulus is designed so that it takes the
general form 

(2)

where M is the modulation depth given in decibels (M = 45 dB), Ω(t) is the ripple frequency,
or equivalently, the number of spectral peaks (units of cycles per octave) along the octave
frequency axis, Xk, and Φ(t) is a time-varying phase modulation that determines the relative
position of the sinusoid spectrum with respect to f1 and the temporal modulation rate of the
temporal envelope. On a linear amplitude scale the spectral profile is given by: 

(3)

where SDR(t, Xk) takes a maximum value of one and a minimum value of 10-M/20 (close to
zero). The ripple frequency, Ω(t), and ripple phase, Φ(t), are allowed to vary randomly and
independently as continuous functions of time over a period of 20 minutes. This allows us to
design a spectral profile that is dynamic (as is the case with natural signals) and globally
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spectro-temporally uncorrelated so that it adheres to criterion (2). It is required that the two-
dimensional power spectrum of SDR(t,Xk) be flat and unbiased within the physiologically rel-
evant range. Hence the spectral profile signal is designed to dynamically probe, in an unbi-
ased manner, all physiologically relevant temporal modulation frequencies, Fm(t), and ripple
frequencies, Ω(t).

By definition, the instantaneous rate of change of the ripple spectral envelope along the
spectral dimension, Xk, is Ω(t). This can be verified by differentiating the argument of (2)
with respect to Xk and dividing by 2π [7]. This results in

. (4)

Likewise the instantaneous temporal modulation frequency, Fm(t), is

, (5)

where the derivative is now taken with respect to the time variable. We would like to desig-
nate the parameter signals, Fm(t) and Ω(t), a priori, so that they are statistically independent
and adhere to a fixed statistical structure that yields an unbiased spectral profile. Since Fm(t)
is a function of Ω(t) this independence criterion is, in theory, violated. We can approximate
it, however, by allowing

(6)

so that the temporal-modulation-rate parameter, Fm(t), is largely dependent on Φ(t) with lit-
tle contribution from Ω(t). The parameters Fm(t) and Ω(t) are allowed to vary randomly and
independently, where Fm(t) takes uniformly distributed values in the interval [-100, 100] Hz
(negative modulation rates indicate that the ripples move from high to low frequencies pro-
ducing a downward FM sweep) and Ω(t) assume uniformly distributed values in the interval
[0,4] cycles per octave. Using a bandwidth of 3 Hz for Fm(t) and 0.5 Hz for Ω(t), equation
(6) is approximately satisfied and the parameter Fm(t) has a mean-RMS error of 3.5%.

3.1.3   Reverse Correlation and the Spectro–Temporal Receptive Field (STRF)

The reverse correlation method has been successfully applied to investigate neuronal
dynamics for numerous sensory systems [4] [8] [9] [10] [21] [31]. In the peripheral auditory
system, the first- and second-order Wiener kernels have been widely used to investigate neu-
ral tuning and non-linear stimulus-response properties [4] [31]. In central auditory stations
such techniques have proven unsuccessful, partly because neuronal sensitivities in these
locations are highly non-linear with respect to the stimulus carrier. This implies that an input
to a neuron at a given frequency (e.g., 5 kHz) does not produce a neuronal response at 5 kHz.
Instead, central auditory neurons respond to envelope modulations which occur over differ-
ent frequency-tuned channels. To overcome these limitations we employ the spectro-tempo-
ral receptive field (STRF) which was first described by Aertsen et. al. [1] [2] [17] to
investigate neuronal tuning of the spectro-temporal envelope in the frog midbrain. The
STRF is a descriptive functional entity which depicts the envelope features, along time and
frequency dimensions, to which a neuron responds.

The STRF is obtained by performing the first-order, reverse correlation of the neuronal
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response, y(t) = Σδ(t-tn), with respect to the stimulus envelope, SDR(t, Xk). Mathematically
this is expressed as 

(7)

where, as before, M is the peak-to-peak modulation depth of the envelope in decibels, N is
the number of action potentials, k0 is the zeroth-order kernel (i.e., the mean spike rate), T is
the experimental recording time, and σ2

DR = M2/8 is the variance of the modulation enve-
lope (note that this is the amplitude variance of a sinusoid with amplitude M/2). Hence the
STRF is conveniently obtained by averaging the pre-event (Figure 4) stimulus spectro-tem-
poral envelope and normalizing by the stimulus variance.
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Figure 4   The STRF is obtained by averaging the pre-event, spectro–temporal envelope at all instants where
a neural event (spike) occurred. The average pre-event stimulus conveys information about when
the stimulus was on or off at a given time-frequency instant. In the example shown, white regions
indicate that the stimulus was on whenever a neural response occurred at time zero. Similarly, dark
regions indicate that the stimulus tended to be off at that specific time-frequency instant. In addi-
tion, the STRF can be interpreted as a transfer function descriptor which depicts the causal rela-
tionship between the stimulus and response. Using this interpretation, the “on” regions of the
average pre-event stimulus are interpreted as excitation whereas “off” regions in the average stim-
ulus are taken to reflect inhibitory or suppressive influences.
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Intuitively, the STRF depicts the mean stimulus envelope which elicits a neural response.
As an example, Figure 4 shows the STRF for a thalamic “on center / off surround” type neu-
ron under dynamic ripple stimulation. The time axis corresponds to the time preceding the
neural event which occurs at τ = 0. For this example the mean stimulus envelope assumes an
off-on pattern along the temporal axis indicating that the preferred temporal envelope at the
neuron’s CF is initially off and subsequently turns on with a time course of 10 ms. Along the
spectral axis, Xk, the STRF has an on-region at the neuron’s CF and flanking off regions
above and below the CF, indicating that the neuron is inhibited by sounds that fall in the
flanking regions. Hence the STRF provides a pictorial description of the average stimulus
that produced a response.

3.2  Effects of Ripple Stimuli on Dynamic State

3.2.1   Suppression of Oscillatory Synchrony with Ripple Stimulation

Having developed a parametric, naturalistic stimulus, we return to the issue of global,
oscillatory states in the thalamocortical system. As described above, synchronous oscilla-
tions in the 7-14 Hz range may occur under either spontaneous or simple-stimulus-driven
conditions. Figure 5 shows cross-correlograms from the same neurons as in Figures 1 and 2,
now driven by the dynamic ripple stimulus. Notice that the strong oscillations within and
across the thalamus and cortex are strongly suppressed by the ripple stimulation.

It appears that, unlike simple stimuli, naturalistic dynamic ripple stimuli consistently
suppress the degree of global, oscillatory synchrony in the thalamocortical system, thereby
providing a controlled dynamic state with which to assess receptive field properties. It is thus

Figure 5   Thalamocortical correlograms of the same cells in Figure 1, now under ripple-driven conditions.
Layout and legend are the same as in Figure 1. The synchronous oscillations have been markedly
suppressed.
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possible, with the proper choice of stimulus, to avoid confounding data from distinct
dynamic states and, at the same time, to derive an unbiased and nearly complete spectro-
temporal characterization of a neuron’s response properties.

4.   Conclusions

 Our observations may be summarized as follows:

(1)  Global, synchronous oscillations in the 7-14 Hz range may occur across the thalamocor-
tical system under both spontaneous and simple-stimulus driven conditions.

(2)  The dynamic ripple stimulus provides a naturalistic alternative to simple stimuli.

(3)  Under dynamic ripple stimulation, the oscillatory synchrony in the thalamocortical sys-
tem tends to be suppressed.

We believe this is an instance where a principled computational approach to stimulus
generation allows us to probe the auditory system more deeply and with greater confidence
than through traditional means, not only by virtue of the computational power of the Wiener
analysis but also through the apparent control of dynamic state that these naturalistic stimuli
provide. We must also emphasize that there is nothing about these methods that makes them
exclusively apt for describing the central auditory system. Our conclusions should apply
across other neural levels and modalities.
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The auditory system performs many amazing tasks, all aimed at understanding the
acoustic world around us. As I type these words there is music playing in the background, a
workman moving rocks just outside my house, as well as the sound of my computer key-
board. Yet my auditory system has no trouble hearing each sound separately and assigning it
to the proper object. Our ability to separate out all of these sounds is known as the cocktail
party effect [2]; at a large gathering of people we can easily shift our attention from one con-
versation to another. This ability is quite remarkable, especially considering that we can
organize our auditory perceptions even with only a single ear. 

The basic principles that allow us to make sense of the auditory world is known as audi-
tory scene analysis (ASA). Consider the visual situation. When looking at a scene, even as
complicated as a flock of birds flying overhead, we have no problem seeing the flock as a
single object, distinct from the trees and the clouds. The basic principles that allow us to
group the pieces of this scene include common motion cues, color and shape expectations, as
well as continuity. All of these principles have an acoustic analogue. These and other princi-
ples of auditory scene analysis are reviewed in great depth in Albert Bregman’s seminal
book [1]. 

The three papers in this section address three very different parts of the auditory scene
analysis problem: musical segregation, neurophysiological modeling and speech perception. 

The first chapter, by Uwe Baumann, describes a system for grouping harmonics of a
sound and identifying auditory objects. Two of the strongest cues that cause us to group
sounds together are common harmonicity and common onsets. Many objects, such as the
laryngeal vocal folds and musical instruments, generate sound by periodically interrupting
the flow of air. A periodic action leads, in the spectral domain, to a number of sinusoids, all
harmonically related. The fact that the sinusoids are harmonically related is a good indica-
tion that the sinusoids are associated with the same object. Likewise, if a number of fre-
quency components are all turned on at the same time they probably come from the same
object. 

Baumann describes an algorithm which uses these principles to group components of a
musical sound. He starts with a high-resolution cochlear model to capture the basic spectral
information in the signal. By identifying the peaks in this spectrum he can easily find what
he calls part-tones. The problem then becomes a matter of extending any part-tones that are
imperceptibly interrupted and then grouping the part-tones to form objects. This algorithm is
tested by analyzing a musical sound with overlapping bass and soprano notes.

The second chapter, by Susan Denham, looks at the neurophysiology of a completely dif-
ferent part of the problem. Our auditory system has an amazing ability to not only quickly
interpret a sound, but is also very tolerant of gaps and noise. A simple method to deal with
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such interference is to include a low-pass filter in the model. But such a low-pass filter would
increase the latency of the system, which appears not to happen. 

Denham describes synaptic and neural models to account for these behaviors. The pri-
mary feature of these models is that they include a limited resource in what is often called a
reservoir model. When a stimulus first arrives at the cell, the neuron is primed and ready to
respond immediately to a new stimulus. But the response to later portions of the same stimu-
lus are not as strong because the limited resource has been depleted. She talks about the
behavior of this model in response to several types of stimulus important in auditory scene
analysis. 

Finally, in the third chapter Georg Meyer and his colleagues talk about a simple form of
auditory scene analysis using speech stimuli. The simplest possible cocktail party involving
speech consists of two different overlapping vowels. Humans can identify both vowels, espe-
cially if they are at different pitches. This is true even when both vowels have about the same
power and their pitches are fixed.

Meyer proposes a model based on modulation maps. Previous work in this area has either
assumed a harmonic sieve, much like Baumann’s chapter in this section, or a model based on
pitch perception using autocorrelation. In Meyer’s model the cochlea’s spectral analysis and
the amplitude-modulation detectors combine to form a two-dimensional auditory map,
where concurrent vowels at different pitches are nicely separated. The vowel-identification
task is solved by comparing the response at different modulation frequencies to prestored
templates.

These three chapters and the references below are representative of the work that is being
done on auditory scene analysis. The chapters address speech, music and the neurophysiol-
ogy. But much remains to be understood about auditory scene analysis. We need better mod-
els that incorporate the effects of binaural perception, language models and common fate.
Much of the current work talks about the basic modeling principle [1] of old-plus-new, but
none of the these works talks about the role of attention or how our experiences guide the
perceptual organization. These tasks are left as exercises for the reader.
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1.    Introduction

One of the most advanced signal processing skills of the human auditory system is its
ability to direct attentional processes to follow the sound of a selected acoustic source in an
environment of multiple, simultaneously sounding voices. For the purpose of building robust
speech recognition systems and for the advancement of hearing aids it is desirable to imple-
ment signal-processing strategies which can cope with an auditory environment consisting
of a mixture of different sound sources in order to enhance or extract the desired information
coming from one of the sources. Perception of polyphonic music is an example of this abil-
ity. With regard to its highly systematic structure, polyphonic music was chosen as a model
to investigate human listeners’ strategies for grouping and for obtaining the information
about musical voices.

The sound separation system outlined in this chapter is based on a perceptual model
developed by Terhardt [21]. Figure 1 outlines his model. Several hierarchically ordered pro-
cedures (PROC) process signals derived from a transformation (TRANS) module. They
communicate via a memory region (object buffer, OBJ BUF) wherein the extracted objects
are stored. For the generation of a compulsory physical reaction (reflex) an additional con-
nection is made for each process to the “motor system” (MOTOR SYS). In the process of
ascending the hierarchy, the object buffer size is enlarged in order to hold increasingly com-
plex information. Concerning audition, the object buffer at the beginning of the process pro-
vides simple harmonic information, whereas consecutive buffers store phones, syllables,
words and sentences. The observer (called “self” by Terhardt) can attach his or her attention
to any object buffer. It is estimated that the default attention is switched to buffers with the
most meaningful information.

Although straight “bottom–up” models for perceptual processing have been questioned
in the auditory domain (and other modalities) [5] [17], it seems worthwhile to investigate the
merits and drawbacks of this approach.

2.    Model

2.1  Overview of The System

A computational procedure, outlined in Figure 2, was implemented in order to separate
polyphonic music into the original voices [2]. A hierarchical combination of auditory spec-
tral analysis, psychoacoustical weighting functions and psychological elements as well as
findings of the Gestalt theory are employed in this process.
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Several independent stages contribute to the abstraction and selection of meaningful con-
tours among the spectral components. The aim is the formation of components pertinent to
auditory objects. The ongoing sequence of auditory objects form a specific auditory object
pattern. Circled letters denote the output of the procedure belonging to that level and are ref-
erenced to the following figures. Outputs  to  of the model are based on psychoacoustic
considerations, while outputs  to  are motivated by gestalt rules. The hierarchical orga-
nization is strictly “bottom-up,” although within each processing stage a certain degree of
feedback might be applied. Subsequent figures refer to the outputs of stage  to .

A brief two-voiced music example (Figure 3) demonstrates the functions of the proce-
dure. The tone sequences were created on a programmable synthesizer; each tone of the
soprano voice consisted of three harmonics and each tone of the bass line consisted of six
harmonics.

2.2  Aurally Adequate Representation of Sound

After analog-to-digital conversion a special auditory-like spectral analysis (SPECTRAL
ANALYSIS), with high temporal and frequency resolution, is applied to the signal [22]. Fig-
ure 4 schematically illustrates the absolute magnitude of the example’s frequency-time spec-
trum.

The next stage of the process (CONTOUR) includes a variety of sub-modules. A peak-
picking procedure is applied to each analysis interval TA (TA = nTS, TS sampling interval) to
obtain pairs of frequency, f, and level, L, for each part-tone or harmonic. The set of part-
tones for each interval, TA, forms a part-tone pattern and the consecutively calculated part-
tone patterns constitute a part-tone time pattern (PTTP, details in [11, 13], for examples
see [14]). Phase information of the individual part-tones is completely disregarded. Figure 5
left displays the part-tone time pattern of the example tune from Figure 3 (sound level is
indicated as line thickness). Compared to the spectrogram (Figure 4), the PTTP (Figure 5
left) is more easily readable, and the two voices are visually identifiable.
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Previous representations of sound using the PTTP did not attach perceptual information
(e.g. pitch salience or partial masking). Therefore an estimate of the audibility of a part-tone
was not possible. This chapter will show that the attachment of psychoacoustic information
to every part-tone is crucial for the segregation task. Hence, the next sub-module of the
CONTOUR estimates pitch salience for each part-tone by considering simultaneous mask-
ing. This is done by determining the level above the masked threshold (LX, excess level) and
applying a weighting function which considers the dominance region of spectral pitch
(details in [2, 18]). The range of spectral pitch weight, WS, is within 0 ≤ WS < 1. Minor val-
ues of WS account for imperceivable pitches whereas values close to 1 indicate strong
salience which might lead to perception of a separate pitch in a complex sound consisting of
multiple part-tones. After completion of these submodules of the contour process, each part-
tone information block  f, L is expanded by pitch salience information with excess level LX
and spectral pitch weight WS. The next two submodules of the contour process integrate
aspects of temporal auditory perception. Up to this point of the model, the processing of
information is based on time frames of the underlying spectral transformation. To obtain a

kHz 0.5 1 1.5 2.5

0

0.5

1s-60

-40

-20
dB

0

f

t

L(f,t)

a

Figure 3   Score of the example music
piece.

Figure 4 Spectrogram obtained with an ear-related spectral trans-
formation according to [22].

Figure 5    Part-tone time pattern (PTTP, left), Part-tone lines (right).
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meaningful time contour representation, a procedure was implemented which links consecu-
tive part-tones within a narrow range of level and frequency to a part-tone line. A unique
identification code and the number of part-tones contributing to the line is attached to each
part-tone line. The information collected across time frames serves to separate tonal and
noisy components of the signal. An auralization of part-tone lines is easily achieved with a
resynthesis procedure, using each contour pair f, L as control inputs to a sinewave oscillator.

2.3  Continuity rule

Another important feature of the line-linking submodule of the CONTOUR process is
the implementation of rules pertaining to aspects of the continuity effect. To illustrate the
impact of this measure, an example of continuity is outlined in the part-tone time pattern
representation in Figure 6. A sinusoidal tone is interrupted five times by a harmonic sound
with an oboe timbre. If the sound pressure level of the sinusoid is weak and the duration of
the interruption is short (additionally, the difference in frequency and level before and after
the gap has to be small), an unexpected perception occurs: instead of hearing an interrupted
tone, a continuous tone is heard.

The consequences of the continuity effect on the design of sound separation systems are
dramatic. If the continuity effect is not taken into account, a sound separation system may be
able to segregate the harmonic sound from the interrupted sinusoid, but the auditory repre-
sentation of the extracted sinusoid would be not appropriate since the listener is unable to
perceive the short breaks when the mixture of sine tone and oboe sound is presented.

The first condition for the occurrence of continuity is the duration of the gap. After termi-
nation of a part tone line, candidates for membership are searched for an adjustable time
range TL. If candidates have been found, the next stage is to calculate the amount of partial
masking.

Houtgast, among many others, investigated the pulsation threshold, which is directly
related to the continuity effect [12]. The pulsation threshold is defined as the level when
interruption of the test signal becomes noticeable. A relationship between simultaneous
masking patterns and pulsation threshold has been demonstrated by Fastl [7]. Hence a rea-
sonable model for the development of a continuing impression when listening to interrupted
sound, is to calculate the excess level, LXL, of the presumably masked tone. Therefore, “vir-
tual” (i.e., unobservable using spectral analysis) part-tones are inserted with level and fre-

Figure 6    Part-tone time pattern repre-
sentation. A sinusoidal tone is inter-
rupted five times by an harmonic sound
with an oboe timbre. If the sound pres-
sure level of the sine tone is weak, a
continuing tone is audible.
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quency set to values derived by linear approximation from “real” part-tones before and after
the gap. If the LXL of these “virtual” part-tones is below a certain threshold, the second con-
dition for the occurrence of continuity is fulfilled and the gap between two part tone lines is
closed with these “virtual” part-tones.

Part-tone lines are symbolized in Figure 5 (right) with different symbols for each line. A
splitting of the sixth harmonic of the first bass tone occurs due to the onset of the second
soprano note.

2.4  Temporal Aspects of Pitch Perception

The block labeled ACCENTUATION takes time-dependent aspects of pitch perception
into account and modifies the spectral pitch weight, WS. Fastl has shown that pitch salience
of a sinusoid depends on its duration [8]. Short sinusoids (t < 50 ms) acquire low salience,
while signals longer than 200 ms achieve the highest degree of pitch salience. Therefore, a
duration-dependent weighting function was introduced to modify the spectral pitch weight
of each part-tone line.

Small onset or offset asynchrony of partial tones improves their detectability [15][10][1].
If the asynchrony is less than 30 ms the onset of a complex tone is still perceived as simulta-
neous. To account for this effect, the spectral pitch weight, WS, of every part-tone line is
enhanced for onset and offset of the line.

2.5  Common onset/offset rule

Part-tone lines with similar onset times are combined in the next processing stage
(labeled ONSET INTEGRATION). When a physical process initiates a sound, energy is
generated in numerous frequency bands. With high probability the energy in each of those
bands will start at the same moment, but there has to be some tolerance of asynchrony to
accommodate the onset characteristics of musical instruments or speech. Using the results of
Grey and Rasch, a time window, TC, was introduced to simulate, to a certain extent, the per-
ceptual fusion of asynchronous onsets [9][16]. Since the filter response of the underlying
spectral transformation is not time symmetric, only a small correction for the different group
delays in each analysis band is necessary to compensate for the longer response times of fil-
ters with lower center frequencies.

Although the offset of partials generated by musical instruments varies to a larger extent
than the onset time, an additional rule for offset similarity was introduced. Therefore, a sec-
ond time window, TD, was defined for searching part-tone lines with similar offset.

The result of this stage is referred to as the auditory object pattern (AOP), since the AOP
resembles the human capability of integrating simultaneously occurring part-tone lines into
a single percept. Figure 7 (left) displays the AOP of the simple example tune. Five auditory
objects were detected and marked with different symbols. Due to the simultaneity of the last
two notes no segregation of the two voices occurred at this stage. 

2.6  Pitch estimation

Separation of simultaneous tones is accomplished by calculating the fundamental pitch
of every auditory object, accepting ambiguous results whenever indicated (block PITCH).
The algorithm for calculation of virtual pitch according to Terhardt is well suited for this
purpose, because missing fundamentals and pitch ambiguities are highlighted [18, 20, 19].
For every AOP a pitch calculation is executed every analysis interval, TA, to accommodate
small pitch changes, such as vibrato or jitter. This leads to a pattern of pitch actions, from
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which the most salient pitch lines are extracted and attached to the AOP. Since ambiguous
pitch results are allowed, two simultaneous sounds with different fundamental frequency
will result in two (or even more) virtual pitch estimates. Regarding the example, each of the
two last tones of the example tune were attached with two pitch estimates. The right half of
Figure 7 shows the outcome of the pitch calculation algorithm for the five auditory objects
obtained.

2.7  Segregation of Simultaneous Onset and Offset

Whenever ambiguous fundamental pitch estimations were detected, the next processing
step segregates the harmonics belonging to each pitch height. For each candidate part-tone
line, the frequency ratio to the pitch line is calculated for each part-tone during their tempo-
ral overlap. The generated set of ratios is analyzed and an averaged deviation is calculated
and compared with a pre-defined threshold value.

The ability of this process to segregate homophonously sounding voices is referred to as
HOMOPHONIC SEPARATION. The precision of the pitch algorithm is extremely impor-
tant for resolving ambiguities in instances where a large number of harmonics intermingle.
For example, the last auditory object of the tune in Figure 3 consists of the bass, E3, and the
soprano part, H4. The part-tone time pattern (Figure 5, left) displays only slight hints for a
second voice beside the bass tone. A precisely balanced algorithm is necessary to predict the
perceived pitches and to separate these cases. Figure 8 (left) illustrates the separation of the
last two tones.

2.8  Regarding Duplex Perception

As observed with the last tone of Figure 8 (left), the third harmonic of the bass voice is
intermingled with the fundamental of the soprano tone and the sixth harmonic with the sec-
ond harmonic. If the soprano voice could be extracted, the resulting bass tone would miss
these two harmonics and its timbre would be distorted. To avoid this, the next processing
step (COLLISION DETECTION) searches for these intermingled harmonics and tries to
share these collisions between the auditory objects generating the harmonics (Figure 8,
right).

Figure 7    Auditory object pattern (AOP, left), results from pitch calculation (right).
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Looked at more closely, the overlapping harmonics carry two aspects of information at
once; fundamental and second harmonic for the soprano, third and sixth harmonic for the
bass voice. Disregarding this duplex information will give poor segregation results.

2.9  Sequential Grouping

The final stage, termed SEQUENTIAL INTEGRATION, combines and links auditory
objects to form a musical line or melody. This is perceived by a human listener attending to
the desired voice, for example the bass melody. A comprehensive simulation of this auditory
streaming capability is extremely hard to satisfy. For a simplified approach, timbre charac-
teristics were not considered. Only rules for the temporal coherence of tone sequences
according to van Noorden were applied [23]. An auditory stream is constructed by determin-
ing for each auditory object an unequivocal successor based on the minimal distance of the
average fundamental pitch. 

Figure 9 shows the extracted and restored voices. The soprano voice is on the right; the
bass voice is on the left. Nearly all harmonics have been properly attached to the two voices,
only the sixth harmonic of the first bass tone is disrupted by the onset of the second soprano
tone.

Figure 8 (left) Segregation of simultaneous part-tone lines. (right) Collision detection of intermingling har-
monics. Shared harmonics are outlined.

Figure 9    Segregated and restored musical voices. Left: Bass. Right: Soprano.
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The example is successfully segregated by applying the procedure outlined in Figure 2.
The main problems of automated voice separation are as follows: 
(1) high time–frequency resolution of the underlying spectral analysis is necessary, 
(2) regarding the continuity effect and formation of auditory objects based on coincident

onsets is essential, 
(3) pitch estimation with usage of ambiguities is crucial, 
(4) restoring musical voices without distribution of shared harmonics results in unsatisfac-

tory timbre fluctuations.

3.    Results

An evaluation of the procedure with several examples of polyphonic music and speech
utterances was performed. The quality of the segmentation depends on the complexity of the
material. Simple two-voiced polyphonic music with a small amount of reverberation is seg-
regated into single voices with only minor changes of timbre, whereas the time structure and
melody are preserved. Figure 10 (left) displays the score of a more elaborate two-voiced
piece of music.1 The minuet was played on a digital synthesizer with a sound consisting of 6
harmonics for each voice.

Figure 10 right shows the output of stage . The employment of a sophisticated spectral
transformation method is of extraordinary importance. If two harmonics are coming close
together, as occurs with the first tone of the minuet example in the frequency region around
500 Hz, a transformation with minor frequency selectivity can not resolve the bass voice
third harmonic relative to the soprano fundamental. Another important property visible in
Figure 10 is the high number of shared harmonics. Nearly every tone shows overlapping har-
monics between the soprano and the bass voice. In some cases (e.g., F4 soprano, F3 bass
voice at t = 2 s) only 3 harmonics remain identifiable. Hence, an application of a pitch-esti-
mation strategy that can predict virtual pitches is significant. If tones are performed with no
breaks between notes (legato) or with a large amount of reverberation, a connection of part-
tone lines of successive notes may occur if the parameters of the line-linking process are not

1. This example was also used by Brown and Cooke [4].

Figure 10  Left: Bars 19–20 from J. S. Bach’s Minuet Bb-minor (Kleines Notenbüchlein f. Anna Magdalena
Bach). Right: Part-tone time pattern of the minuet played on a synthesizer with 6 harmonics/voice.

b
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properly set. The octave step of the bass voice C3–C4 at about t = 3 s serves as an example
for this situation. Due to the hierarchy of the sound separation system described in this arti-
cle, a linking of the second harmonic of C3 and the fundamental of C4 would cause an unde-
sirable misinterpretation.

The segregated and restored minuet bass voice is displayed in Figure 11 (left), the
soprano voice on the right-hand side. All of the harmonics have been correctly assigned.
Whenever harmonics come too close and intermingle, a modulation occurs. This modulation
can lead to a perception of roughness when listening to the resynthesized voice.

Figure 12 displays the part-tone time pattern derived from the analysis of a segment of
brass-band music. A long-lasting trumpet tone is accompanied by insertions from tuba, clar-
inet and saxophone. The extracted trumpet is displayed in Figure 12 right. Four harmonics
have been attached to this auditory object. Due to the onset of the saxophone at t = 1.1s, the
fifth and all higher harmonics were interrupted. For this reason the timbre of the resynthe-
sized trumpet appears not to be as brilliant as the original, but the sound can easily be recog-
nized.

Figure 11    Left: Extracted minuet bass voice. Right: Extracted minuet soprano voice.

Figure 12  Left: Part-tone time patterns of a musical piece played with brass and woodwind instruments - tuba,
trumpet, clarinet, saxophone. Right: Extract trumpet voice.
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In addition, the sound separation system extracted four auditory objects pertaining to
tuba onset and two onsets of the clarinet, starting at t = 0.4 s. A closer inspection of the sec-
ond clarinet onset reveals that two clarinets with different fundamental frequency were
sounding together. However, due to the extremely sparse harmonic representation, the homo-
phonic separation process failed to split these simultaneous tones. The saxophone note
occurring at t = 1.2 s was correctly assigned to three onsets. The extracted and resynthesized
auditory objects are easily identifiable, although a reduced brightness is noticeable. The
reader is referred to [22] for acoustic demonstration and display of the results.

4.    Discussion

A computational model employing a “bottom-up” strategy to simulate some aspects of
auditory scene analysis has been outlined. The separation of musical voices is accomplished
with a collection of “auditory elements” (part-tone lines) and grouping of elements which
have common onsets and similar offsets. Although information about timbre is not evalu-
ated, segregation of polyphonic music has been demonstrated. Concurrent musical sounds
with overlapping harmonics are segregated with limited success using a strategy that distrib-
utes shared harmonics. Clearly, if the energy of the intermingling partial tones differs to a
large degree, this simple approach will yield timbre errors. Another limitation is that the lay-
out of the procedure assumes harmonic sounds. Although the applied pitch algorithm is
capable of predicting the perceived pitch of inharmonic sounds such as gongs and bells, the
separation process assumes a pure-harmonic relationship to predict harmonic collisions cor-
rectly.

Compared with previous attempts to segregate polyphonic music, the procedure pre-
sented in this chapter demonstrates superior performance. The algorithm proposed by Brown
and Cooke [4] segregated only five soprano tones (out of eleven) and five bass tones with
intense timbre distortion, due to incorrect assignment of harmonics for the minuet example
displayed in Figure 10. Although their elaborate model utilized a two-dimensional timbre
space to allocate harmonics as well as phase (periodicity) information in an autocorrelation
map to enable pitch tracking, their approach showed only poor results for the task of segre-
gating concurrent musical voices. Since the Brown and Cooke model is related to the proce-
dure proposed here, a closer look at the differences in the approaches is useful to gain insight
to the essential prerequisites for the task of musical voice segregation. One of the most
important premises for a successful representation of auditory objects is the usage of a spec-
tral analysis with optimized time and frequency resolution. Brown and Cook employed a
gammatone filterbank with relatively large bandwidth (b = 0.2 ERB), therefore the represen-
tation of auditory objects showed a liability for modulations resulting from adjacent spectral
components. Furthermore, they disregarded the continuity effect in their rules to form audi-
tory elements and excluded tracks with short interruptions. Another essential difference is
the usage of an “exclusive allocation” strategy and removal of elements from the auditory
scene after assignment to an auditory object. Hence, shared harmonics are not resolved.
Moreover, their model made use of an autocorrelation method to determine the local pitch
contour of each element and therefore no consideration of pitch ambiguities was possible.

 Ellis [6] noted that the problem of sound reconstruction from abstract analysis is
extremely under constrained and “invention” of extra parameters based on some ideal exam-
ple is required. The difficult issue of constructing a hierarchy of abstractions and parameter-
izations that discards only information not important to the perceived nature of the sound has
been tackled to some extent by the procedure proposed in this chapter. An extension of the
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model with such “ideal examples” seems necessary to enhance the quality of the recon-
structed musical voices.

5.    Summary and Conclusion

A procedure was implemented on a computer to separate polyphonic music in the origi-
nal constituent voices. A hierarchical combination of auditory spectral analysis, psychoa-
coustic weighting functions and psychological elements germane to the Gestalt theory
served as the basis for this process. Several independent stages contributed to the task of
abstraction and the selection of meaningful contours of spectral components. The use of
rules for the relationship of spectral components allowed the formation of auditory objects.
The ongoing sequence of auditory objects formed an auditory object pattern. The model was
tested with several examples of polyphonic music. Depending on the complexity of the
structure, two voiced music sources are separated with only minor timbre changes. Although
not developed for the separation of speech, the algorithm is also capable of segregating sylla-
bles in a spoken sentence.
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1.    Introduction

There are many aspects of auditory perception, such as the growth of loudness with dura-
tion and the effects of masking, which indicate that the auditory system performs some sort
of temporal integration in processing incoming acoustic signals. However, the auditory sys-
tem is also capable of fine temporal resolution, as evidenced by gap detection, double click
discrimination, and also in the short latency and lack of jitter of onset responses in cortex
[28]. This has been termed the resolution-integration paradox (i.e., how is it possible for a
system to integrate information over long periods while retaining fine temporal resolution?).
Most accounts satisfying the integration criterion use long time constants and therefore fail
to behave swiftly enough to explain fine temporal resolution, and vice versa [28].

The time constants typically associated with sub-cortical processing differ substantially
from those in the cortex. In comparison with the speed and precision associated with pro-
cessing in the auditory periphery, the temporal response properties of neurons in primary
auditory cortex (AI) can appear to be surprisingly sluggish. For example, in the thalamocor-
tical transformation of incoming signals a great deal of the temporal fine structure is lost [5];
best modulation frequencies measured in AI are generally below 15 Hz [24], and the effects
of a masker on a probe tone can be detected up to 400 ms after masker offset [3]. The focus
in this chapter is therefore on the temporal response properties observed in AI. What gives
rise to these phenomena and can they be explained by some common mechanism? As yet,
there have been no models proposed that can satisfactorily explain the observed behaviour of
neurons in AI. Explanations in terms of intracortical inhibitory circuits have been proposed
but inhibition does not provide an adequate account, at least in the case of forward masking
which is unaffected by the application of a GABA antagonist [3]. On the other hand, simple
threshold neural models cannot replicate such behaviour without some form of inhibition or
by means of very long time constants operating on the input signals, which as discussed
above, would then prevent the model from satisfying the requirements for good temporal
resolution.

Recently it has become apparent that cortical synaptic dynamics may be an important
factor affecting the behaviour of biological neurons [17][18][1][25][23]. When synapses are
repeatedly activated they do not simply respond in the same way to each incoming impulse,
and synapses may develop a short-term depression or facilitation, depending on the nature of
the pre- and post-synaptic cells, as well as on the characteristics of the particular synapse
involved [25][23]. New experimental work has helped to elucidate the dynamical properties
of cortical synapses, which appear to significantly influence the temporal sensitivity of corti-
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cal circuitry. Within current neural-network models synapses are generally modeled as sim-
ple gains and it is interesting to explore whether models of cortical processing can be
usefully enhanced by the inclusion of a richer synaptic model. If synapses are not simply
viewed as passive weighting elements in neuronal circuits, but rather as dynamical systems
in their own right, then perhaps many of the response properties observed in AI might be
explained in a relatively simple way. 

To explore this hypothesis, a model of cortical synaptic depression was used to investi-
gate the computational properties of a neuron model that includes dynamic synapses. This
model was found to account for a surprisingly wide range of experimental observations,
including those outlined above. On the basis of the model it is suggested that the dynamics
of thalamocortical synapses may largely explain the temporal integration observed in AI. In
addition, the model also provides a novel explanation for some puzzling effects of appar-
ently subthreshold stimuli [20][3]. 

The remainder of the paper is organized as follows. First, the dynamic synapse and neu-
ron models are described and their behaviour is illustrated. The combined model is then used
to replicate a number of experiments including those investigating the transfer of informa-
tion from thalamus to cortex [5], best modulation frequencies [24,13], the time course [3]
and the effect of masker duration [12] on cortical forward masking, the disruptive effect of
subthreshold stimuli [20], and the relationship between stimulus envelope properties and
onset latency [9]. The simulation procedures used, the assumptions made and the limitations
of the approach taken in these simulations are described. In the subsequent discussion we
explore the implications of the model for auditory streaming and grouping and for auditory
perception in general. 

2.    The Dynamic Synapse Model

The dynamic synapse model we use here was presented in [26] and shown to replicate
the experimental results reported in that paper, and in [18], on the activity-dependent redis-
tribution of synaptic efficacy. In fact, this model of the postulated dynamics of neurotrans-
mitter release had already been proposed much earlier by Grossberg [7][8]. There it was
derived from a set of psychological postulates and used, inter alia, to explain the excitatory
transients in transmitter release after a rest period and related to the effects of synaptic
depression, which had been observed experimentally by Eccles [6]. This synaptic depression
model has been further developed and used subsequently by Grossberg in more recent years,
for example to explain a number of important perceptual features involving the visual cortex.
In the area of auditory modeling, a very similar model was also developed by Meddis [19] to
describe transduction in cochlear inner hair cells. 

The dynamic synapse model characterizes the synapse by defining a “resource,” e.g. the
amount of neurotransmitter in the synapse, a proportion of which can be in one of three
states: available, effective, inactive. The dynamical behaviour of the proportions of the
resource that are in each of these states is determined by a system of three coupled differen-
tial equations (1)–(3) below. In these we use notation similar to that in [8] (see equations
(58)–(63)):

(1)

(2)

dx
dt
------ g y t( ) l t( ) a x t( )⋅–⋅⋅=

dy
dt
------ β w t( ) g y t( ) I t( )⋅⋅–⋅=
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(3)

where x(t) is the amount of effective resource (e.g., activated neurotransmitter within the syn-
aptic cleft), as a proportion of the total resource, y(t) is the amount of available resource
(e.g., free neurotransmitter in the synapse), and w(t) is the amount of inactive resource (e.g.,
neurotransmitter being reprocessed).

The input signal, Ι (t), represents the occurrence of a presynaptic action potential (AP)
and is set equal to unity at the time of arrival of the AP and for a small period of time, δt,
thereafter, and otherwise is set to 0. The constant, β, determines the rate at which the inactive
resource, w(t) (e.g., neurotransmitter which has been reprocessed), is released to the pool of
available resource on a continuing basis, and α represents the rate at which the effective
resource becomes rapidly inactive again (e.g., as a result of neurotransmitter reuptake), sub-
sequent to being activated. The instantaneous efficacy of the synapse is determined by the
variable, g(t), which can be interpreted as the fraction of available resource released as a
result of the occurrence of the presynaptic AP. It takes a value in the range of zero to one.

The key idea behind the model is that there is a fixed amount, K, of total resource avail-
able at the synapse, a proportion, g. y(t), of which is activated in response to presynaptic
activity, rapidly becomes inactive, and is then subsequently made available again through
reprocessing. Thus, if the synapse is very active (i.e., it is bombarded by a large number of
action potentials occurring over a short period of time), the amount of available resource,
y(t), is rapidly reduced. There must then follow a period during which the synapse can
recover in order to respond fully once more. This process, illustrated in Figure 1, appears to
replicate the experimentally observed characteristics of synaptic depression, as reported in
(for example) [18][26].

The EPSP at the synapse, e(t), is computed from x(t) in (1) using the following equation
for the passive membrane mechanism [26]:

(4)

3.    The Neuron Model

The neuron model is described by the following system of equations, which has been
adapted from a model described in [16]:

(5)

, if , else (6)

(7)

(8)

dw
dt
------- a x t( ) β w t( )⋅–⋅=

τEPSP
de
dt
------⋅ γ x t( ) e t( )–⋅=

τE
dE
dt
------- E t( )– V t( ) GK t( ) EK E t( )–( )⋅+ +=

s t( ) 1= E t( ) θ t( )≥ s t( ) 0=

τGK

dGK

dt
----------- GK t( )– η s t( )⋅+=

τθ
dθ
dt
------ θ t( ) θ0–( )– s t( )+=
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where, E(t) is the variation of the neuron’s membrane potential relative to its resting poten-
tial, V(t) is the driving input found by summing all the synaptic EPSPs, GK (t) is the potas-
sium conductance, divided by the sum of all the voltage-dependent ionic membrane
conductances, EK is the potassium equilibrium potential of the membrane relative to the
membrane resting potential, θ(t) is the firing threshold potential, θ0 is the resting threshold,
s(t) is the variable which denotes firing of the cell, τE, τEPSP, τθ, and τGK are time constants,
and γ, χ and η are constant parameters.

In this system of equations, s(t) is set to 1 to signal the occurrence of an action potential
(i.e., E(t) reaches a value above the firing threshold, θ(t); otherwise s(t) is zero). Equation (8)
is introduced purely to provide a refractory period. It allows representation of an absolute
period and a relative period. For the first few milliseconds the value of θ(t) is very large, pre-
venting any firing. As θ(t) decays between spikes, the threshold for firing decreases with
time elapsed since the last spike. A further spike can occur, therefore, in this period if the
value of E(t) is sufficiently large. When s(t) is zero, the potassium conductance term, GK(t),
decays to zero via equation (6). When s(t) = 1, the value of GK is increased instantaneously
by an amount, η, and then decays again. The behaviour of the neuron model is illustrated in
Figure 2. In this case we have not explicitly modeled the action potentials generated when
the cell fires, but in the simulations below generally use the spiking variable, s(t), as the out-
put from the model.

4.    Simulation Results

Not all cortical synapses are depressing; for example, synapses between cortical pyrami-
dal neurons and bi-tufted GABAergic interneurons synapses are strongly facilitating [23].

Figure 1 The response of the synaptic model to an incoming spike train.
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However, thalamocortical synapses appear to be depressing; they are mediated by non-
NMDA excitatory amino acids, depress rapidly and remain desensitized for some time [25].
In the simulations that follow, it can be seen that the response characteristics of the model
neuron, when the dynamic synapse model is included, turn out to be very similar to that
found in primary auditory cortex. As a result it is suggested that the depression of thalamo-
cortical synapses may provide at least a partial explanation for the responses observed.

4.1  Loss of Temporal Fine Structure in the Thalamocortical Transformation of Incoming 

Differences between the response properties of thalamic and cortical neurons were inves-
tigated by Creutzfeldt et al [5]. Activity in thalamic relay cells and subsequent activity in
paired pyramidal cells in AI was recorded, and it was found that even when thalamic activity
was clearly synchronized to the stimulus up to 200 Hz, the paired cortical cell was unable to
follow the details of the signal beyond about 20 Hz. The plots in Figure 3 show the response
of the model to spike trains generated to resemble typical thalamic activity in response to
stimuli of the frequencies indicated. Total activity for 20 presentations is plotted both for the
presynaptic spike trains and the model response. The model behaviour closely resembles
that found experimentally [5]. The model responds to details of the stimuli occurring at 10
Hz and to a lesser extent to details at 20 Hz, but for higher stimulus frequencies, the model
only responds strongly at the onset of the signal. The reason for this is that at high frequen-
cies successive presynaptic spikes arrive before the synapse has time to recover. This causes

Figure 2  Response of the neuron model with a dynamic synapse to an incoming spike train showing the syn-
aptic EPSPs, the resulting change in membrane potential, as well as the sharp increases and passive
decay of GK(t) and q(t).
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a strong depression of the synapse, resulting in the generation of very small postsynaptic
EPSPs that are insufficient to raise the cell membrane potential above the firing threshold.

4.2  Frequency Response of the Extended Neuron Model

The frequency response of the neuron model with a depressing synapse is illustrated in
Figure 4B. Although the synaptic dynamics have been tuned to match those found experi-
mentally in the somatosensory cortex, it is interesting to note that the model clearly responds
preferentially to frequencies under 10 Hz, as is also found in AI. It seems to be the case that
the dynamics of cortical depressing synapses may be quite similar across different cortical
areas. 

For comparison the response of a neuron model without a depressing synapse is shown in
Figure 4C. Clearly, such a model cannot replicate the behaviour observed experimentally
without the addition of delayed inhibitory inputs which increase in strength with stimulus
frequency. Alternatively, modeling the synapse as a low-pass filter but with a very low cut-
off frequency could result in a similar frequency response, but would fail simultaneously to
account for the short response latency found in AI [9]. The benefit of the proposed model is
that it can account both for the low-pass frequency response and short onset latency (cf. Sec-
tion 4.8) within a single neuron model. 

Figure 3 Simulation of the transmission of signals between thalamic relay and cortical pyramidal cells.
Spikes were generated probabilistically, resulting in the distributions shown at the bottom of each
quadrant, and used as inputs to the model. This input activity resembles the activity in thalamic relay
cells recorded experimentally in response to signals with periodicity indicated [5]. The model (top of
each quadrant) qualitatively replicates the behaviour of paired pyramidal cells in AI, which showed
almost no response except at signal onset when stimuli exceeded 20 Hz. 
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4.3  Limitations of the Simulations 

For many of the experiments simulated the nature of the thalamocortical signals is
unknown, which makes it difficult to know whether the stimuli used as inputs to the model
are realistic. However, the details of the acoustic stimuli used in the experiments are gener-
ally well documented and therefore it is desirable to be able to simulate the experiments
using similar acoustic stimuli. For this reason a well-documented and tested peripheral
model, DSAM [21], was used to generate signals characteristically found in auditory nerve
fiber recordings in response to acoustic stimuli. The problem with this approach is that the
rest of the subcortical auditory system has not been similarly modelled. Therefore, in the fol-
lowing simulations the output from the peripheral model is reprocessed to ensure that the fir-
ing rate remains below about 200 Hz by enforcing a reasonable refractory period. Clearly
this ignores the computations which occur in the rest of the auditory system. However, it is
surprising how many results the model can replicate; a situation that would almost certainly
be improved upon by more accurately modelling the thalamo-cortical signals. While recogn-
ising that this simplification is likely to result in a poor approximation of actual thalamic
relay cell activity, it is difficult at this stage to do much better, and has the added benefit of
making the simulations tractable.

For the remainder of the simulations, the acoustic signals specified are processed by the
DSAM peripheral model that includes, an outer- and middle-ear transfer functions, a gamm-
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Figure 4  Frequency response of the model. The response of the neuron model with and without a depressing
synapse to an incoming spike train of the frequency indicated, simulated for 20 seconds. The plot
shows the total number of times the cell fired during the 20-second period. Stochastic presynaptic
spike trains were used, with the probability of a spike set so as to generate, on average, the number
of spikes per second indicated.
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atone filterbank, and Meddis’ inner hair cell model. A simple stochastic spike generator
model is used, and a convergence of twenty inner hair cells to one auditory-nerve fiber is
assumed. The spike trains are then processed to ensure that refractory periods are generally
greater than 20 ms. However, when more than one spike occurs simultaneously, as is possi-
ble with a combinations of 20 spike trains per channel, the refractory period is allowed to
decrease in proportion to the degree of coincidence. This has the benefit of not destroying
the enhanced onset response generated by the inner hair cells.

4.4  Best Modulation Frequencies

Rate-modulation transfer functions were extensively investigated by Schreiner and Urbas
[24], who found that the best modulation frequencies in AI were generally below 15 Hz.
More recently very similar normalized rate modulation data was presented [13]. To demon-
strate the validity of the modeling approach taken Figure 5 illustrates a comparison between
these experimental results and the response of the model to similar acoustic stimuli, prepro-
cessed in the way described above. As can be seen, the model response closely replicates the
experimental results.

4.5  The Time Course of Forward Masking

Although there are undoubtedly a number of factors that contribute to the phenomenon
of forward masking, it is clear that the depression of thalamocortical synapses must contrib-
ute to the total effect. Explanations for forward masking have also been sought in terms of
lateral or forward inhibition. However, it has been shown that masking continues to exist
even in the presence of a GABAA antagonist and therefore even if inhibitory inputs have
some part to play they cannot provide a full account [3]. Both cortical forward masking and
that evidenced behaviourally have been shown to last far longer than explicable in terms of
peripheral adaptation [3][4][22]. The model clearly provides a mechanism for forward
masking, since synapses that have been previously activated require time to replenish their
transmitter stores and respond less strongly when depleted. The time course of synaptic
recovery appears to be consistent with the time course of cortical forward masking. The

Figure 5 Response to repeated tones at the given repetition rates; model results ‘o__o’ and experimental
results ‘+--+’ [13]. Normalised repetition rate transfer functions are found using a stimulus consist-
ing of 6 tones pulses at the repetition rate indicated and then calculating the mean response to the
last 5 tones in the sequence divided by the response to the first tone; each tone has a duration of 25
ms. 
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tonotopic distribution of masking is also consistent with a model of forward masking in
terms of the depression of thalamocortical synapses since it has been shown that masking is
closely related to the receptive fields of cortical neurons [3,4]. Figure 6 shows the depletion
at synapses across the tonotopic axis in response to masking stimuli at the intensities indi-
cated. A comparison between the distribution and time course of synaptic transmitter deple-
tion and Brosch and Schreiner’s plots of the time course and distribution of masking [3],
shows that there is a remarkable similarity between the two. 

An important aspect of this model is that it demonstrates that cortical forward masking
could be dependent on presynaptic rather than postsynaptic activity. This offers a simple
explanation for the puzzling experimental observation that masking is sometimes detected
even in response to maskers that do not actually activate the target cell [3]. If masking is a
result of transmitter depletion of thalamocortical synapses, then it would be quite possible
for such synapses to become depleted by thalamic activity even though there is insufficient
incoming activity to actually cause the cortical cell to fire, which is how the response to the
masker was determined [3]. Since these synapses would nevertheless be depleted, the probe
tone could therefore be masked by the “sub-threshold” masker.

Figure 6 Distribution and time course of transmitter depletion at synapses across the tonotopic axis in
response to a 1000 Hz masker of 30-ms duration at the intensities indicated. a) The color scale indi-
cates the percentage depletion relative to transmitter levels at the start of the masker for maskers of
the three intensities indicated. b) Time for transmitter to recover to within 5% of initial mean levels
after masker offset for each masker intensity indicated.
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4.6  The Effect of Masker Duration on Forward Masking

In psychophysical experiments it has been shown that the degree of masking is affected
by the duration of the masker and masking increases with masker duration [12]. This was
also found to be the case by Brosch and Schreiner [3] in their recordings in AI. However, the
sensitivity to duration was observed even when the AI cell responded only at the onset of the
masker, and although the effect of masker duration was noted, it was not suggested how this
could occur. The model investigated here suggests a simple explanation — as long as there is
some tonic incoming activity during the masker, then transmitter depletion at the thalamo-
cortical synapses will be related to masker duration. Therefore, if as we hypothesize, the
degree of masking is related to the degree of transmitter depletion at thalamocortical syn-
apses, then the sensitivity to masker duration follows. The paper by Brosch and Schreiner [3]
did not include any detailed results on masker duration, so in Figure 7, a comparison
between Kidd and Feth’s results [12] and the model’s response is shown. One drawback
should be noted; although these results are qualitatively the same, it is not clear how the
degree of transmitter depletion in the model can be directly related to the probe threshold
shifts plotted by Kidd and Feth.

4.7  Disruption of Synchronisation Responses by Subthreshold Stimuli

In a recent paper [20], Nelken suggested that his experiments showed a correlate of
comodulation masking release. Activity was record in AI in response to noise modulated at
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Figure 7 The effect of masker duration. Transmitter depletion relative to mean levels at the start of the masker
is plotted for masker duration and intensities indicated. As can be seen the model is clearly sensitive
to both masker duration and intensity, as found by Kidd and Feth [12].
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10 Hz, and was found to synchronize to each noise pulse as expected. However, when a very
soft, even subthreshold, continuous pure tone with frequency corresponding to the cell’s best
frequency, was added to the noise, then this synchronization was disrupted. In contrast, when
the pure tone was added to an unmodulated noise then the response to the noise alone was
indistinguishable from that to the noise plus tone. Nelken suggested that the cortex might
therefore be able to detect masked sounds by means of their disruption of the more powerful
masker. 

Once again a simple explanation of Nelken’s results is suggested by the model, which
can easily replicate the experimentally observed behaviour as long as there is some tonic tha-
lamic activity in response to the pure tone. Because the activity in response to the pure tone
continues through the silent gaps between the noise pulses, this effectively prevents the
recovery of the synapses between noise pulses and so the synchronized response is dis-
rupted. This explanation is also consistent with Nelken’s unpublished observations that the
synchronized response to the noise alone was far more reliably obtained when the noise was
trapezoidally modulated, than when sine wave modulation was used. Figure 8 shows
Nelken’s experimental results and the model’s responses to similar stimuli.

4.8  Onset Latency

Neurons in AI generally respond to the onset of stimuli and to transients in acoustic sig-
nals. The factors that influence the timing of the onset response are unknown, but Heil has
recently published a number of papers in which the relationships between onset latency in AI
and various characteristics of the stimulus envelope were investigated [9]. It was shown, for
example, that for a linear rise function, the onset latency in AI was related to the rate of
change of peak pressure and was independent of rise time and plateau peak pressure. In Fig-
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ure 9 it can be seen that the model’s behaviour is very similar to that observed by Heil [9]
When the latencies are plotted against rate of change of peak pressure, the latencies for dif-
ferent rise times superimpose quite closely. However, for stimuli that are close to the
response threshold this relationship does not hold up so well — an effect also noted by Heil
but not evident in the results included here. Heil also found that when a cosine-squared rise
function was used the onset response latency was related to the acceleration of plateau peak
pressure. The model’s response to such stimuli does not replicate this result very well. How-
ever, this may be due to the simplifications made in the subcortical modeling, particularly
the failure to accurately capture the enhanced onset response in the inputs used, rather than a
shortcoming in the synaptic model, further work is necessary to understand the problem. 

5.    Discussion

In this paper it has been shown how a model neuron that incorporates dynamic synapses
responds to a number of different stimuli. The results seem to indicate that synaptic depres-
sion at thalamocortical synapses may explain a number of aspects of the response properties
of neurons in AI. 

The nonlinearity of the dynamic synapse model allows it to behave in many situations
like a low-pass filter whilst also retaining a fast onset response. In response to repeated stim-
ulation much above 10 Hz, synaptic depletion prevents the cell from responding except at

Figure 9 Onset latency for a linear rise function. The left hand column shows Heil’s results [9] for this stimu-
lus type, plotted against plateau peak pressure (top) and rate of change of peak pressure (bottom),
the right hand column shows the model’s response latencies for similar stimuli.
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the onset of the stimulus. However, the synaptic dynamics are not slow and after a period of
rest the synapse can respond with a large EPSP to the onset of a new stimulus, which can
result in a response of short latency. Since the reliability of a depressing synapse also
appears to be related to the amount of available transmitter [23], an aspect not included in
this model, this means that after a period of rest such synapses will tend to respond very reli-
ably as well. This is therefore consistent with the generation of onset responses of short
latency and with little jitter. Although the cell tends to respond only at the onset of stimuli,
important processing can continue to occur in the dendrites throughout the duration of the
stimulus. This allows the cell to exhibit a sensitivity to stimulus duration, even when only
responding at stimulus onset. In addition, some of the apparent nonlinearities of responses
measured in AI, such as the influence of subthreshold stimuli or interaction between differ-
ent components of a complex stimulus [20], could be accounted for in this way. 

Since synaptic depression operates at thalamocortical synapses which are the path
through which sensory signals must pass in order to get to cortex, it seems likely that the
dynamics of depressing synapses have a major role to play in sensory processing. Synaptic
depression appears to result in a relatively infrequent sampling of the sensory inputs by the
cortex where such information is presumably integrated with ongoing cognitive processes.
This bears a remarkable similarity to Viemeister’s “multiple looks” model which was formu-
lated in order to explain temporal processing in auditory perception and to resolve the reso-
lution-integration paradox [27][28]. In his model, it was envisaged that “looks” or samples
from a short time-constant process are stored in memory and can be accessed and processed
selectively, depending on the task. 

Another effect of synaptic depression is to greatly enhance the response to the onsets of
signals. This could also act to promote grouping across frequency channels. Synaptic
depression effectively provides a kind of lateral inhibition acting in the temporal domain,
which may help to increase the temporal contrast of stimuli [3]. It has also been suggested
that although thalamocortical sensory signals on their own cannot elicit lasting activity, facil-
itation at pyramidal NMDA synapses might act to enhance the response to incoming signals
of interest [25]. This could provide a mechanism for the flexible processing of sensory sig-
nals, depending on factors such as previous experience or the current state of attention. 

The frequency response of the model, illustrated in Figure 5B, bears a strong relationship
to speech modulation transfer functions, with frequencies around 4 to 6 Hz being the domi-
nant frequency of the envelope of speech signals. Syllables in speech are generally, although
not always, distinguished by an amplitude peak preceded and closed by an amplitude trough
[11]. Therefore, when the model is stimulated by a speech signal, it has a tendency to fire at
the onsets of syllables within the signal. Synaptic depression may therefore give rise to a syl-
lable-like segmentation of speech signals within AI. Such segmentation could occur in paral-
lel across the tonotopic axis, independently within each frequency channel. This suggestion
is consistent with the experimentally observed response to species-specific calls of neurons
in AI, which tend to fire primarily at the onset of segments or syllables within calls, irrespec-
tive of the characteristic frequency of the neuron [5][29][30]. One effect this would have is
to increase temporal synchrony across the tonotopic axis, thereby promoting the grouping of
related frequency components of a call. Synchronous activity is likely to be important for the
effective transmission of signals to further processing centres which integrate information
across frequency channels.

In experiments in which species specific calls were manipulated [30], it was also shown
that speeding up or slowing down the signal (or reversing it) all resulted in reduced
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responses. We suggest that the reasons for this difference between manipulations and that the
behaviour of the model can help to explain these results. In the first case, when the signal is
slowed down, activity is still generated in response to syllable onsets, but since these occur
at a slower rate, the total amount of activity per second decreases. In the second case, when
the signal is speeded up, synaptic depression would prevent synchronization to syllable
onsets as effectively as for the control case. Finally, reversing the signal results in a reduced
response, not because of a change in timing of the stimulus but because of the change in the
nature of the transients in the signal. As shown in Section 4.8, on onset latency, sharp tran-
sients with abrupt rises are far more effective in generating responses than those with slow
rise times. Reversing the speech signal means that the transients generally become less
abrupt and therefore generate reduced activity. It seems reasonable to suppose that commu-
nication sounds have evolved to optimize their detection by the cortex, and that the commu-
nication sounds used are those most salient within AI – hence, the similarity between the
modulation transfer functions of speech signals and those measured in auditory cortex. Inter-
estingly, although derived very differently, the behaviour of the model is very similar to the
RASTA filter developed by Hermansky and Morgan and which was found to markedly
improve speech recognition in noise [10].

In general, as a result of synaptic depression, far stronger responses are likely to be
evoked in AI at the onset of new sounds than at the onset of sounds which have recently be
heard. This may be a useful trigger for the recognition of a new sound source in the auditory
scene and could underlie Bregman’s “old + new” heuristic [2] (i.e., the parts of a signals that
resemble those previously encountered may be attributed to the previous sound source and
the new parts which evoke a stronger response may then be processed separately). However,
although it seems that primitive auditory streaming might arise in the thalamocortical system
[14][15], it is not at all obvious what role synaptic depression might have in this process.
While the time constants associated with synaptic depression are consistent with the time
constants used in our model of auditory streaming [14], in some ways the effects of synaptic
depression seem diametrically opposed to those expected to promote streaming. Although
synaptic depression could support the recognition of a new sound source or stream, a stimu-
lus that is repeatedly heard would cause less and less activity in AI. How then could a fore-
ground stream perceptually “pop out” as occurs in streaming experiments? Clearly, much
more work is required to adequately address this question.

6.    Conclusions

By taking synaptic dynamics into account in modeling these experiments, it has been
possible to account for a number of previously unexplained results in a fairly straightforward
way. On the basis of these investigations it is suggested that the dynamics of thalamocortical
synapses may help to explain the temporal integration observed in AI and in auditory per-
ception.

The temporal response properties in the auditory system change markedly from the audi-
tory periphery to the cortex and one reason for this might be changes in the synaptic dynam-
ics. The synaptic model may therefore prove a useful extension to current models of auditory
processing in simulating the temporal characteristics of responses recorded experimentally
both in cortex and subcortically.
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1.    Introduction

People are often involved in situations where more than one sound is present at the same
time and are able to tolerate competing signals when listening to a target voice. This phe-
nomenon is known as the cocktail party effect. One way to explain the good human perfor-
mance in noisy conditions is to consider the auditory environment as a complex scene
containing multiple objects and to hypothesize that the auditory system is capable of group-
ing these objects into separate perceptual streams based on certain primitive features identi-
fying each object. One such feature is the fundamental frequency of voiced speech sounds
[2] [15] [21] [26]. When concurrent voiced sounds are present, they can be segregated into
separate perceptual streams containing parts of the auditory scene originating from a single
sound source in order that the signal-to-noise ratio within each stream is improved for the
subsequent speech recognition process.

The past decade has seen an explosive growth in studies of segregation of concurrent vow-
els. This trend has been inspired primarily by the desire to study auditory perceptual mecha-
nisms. Double-vowel experiments are a very suitable test for models of auditory scene
analysis because a large body of experimental and modelling data exists and the effects have
been reproduced in many laboratories and for a number of different languages. 

Auditory scene analysis is usually described as a two-stage process — a low-level, primi-
tive, stream formation stage and a high-level, schema-based, recognition stage [4]. Double
vowels fit this paradigm very well because the stimulus parameters likely to influence the
primitive grouping stage, such as fundamental frequency, duration and relative amplitude are
easy to control. The pattern matching stage can be kept relatively simple because of the sta-
tionary nature of the stimuli. It is possible to evaluate different stream formation strategies
and grouping cues within the same framework.

Psychophysical experiments have shown that listeners use the fundamental frequency (f0)
cue to group harmonic features for vowel recognition [2] [15] [21] [26]. In these experi-
ments subjects are asked to identify pairs of simultaneously presented vowels whose f0s are
systematically varied. It has been shown that intelligibility increases significantly within ca.
a two-semitone f0 difference (12% of the lower f0) when the stimuli are long in duration
(200 ms). For short vowels (50 ms) the intelligibility gain due to the f0 difference is less pro-
nounced. Also, the relative level of the two vowels in a pair can be varied over a wide range
without affecting the recognition performance gain if the vowels are presented at different
f0s. 

In an attempt to explain the psychophysical findings, computational models have been
developed that simulate the major auditory and perceptual process by which listeners may
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exploit a difference in f0 when identifying concurrent vowels. Models that aim to explain
human performance have been presented previously (cf. the review in [5]). All models pre-
dict human performance as a function of f0 difference [2] [5] [18]. The models fall into two
broad categories. The first category is based on unidimensional representations of the signal
spectrum. The harmonics of stationary signals are resolved and the regular spacing between
harmonics can be used to recover streams, provided the f0 can be estimated. Examples of
such techniques are the harmonic-selection technique proposed in [19] and the time-domain-
comb-filter model described in [5]. The harmonic-selection model is not a plausible model
for human performance because harmonics in the speech pitch range are not resolved above
around 1 kHz in auditory filters; thus a selection algorithm must fail. The second category of
models is based on two-dimensional signal representations. An auditory filterbank usually
forms one axis of this representation, while the second axis is based on signal characteristics
within each channel of the filterbank. Examples of this type are the models in which autocor-
relation is used to form the second axis of the signal representation [2] [18]. Such models are
based on a temporal analysis of signals obtained by peripheral filtering and hair-cell trans-
duction. The models segregate mixed vowels by grouping excitation patterns across chan-
nels based on the periodicity information in autocorrelation functions within each channel. 

This chapter addresses the question of how such a streaming process might be imple-
mented computationally for the fundamental frequency cue, as well as for evaluating its per-
formance for natural speech signals. Section 2 presents a set of experimental results
pertaining to human performance for recognizing concurrent vowels. Section 3 describes the
model of concurrent vowel segregation. Section 4 evaluates the model performance on seg-
regating concurrent vowels for real speech.

2.    Human Perception

Although various experimental results on human performance in concurrent vowel identi-
fication have been reported in the literature, the experiments typically investigate the effect
of a single stimulus parameter and are conducted under specific conditions that are not
always maintained in experiments investigating other parameters. In this section we present
a set of experimental results generated within a unified experimental framework that show
human performance in recognizing concurrent vowels while manipulating the fundamental
frequency, duration and relative amplitude of the vowels. The experimental results will serve
as a benchmark to validate the computation model presented in the following section.

We used synthetic vowel stimuli in the experiments. The French long vowels [a,e,i,o,u,y]
were synthesized using a parallel implementation of Klatt’s synthesizer [9] with 16-bit reso-
lution and a sampling rate of 20 kHz. The stimuli to be recognized were generated by adding
pairs of non-identical vowels leading to fifteen possible vowel combinations. One vowel of
the pair always had an f0 of 100 Hz, the f0 of the other vowel was set to either 100 Hz, 106
Hz, 112 Hz or 126 Hz. The relative amplitude of the constituent vowels was scaled for three
level differences between the signals: 0 dB, 6 dB and 12 dB. The signals were windowed for
three signal durations of 51.2 ms, 102.4 ms and 204.8 ms. Half-Hanning windows were
applied to the initial and final 25.6 ms of each stimulus.

Four subjects were presented with the vowel pairs and asked to identify the pair heard.
The signals were played diotically via Beyer Dynamic DT660 headphones at ca. 54 dB SPL.
All experiments were conducted in a sound-proof room. Each subject performed an initial
training session where single vowels were played over the full f0 range. After the familiar-
ization session, an experiment using vowels with 0 dB relative amplitude was run. This ses-
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sion is not included in the data, as all subjects showed improvement over the first session.
Each session contained a quasi-random sequence of 360 combinations of the 15 possible
vowel pairs, the three possible levels of relative amplitudes and four possible f0 differences.
Stimulus durations were constant within each experiment.

Subject performance is shown in Figure 1. Panel A shows the data for the 204.8-ms stimu-
lus duration, panel B is based on the 102.4-ms stimuli and panel C is for the 51.2 ms signals.
Each panel shows the percentage of correctly recognized pairs against f0 of the second vowel
for each relative amplitude level. If 204.8 ms segments are played, subject performance
improves from 65% of pairs correct to 85% correct if both vowels have the same RMS
amplitude. As the level difference between the vowels increases, overall performance is
reduced, but comparable performance increases are observed (12.5% at 6 dB, V1/V2 and
15% at 12 dB, V1/V2). An analysis of variance shows that the f0 difference (F = 12.81, p <
0.001) and the relative amplitude (F = 29.41, p < 0.001) are significant factors. Figure 1B
shows responses to the 102.4 ms stimuli. The improvements with f0 are no longer very pro-
nounced, but still significant (F = 2.78, p = 0.045). The effect of relative amplitude is clearly
visible and significant (F = 3.92, p = 0.023). For very short duration signals (Figure 1C) no
effect of f0 difference is visible in the data (F = 0.44, p = 0.72), while the relative signal level
is significant (F = 6.05, p = 0.03). The recognition scores for stimuli where both vowels have
the same fundamental frequency (100 Hz, 2nd vowel) lie between 50% and 65%, depending
on the relative amplitude. In the absence of segregation cues, the data suggest that listeners

Figure 1  Subject performance for the double-vowel recognition task. Pairwise recognition is plotted in each
graph for three relative level settings, 0 dB, 6 dB and 12 dB. One vowel is always presented at 100
Hz f0. The f0 of the second vowel is shown on the graph. Panel A shows recognition performance
for the 204.8-ms stimuli, panel B is for the 102.4-ms stimuli while panel C shows data for the 51.2-
ms signals. 
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use an independent, high-level recognition mechanism. Zwicker [26] suggests a spectral
subtraction process where listeners recognize a dominant vowel first and then “mentally sub-
tract” its spectrum from the mixture to yield a second vowel.

The experimental results confirm that the f0 difference is a powerful grouping cue for
vowel segregation, provided that the stimuli are at least 100 ms in duration. For shorter sig-
nals no significant performance improvements are seen in our data. This is consistent with
the findings of Assmann and Summerfield [2]. Small performance increases, even for 50-ms
duration data, are described in [3]. In the 200-ms and 100-ms conditions, a sharp rise over
the first 2 semitones in f0 difference is observed. This is also consistent with previous data
and suggests that some form of fundamental frequency analysis is carried out. If level differ-
ences between the vowels are introduced, subject performance is reduced, but the reduction
in performance appears to be independent of the effects introduced by the f0 difference
manipulations. Where no grouping cues are present, subjects still achieve average recogni-
tion rates that are well above chance level. When both vowels are presented at the same
amplitude, subjects recognize 65.8% of all the pairs (chance performance = 6.67%). A spec-
tral subtraction mechanism, as proposed by Zwicker [26], is a plausible explanation, but
since only the relative amplitude, not the pitch difference or signal duration alters the recog-
nition rate where both f0s are equal, the proposed model does not consider this aspect of the
data.

3.    The AM-Map Model 

In this section we describe the amplitude-modulation-map-based model for segregating
concurrent vowels. The model generates an amplitude modulation (AM) map from an input
speech signal through four stages: 

(1) peripheral filtering using an auditory filterbank,
(2) hair-cell transduction via half-wave rectification to extract the AM excitation patterns of

the speech signal,
(3) bandpass filtering to remove high-frequency components, and 
(4) spectral analysis of the AM excitation patterns.

The model uses a 2-D map to represent AM components of the speech signals filtered by
an auditory filterbank. Provided that the f0s are known, segregation is achieved by grouping
signal components with common modulation frequencies in the channels. 

Autocorrelation-based models rely on the observation that, while a representation based
on the average discharge rate in an auditory filterbank is unable to resolve speech harmonics
in the high-frequency range directly, precise temporal information is present in the discharge
pattern seen in each channel. A secondary processing step can therefore be used to generate
a representation relying on the signal fine-time structure. Autocorrelation analysis of the pat-
tern in each channel highlights periodicities linked to the signal fundamental frequency [14].
This representation has been used, with some success, for the separation of concurrent vow-
els [2] [18] [23].

Autocorrelation analysis has two major computational drawbacks — it is an inherently
non-linear operation, and the energy in the resultant representation is not localized on the
perceptually relevant f0 axis. In practice this means that it is not possible to recover spectra
directly from the representation but that the analysis is used to compute the dominant pitch
in each of the filterbank channels. The segregation process then groups all channels with
common periodicity into perceptual streams. All energy within each channel is attributed to
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one source. Because of the broad spectral distribution of energy in speech sounds this “all or
nothing” segregation means that spectra recovered using the autocorrelation method are nec-
essarily distorted. The modulation map algorithm we propose does not have these drawbacks
though, in contrast to autocorrelation analysis, requires long analysis windows to segregate
concurrent voiced sounds.

Human listeners also need relatively long stimulus durations to successfully segregate
concurrent vowels. The autocorrelation model proposed by Meddis and Hewitt [18], which
builds on the model proposed by Assmann and Summerfield [2], uses an exponentially
decaying analysis window with a duration of 30 ms. This short interval is appropriate con-
sidering that the representation derived by autocorrelation analysis for periodic signals does
not change significantly after a full period of the lowest frequency component in the signal
has been processed. It also means that the autocorrelation models, as they currently stand,
are unable to account for the improvement in performance as signal duration is extended
from 50 to 200 ms. This, however, does not invalidate autocorrelation analysis as a model for
human performance because the models could easily be extended to account for human data
by adding a long-duration integration stage at the identification level. 

We propose an alternative to autocorrelation models, based on a spectral representation
of the discharge pattern observed in each channel. The alternative representation proposed
for speech segregation is similar to the modulation spectra proposed by Kollmeier and Koch
[10] but uses different parameters and does not attempt to use binaural information. This
type of representation, a map of channel characteristic frequency against modulation fre-
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Figure 2  Schematic diagram of the AM-map model. An AM map is computed through four stages: (1) periph-
eral filtering via an auditory filterbank to perform cochlear frequency analysis, (2) half-wave rectifi-
cation to perform hair-cell transduction, (3) band-pass filtering to remove the high-frequency
components, and (4) spectral analysis, via the Fourier transform, to extract modulation frequencies.
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quency, has been demonstrated physiologically at the level of the inferior colliculus [13]
[22]. 

If a signal is passed though an auditory filterbank, then the discharge pattern in each simu-
lated nerve fiber encodes the average energy in the channel as both average discharge rate
and as fine timing information (cf. [8] [12] for a review of time coding in the auditory sys-
tem). If two objects in an auditory scene have different modulation frequencies such as, for
instance, two simultaneous vowels with different fundamental frequencies, then this enve-
lope information can be used to segregate the sources. The processing steps involved are dis-
cussed in detail below.

The first stage in the information processing in the model is an auditory filterbank. The
signal is split into thirty-two 0.5-Bark-spaced channels with characteristic frequencies rang-
ing between 0.1 kHz and 4.7 kHz (Figure 2). Each filter is a linear, fourth-order recursive
gammatone filter [6] [11]. The output of each channel is scaled to approximate human hear-
ing thresholds. 

An important component of any auditory model is a model of hair-cell transduction. An
example for such a model is the Meddis hair cell model [16][17], which models the three
main effects observed in hair cell transduction: a non-linear compression with adaptation,
half-wave rectification and low-pass filtering of the input signal. The rectification and filter-
ing actions of the model are critical to an amplitude demodulation system. However, the log-
compression negatively affects the extraction of AM components at moderate to high signal
levels. The model proposed in this chapter includes an explicit half-wave rectification and
filtering stage, but does not include any further nonlinearity.

The carrier frequency in each channel is removed by low-pass filtering the half-wave rec-
tified signal. The filter used is a first-order, low-pass filter. The resulting signal has a non-
zero mean, as a consequence of the half-wave rectification. Before computing the Fourier
transform this mean, as well as any low-frequency beats, is removed by a second, high-pass
filter. This filter is also implemented as a recursive, first-order filter. Filter time constants of
Tl = 2 ms (low-pass filter) and Th = 4 ms (high-pass filter) are used.

After the rectification and filtering stages have been applied to each channel, a windowed
time slice is applied and a Fourier analysis carried out on the output of each channel. The
amplitude spectrum is plotted along the abscissa for each of the 32 channels in the system. 

Strictly speaking, the process is not exactly equivalent to envelope extraction where the
filterbank is able to resolve single harmonics. For these channels only the harmonic closest
to the characteristic frequency of the filter is observed in the modulation spectrum. As audi-
tory filters widen with characteristic frequency this limitation only applies for very low char-
acteristic frequencies. The modulation spectrum of these channels shows these harmonics
because the low-pass filter only cuts off above 300 Hz. This a mixture of resolved harmonics
at low frequencies and envelope information at higher frequencies means that the Hilbert
envelope is not suitable for the construction of modulation maps at low channel frequencies.

The map shows energy in the modulation spectrum for each channel in the auditory
model. Carrier and envelope frequency for each object in the scene can be read off the two
axes. Spectra can be recovered by sampling the map along the target f0. 

If a single voiced speech sound is used to drive the model, a characteristic striped pattern
appears. Energy is localized in ridges corresponding to the fundamental frequency and its
harmonics. If the energy in all ridges is summed the vowel spectrum is recovered. As a con-
sequence of the demodulation stage, energy is localized primarily within the partial spectra,
located at modulation frequencies corresponding to the first five harmonics of the signal. A
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key feature of the maps is that the representation is sparse. Additional vowels, provided their
fundamental frequencies are different, can be accommodated with little spectral overlap.
Figure 3 shows a contour plot of an AM map for the concurrent vowels [er] with an f0 of 152
Hz, and [iy] with an f0 of 200 Hz (spectral analysis is performed by a conventional DFT with
a window of 128 ms). We observe that AM information of vowels is well encoded as the har-
monic ridges in the AM maps.

The AM representation is used to model the major auditory and perceptual processes by
which listeners exploit a difference in f0 when identifying the constituents of double vowels.
When a concurrent vowel pair with different f0s of the constituent vowels is fed to the segre-
gation model, the AM map shows the harmonic ridges corresponding to the harmonics of the
two f0s. Provided that the resolution of modulation frequency is sufficient to localize the har-
monic ridges in the AM map, segregation can be achieved in two stages. The first stage is to
group the harmonic ridges corresponding to the fundamental of the target sound. The second
stage is to sum the grouped harmonic ridges to recover the vocalic spectrum. Because of the
sparse and well-localized distribution of energy in the AM map, spectra of concurrent voiced
speech sounds can be extracted with minimal distortion by exploiting f0 information. This is
the main advantage of the AM-map representation over autocorrelation-based processes.

4.    Model Performance on Synthetic Data

Amplitude modulation maps are used to model f0-based streaming. To this end, the per-
ceptual experiments were repeated, using the model rather than human listeners. Spectra
were extracted at the two, known (rather than estimated) pitches. Each of the extracted spec-
tra was compared against a set of templates obtained by driving the maps with isolated vow-

Figure 3   A contour plot of an AM map for the concurrent vowels [er] with an f0 of 152 Hz and [iy] with an
f0 of 200 Hz, where spectral analysis is performed by a conventional DFT with a 128-ms Hanning
window. The AM information of vowels is well encoded as the harmonic ridges in the AM maps.
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els and extracting the resulting spectra. Cross-correlation coefficients, taking the full spectra
(not the peak positions as in [2]), were computed. Each extracted spectrum was compared
against a set of templates and the template leading to the highest correlation coefficient was
taken to identify the recognized vowel. More complex and perceptually relevant descriptors
of the extracted spectra could be used, but this “minimalist approach” makes the process
more transparent.

The system recognition performance was tested on stimuli used in the experiments with
human listeners. Model performance was evaluated for three stimulus durations (51.2, 102.4
and 204.8 ms) for each of three relative levels (0 dB, 6 dB and 12 dB, V1/V2). Both spectra
were recovered by extracting the initial five partial spectra from the map using the known,
rather than the estimated f0.

Pattern matching was performed against templates obtained by averaging the place repre-
sentation for isolated vowels with fundamental frequencies ranging between 100 and 200
Hz, in 5-Hz steps. The cross-correlation coefficient was computed for all templates and the
template with the correlation highest to the recovered spectrum was chosen as the recog-
nized vowel.

The model predicts qualitative effects observed in human recognition performance data
reasonably well. The model performance on the synthetic data is illustrated in Figure 4. One
of the most striking differences is that without a fundamental frequency difference the model
predicts none of the pairs correctly. This is not surprising because the model is a pure segre-
gation model. If no segregation cues are present it has to fail because, in this case, both
streams contain the same data. In essence, the model recognizes the same vowel twice. 

For long (204.8 ms) stimuli, recognition performance rapidly rises to 100% for 0 dB V1/
V2. The relative increase in performance as a function of f0 difference shows trends similar
to the human data. The model performance for large f0 difference values is about 10% higher
than the performance of human listeners. 

If the signal duration is reduced to 102.4 ms, the pattern is similar, but overall perfor-
mance levels reduce. The effect of the manipulation of the relative amplitude of the vowels is
more pronounced when the two vowels are well segregated: 112 Hz and 126 Hz at 204.8 ms
and 126 Hz at 102.4 ms. 

For very short signal durations the model performance shows a gradual increase in perfor-
mance while subject data show no significant f0 effects. The relative level manipulation also
does not show a clear effect. 

Human data suggests that some high-level process, which allows the recognition of simul-
taneous vowels without segregation cues is used. The model performance never exceeds
60% of the pairs correct in the 50-ms duration condition, which is roughly the human base-
line performance. If an independent high-level process is assumed, then performance
increases due to the segregation process that would only be visible once they exceeded this
baseline performance. In the 51.2-ms signal case, visible increases in performance would
not be expected. The increase in performance is consistent with perceptual data reported by
McKeown [15].

5.    Model Performance on Real Speech Data

While synthetic vowels are appropriate stimuli to use in perception and modelling experi-
ments, such signals do not reflect the spectral and temporal variability of real speech. One is
confronted with difficulties when dealing with real speech signals. First, since real speech
signals are non-stationary the vowels under study are of short duration which limits the reso-
lution of the vowel spectra. Second, the variation of vowel spectra is an inherent problem of
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real speech. Therefore, it is necessary to investigate the performance of models under more
realistic speech conditions.

To date, most computational models have been evaluated only on synthetic vowels and lit-
tle work has been devoted to the investigation of segregating concurrent vowels extracted
from real speech. As the emphasis of the research carried out to date has been on the percep-
tual basis rather than on the computational aspect of auditory scene analysis, it is under-
standable that the development of the enabling techniques to make this approach a practical
proposition has received less attention. However, it is desirable to develop computational
models which can work for real speech processing. In this section we present experimental
results for evaluating the f0-guided segregation model described in the previous section. 

The evaluation was performed on a real speech database known as the TIMIT corpus. The
reason for choosing this corpus lies in its popularity as a phonetically rich, speaker-indepen-
dent, real speech database that is used extensively in the speech-processing community. We
consider the problem of segregating and recognizing concurrent vowels whose constituent
members are the five long vowels [aa], [iy], [ae], [oy] and [uw]. All vowels among the five
classes were extracted from a total of 3,536 sentences spoken by 442 different speakers.
Each vowel was 128 ms in duration. Concurrent vowels are generated by mixing randomly
selected pairs of vowels from the extracted signals.

Figure 4  Pairwise recognition performance of the segregation system based on modulation maps. Panel A
shows recognition rates (in percent) against the second vowel f0 for 0 dB, 6 dB and 12 dB relative
rms levels. Panel B and C show the same data for 102.4 ms (B) and 51.2 ms (C). Recognition per-
formance increases in all cases as f0 differences are introduced, but the slope decreases as the dura-
tion is reduced. The relative level has a larger effect when the vowels are well separated (i.e. at high
f0 differences for the 204.8 ms and 102.4 ms conditions). If both vowels have the same fundamental
frequency, the pairwise recognition fails because the algorithm is unable to segregate the vowels
into separate streams.
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We carried out two experiments to evaluate the performance of the model. The first exper-
iment was designed to measure the capability of recovering vowel spectra based on the AM
representation. The second experiment tested segregation performance by measuring the
recognition rate of the segregated vowels. Since there is no “ground truth” for f0 information
available for real speech analysis it is difficult to assess the accuracy of f0 estimation. Bear-
ing in mind that our main aim is to investigate the validity of the segregation model, we
adopted the following strategy to minimize the influence of f0 estimation in our experiments.
We estimated f0 from the isolated vowels before mixing them to generate concurrent vowels.
We then assigned the f0s of mixed vowels by the f0s obtained from the isolated constituent
vowels. We used a linear-prediction-based method [24] to determine the f0s of the isolated
vowels extracted from the TIMIT database. The method adopts the sinusoidal model for
speech waveforms and parameterizes the amplitude and frequencies of the sinusoidal com-
ponents using a high-order, linear-prediction model. The combination of the sinusoidal
model and linear-prediction technique leads to a high-resolution, linear-prediction spectrum
in which the f0 can be reliably determined from the harmonic peaks. It was found in the
experiments that the f0 estimation is reasonably good for the segregation.

In the first experiment 3,000 pairs of concurrent vowels were extracted from the TIMIT
corpus and used for the evaluation. We fed the vowels to the model and recovered the vowel
spectra using the AM-map representation. If the segregation model is perfect, then the spec-
trum recovered from the mixed vowels should be the same as that extracted from the corre-
sponding isolated vowels because the same f0 is involved in the processes. Figure 5 shows
the comparison of spectra obtained from mixed vowels and isolated vowels. We can see the
difference between the spectrum extracted from the mixed vowels and that from the isolated
vowels. To quantify the difference we calculated the overall spectral difference over all chan-
nels and normalized it by the isolated spectrum. The average difference over the 3,000 pairs
of concurrent vowels was 11.5%.

The spectral distortion caused by segregation can be attributed to two factors: (1) the inter-
action between constituents of mixed vowels and (2) the limited resolution of the spectrum.
First, the interaction between constituents of mixed vowels is an inherent problem associated
with the model based on the AM representation. When a concurrent vowel is present,
unwanted AM components may emerge due to the beating of harmonics from different con-
stituent vowels. In the experiment we found that the unwanted AM components are small
and have little influence in segregation, especially when two constituent vowels belong to
different vowel classes. Second, the limited resolution of the spectrum is a common problem
in real speech analysis because the duration of real vowels is short. In order to overcome this
difficulty it is necessary to employ some spectral analysis techniques to replace the conven-
tional Fourier transform in the AM representation. 

In the second experiment the recognition performance of the segregated vowels was eval-
uated. As in the first experiment, we tested 3,000 pairs of concurrent vowels. Constituent
vowels were recovered based on the segregation model. Vowel recognition is performed via
vowel classification. Linear discriminant analysis (LDA) [7] was used to achieve the vowel
classification. The appeal of LDA for vowel classification comes from its capability to
accommodate the spectral variation of vowels within classes. Spectra of real vowels vary
depending on the context (e.g., the word with which the vowels are associated). It is desir-
able to accommodate the variation in order to achieve reliable vowel classification. LDA
deals with the variation by reducing the dimensionality via linear projection. The linear pro-
jection is chosen in such a way that the ratio of the between-class scatter and the within-class
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scatter is maximized. The dimension of the reduced space is N-1, where N is the number of
classes. In the experiment we determined the projection matrix using all available vowels
extracted from the TIMIT corpus as the training data. Segregated vowels were then trans-
ferred into the reduced feature space using the linear projection matrix. Vowel classification
is performed in the reduced feature space based on a Euclidean distance measure. That is,
each vowel is assigned to the class by which the Euclidean distance between the vowel and
the template is minimized.

In the experiment the segregation performance was measured by the recognition rate of
the target vowel, which is defined as the constituent vowel having a relatively higher power.
Figure 6 shows the recognition performance of the segregation model based on the AM map.
The concurrent vowels were 128 ms in duration. A conventional FFT was used to compute
the AM maps. The target-to-interferer ratio varied from 0 to 12 dB. In each condition three
trials were carried out in which 3,000 concurrent vowels were used. The target vowel recog-
nition rate is the average rate over all six classes. For comparison, the target vowel recogni-
tion was performed without segregation and the results are also plotted in Figure 6. It can be
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Figure 5  Comparison of the spectrum of isolated vowels and the spectrum of the segregated vowels obtained
using the AM map model. Panel top-left is a spectrum of an isolated vowel [er]. The top-right panel
is a spectrum of an isolated vowel [iy]. Concurrent vowels are generated by adding these two vowels
with equal power. The panel, bottom-left, is the spectrum of the segregated vowel [er]. The panel,
bottom-right, is the spectrum of the segregated vowel [i].
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observed that the segregation based on the AM map produced better target vowel recogni-
tion.

We can see from the two experiments that the performance of the model depends largely
on the resolution of the AM map. Since the duration of speech signals is limited, the only
way to increase the resolution of the AM map is to apply some advanced spectral analysis
techniques for attaining high-resolution AM representation. The zero-padding mechanism is
not effective in this respect because it only performs the interpolation operation in the fre-
quency domain. It has recently been shown that the reassigned spectrum technique can be
used to improve the resolution of AM representation for segregating synthetic concurrent
vowels [20], which provides a convenient means with which to overcome the resolution
problem.

The experimental results show that the proposed model is robust, which makes it very
suitable for engineering applications. In contrast to Parsons’ harmonic-selection model [19],
the proposed model does not have to resolve high-frequency harmonics. In practice, it is dif-
ficult to resolve high-frequency harmonics because small f0 estimation errors produce addi-
tive effects for high-frequency harmonics and the smearing of spectral information occurs
where the signal’s f0 changes within the analysis window. Therefore, the proposed model is
expected to outperform Parsons’s model for real speech. The detailed comparison of these
two models is one of our on-going projects. 

6.    Conclusions

In this chapter we have proposed a signal representation and segregation model that pre-
dicts human ability to recognize concurrent vowels as the f0 difference, relative amplitude
and duration are varied. The model predicts human performance data qualitatively for the
three parameters. For 100- and 200-ms stimuli the introduction of a two-semitone funda-

Figure 6  Recognition performance of the segregation model based on the AM map. The recognition rate of
the target vowel is plotted against the target-to-interferer ratios (solid line). For comparison the rec-
ognition performance without segregation is also plotted (dotted line). The concurrent vowels were
128 ms in duration. A conventional FFT was used to compute the AM maps.
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mental frequency difference leads to a significant increase in recognition performance. The
relative level of the two component vowels in each pair affects recognition performance.
Even at a 12-dB relative level both human listeners and the model show a significant
increase in performance with the introduction of small f0 differences. It is worth noting that
the f0-guided segregation model alone cannot explain human performance for stimuli where
both vowels have the same fundamental frequency.

The model is intended as an abstract approximation to the signal representations observed
in the inferior colliculus [13] [22]. The representation is computed by applying a Fourier
transform to a window of activity seen in an auditory filter. While it is clear that the proposed
algorithm is not, in any way, physiologically plausible, it is important to note that the model
is a close analogue to the comb-filter model proposed by Cheveigné [5]. The use of the Fou-
rier transform allows high-frequency resolution which comb filters can only achieve if mul-
tiple filter stages are cascaded. The time-frequency trade-off inherent in the Fourier
transform accurately simulates the reduction in human performance observed as stimulus
duration is reduced.

The model relies on the signal fine-time structure coded in a bank of auditory filter chan-
nels. This information is lost in low-threshold, low-dynamic range auditory-nerve responses
because such fibers lock onto the dominant formant frequency [25]. Dynamic range restric-
tions mean that the envelope of the signal is not coded at moderate-to-high sound pressure
levels. A model that critically depends on envelope information cannot therefore be driven
directly by populations of low-dynamic-range nerve fibers. Amplitude-modulation maps
have been demonstrated at the level of the inferior colliculus [13] [22] and the auditory cor-
tex. High-threshold, auditory-nerve fibers, or onset cells in the cochlear nucleus, have both
been shown to code envelope information even at moderate to high sound pressure levels
and could form the basis of the proposed scheme [1]. The proposed segregation model
requires a long duration analysis window to achieve sufficient frequency resolution in the
modulation domain. For very short signal durations a spectral subtraction model may mask
the (small) performance gains introduced by the segregation model. 

A very significant aspect of the model, in our view, is that the object of the modelling is
the underlying signal representation, where the segregation of signal sources with different
f0s is an inherent feature of the representation. The constraints imposed by the algorithm,
most notably the time-frequency trade-off inherent in any frequency analysis, cause the
model to reflect human performance data without the need for any secondary system or a
more detailed explanation. 

The segregation performance of the model was evaluated on real speech signals using the
TIMIT database. Experimental results show that the model can provide an engineering solu-
tion to segregating real vowels from concurrent vowel backgrounds. Based on the model, the
spectra of constituent vowels can be recovered from the mixed vowels with a small amount
of spectral distortion. A reasonably good target vowel recognition rate can be obtained under
various target-to-interferer ratios. Compared with the recognition without segregation, the
model significantly improves the recognition performance of the target vowels. The segrega-
tion performance of the model largely depends on the resolution of the AM map. By incor-
porating some advanced spectral analysis techniques into the model, further improvement of
segregation performance can be expected. 
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For human listeners, speech is the most apparent means by which the auditory system
impinges on everyday life. Virtually all of our daily interactions with friends, family, and
colleagues rely on the auditory modality. At first glance the processing performed in the
auditory pathway seems transparent and simple. After all, rarely do we experience difficulty
understanding what a speaker says, even in the presence of background noise and reverbera-
tion. This apparent perceptual invariance of speech has led some to conclude that the brain
decodes the signal by back-computing the articulatory gestures from the acoustics [2]. How-
ever, this “motor theory” does not actually solve the speech decoding problem as speakers
have many different ways with which to articulate the same words and elementary compo-
nents (“phones”) [1]. The variability at the articulatory level is almost as daunting as that
observed in the acoustics. Some other theoretical framework is required to account for the
robustness of speech under the wide range of acoustic conditions in which humans commu-
nicate.

Two of the papers in this section address the invariance issue from the auditory perspec-
tive. 

The articulatory feature, voicing (which reflects the vibration of the laryngeal vocal
folds), is an important property for distinguishing among certain consonants. Automatic
speech recognition (ASR) systems generally ignore the signal’s periodic properties (associ-
ated with the fundamental frequency and its perceptual correlate, pitch) and try to deduce the
presence of voicing via analysis of the spectral contour. Although this approach may be ade-
quate for recognition under high signal-to-noise (S/N) conditions, it may not work as well in
noisy environments. The chapter by Strope and Alwan address this general problem by
application of a variety of different computational techniques, each designed to ascertain the
presence or absence of voicing using some form of cue extracted from the fine-temporal
structure of the waveform. Their approach can be useful under noisy conditions because the
ability to follow quasi-periodic properties of the signal may not degrade very much in such
circumstances, making the method more robust than the conventional spectral-envelope
approach used in most ASR systems. Rather than relying on a single metric, they use three
separate methods in order to estimate the probability of voicing in the context of the contrast
between the voiced, alveolar fricative [z] and its unvoiced counterpart, [s]. Although the
methods have all been used before to measure acoustic periodicity, they have not previously
been applied in tandem for a single recognition task. The basic idea is to detect amplitude
modulation over a certain frequency range associated with voicing (ca. 90–160 Hz for male
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adult speakers, and between 180–330 Hz for an adult female voice). Two of the methods
compute the fluctuation in the waveform envelope over the relevant fundamental frequency
range (but in different ways). The third method computes the autocorrelation function of the
waveform to assess the likely periodicity of the signal. Strope and Alwan find that each
method provides a reasonable estimate of voicing, but suggest that using the algorithms in
combination yields even more reliable recognition. Their result provides potential insight as
to why the auditory system is, itself, likely to use multiple methods for computing specific
properties of the speech signal.

A different approach to robust recognition is taken by Tian and colleagues. They are con-
cerned with developing robust “front-end” features for various sorts of noisy environments
(in particular, cellular telephone transmission) based on spectral parameters of the signal.
They compare a widely used form of spectral estimation, mel-cepstral features (which pro-
vide a highly smoothed representation of the spectral envelope distributed over quasi-loga-
rithmic frequency coordinates), with a spectral estimator derived from a model of auditory-
nerve excitation patterns. The assumption is that an auditory model is more robust in noisy
environments since there are certain properties of neuronal firing that are relatively invariant
across a wide range of signal-to-noise ratios. While recognition performance degrades as a
function of decreasing S/N for both types of spectral features, those based on the auditory
model degrade far less than the conventional mel-cepstral approach. Such results suggest
that neuronal firing properties of the auditory nerve may impart a measure of robustness and
invariance to signal representations under a wide variety of acoustic background conditions.

The third paper in this section examines not recognition, but synthesis of speech. The
requirements for creating realistic, intelligible voices is quite different from recognition. The
goal of the latter is to ascertain the identity of the words spoken (and by implication the
sequence of the words’ constituent phones). A coarse representation of the spectrum usually
yields results superior to those based on finer-grained spectral estimations. In synthesis the
opposite relation holds — the finer-grained spectral representations sound far more natural
than those based on coarse articulatory models. Kawahara, in his chapter, describes an inge-
nious method for extracting key spectro-temporal properties of the speech signal and using
these as the basis for modifying the waveform to vary the phonetic and prosodic properties
of the speaker’s voice. Thus, he can model the voice quality of an individual speaker with
high fidelity and then build word and phrase models using the same speaker’s voice. In
Kawahara’s approach it is essential that the periodicity associated with the signal’s funda-
mental frequency (i.e., voice pitch) be estimated with precision (in contrast to recognition
which dispenses entirely with periodicity information). It is also important that the phase
characteristics of the waveform modulation associated with each frequency channel be
aligned in proper fashion. Such results suggest that the fine spectral granularity of the audi-
tory system may be exceedingly important for sound quality.

Together, the three chapters of this section provide a representative sample of computa-
tional approaches derived from auditory models that are currently being used to enhance
speech technology. And to the extent they are successful in this endeavor, the studies also
shed light on the function of specific properties of the auditory system.
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1.    Introduction

The robustness of speech communication depends on a structural hierarchy that is deeply
embedded with redundancy. This structure exists in our language — sentences, phrases,
words, syllables, phonemes — as well as in the rapidly varying acoustic details that cue
these perceptions. Together, the stages of this hierarchy form a web of partially orthogonal
dimensions. In typically noisy situations the listener is unlikely to perceive each of these rep-
resentational units in explicit detail. Instead, partially corrupted cues are readily filled-in
with expectations derived from other stages in the hierarchy: the listener may miss the pho-
netic segment but still reconstruct the word (or miss the word, but understand the gist of the
phrase, etc.).

This chapter demonstrates that a similar redundancy exists for the detection of voicing in
noise. Specifically, after power spectrum cues are removed, listeners can use amplitude mod-
ulation cues to detect voicing at low signal-to-noise ratios.

Because of this redundancy, amplitude modulation cues in voiced speech provide a
salient, robust sensation of pitch that may be instrumental in recognizing speech in noise. In
the current study, three psychoacoustic models are used to predict the temporal modulation
transfer function (TMTF) and the detection of voicing for high-pass filtered naturally spoken
fricatives in noise. Computational models based on waveform-envelope statistics and modu-
lation filtering properties predict the TMTF data with a high degree of precision, and models
derived from a summary autocorrelogram representation fit both the TMTF and high-pass
filtered data sets.

1.1  Voicing in Speech Analysis and Automatic Recognition

During voiced speech, the vibration of the vocal folds excites time-varying resonances of
the vocal tract. Given a sequence of feature vectors representing log-magnitude, spectral
estimates of the vocal-tract transfer function across time, most automatic speech recognition
(ASR) systems use a hierarchy of non-stationary stochastic models operating at progres-
sively longer intervals of speech analysis (10–30 ms) and statistical modeling (at the repre-
sentational level of the phonetic segment, word, phrase and sentence) to ascertain what was
most likely to have been said [17]. However, ASR systems rarely use pitch or voicing infor-
mation in this process.

Instead, the signal processing for feature vector extraction usually reflects some form of
deconvolution, attempting to shield vocal-tract transfer-function estimates from the impact
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of the driving function. Linear prediction, for example, is used with a predictor polynomial
that is significantly shorter than the anticipated glottal periodicity. Similarly, when homo-
morphic analysis is used for ASR, the high-quefrency cepstral terms (which can represent
the periodic ripple across the spectral estimate resulting from a harmonic driving function),
are ignored. Using Mel-frequency cepstral coefficients (MFCC), the initial spectral estimate
is first averaged (in time) over multiple pitch periods and then integrated across frequency,
providing an approximation of auditory frequency selectivity. The output is then logarithmi-
cally compressed and the discrete cosine transform is used to partially decorrelate the log-
magnitude spectral estimate across frequency. Higher-order terms in the resulting cepstral
vector are ignored. Integrating across time and frequency reduces the variance of the spectral
estimate, and together with the truncated cepstral vector, nearly eliminates periodic source
information. 

Deconvolution is an important step for isolating the phonetic information about
“what was said,” from aspects of the prosodic information pertaining to “how it was said.”
But as the first processing stage it may be eliminating large parts of the perceptually salient
information used by humans to identify and recognize speech in noisy environments. 

Speech communication has evolved to be robust in noise. Redundancies are, therefore,
ubiquitous. Perceiving speech under noisy conditions requires an intelligent use of the
potentially unreliable, albeit redundant, multi-dimensional cues spread over wide-ranging
time scales. While deconvolution must occur somewhere in the recognition process, blindly
eliminating a potential wealth of redundant cues may not be appropriate for the first stage of
processing. Thus, rigid blind deconvolution in this first stage is unlikely to be optimal.

1.2  Pitch Perception

Processing voicing information in speech requires analyzing the harmonic structure asso-
ciated with a quasi-periodic vocal driving function and might therefore be considered as an
aspect of pitch perception.

In 1951, Licklider proposed a “duplex” theory [11] to account for many properties of
pitch perception, including the perception of the missing fundamental (or residue pitch), as
well as the pitch of modulated noise. Licklider envisioned neural machinery that measured
the running temporal autocorrelation in each auditory frequency channel. The sensation of
pitch, he proposed, is associated with the common periodicities observed across channels. 

In 1984 Lyon was able to simulate an implementation of the duplex theory, labeling the
graphic output a correlogram [12]. Since then, Meddis and colleagues [13] [14] have for-
malized the simulations and included a final stage that adds the running autocorrelations
across each channel generating a summary correlogram. Cariani and Delgutte have also
shown that similar processing of measured auditory-nerve impulses is sufficient to predict
many classic pitch perception phenomena [2]. Other researchers have replaced the autocor-
relation function with different mechanisms that measure the temporal intervals in each
channel (e.g. [15] [4] [5]). 

In general (and as shown in Licklider’s original sketches achieved without the aid of
computational simulation), simulations using these models provide a graphical output that
correlates well with pitch. The time lag of the peak in the summary correlogram is usually
found to be the reciprocal of the frequency of the perceived pitch and the height of the peak
is often correlated with pitch salience. With few exceptions however, the models are not used
to predict psychoacoustic just-noticeable-differences (jnds) with general stimuli. Together
with the lack of a clearly identified physiological substrate for the implementation of the
required timing measurements, this line of research remains somewhat of an “open-loop.”
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1.3  Perception of Amplitude Modulation

Processing voicing information in speech might also be thought of as a form of ampli-
tude modulation perception.

In 1979, Viemeister applied a linear systems approach to the detection of acoustic enve-
lope fluctuations [21]. His model was first fit to data describing the detection of sinusoidal
amplitude modulation of wideband noise and then used to predict the detection of other har-
monic envelopes. Motivated by the close relationship between standard deviation and auto-
correlation, Viemeister’s model used the standard deviation of a demodulated envelope as
the statistic to predict human performance. Although this measure does not characterize the
perceived pitch of the amplitude modulation, a more sophisticated simulation involving
autocorrelation was not required to accurately fit the detection data. More recently, this
model has been extended to predict other amplitude modulation detection data [19] [20].

In 1989, Houtgast measured modulation masking that suggested explicit neural modula-
tion filtering [8]. Narrow-bandwidth noise modulators were found to mask the perception of
sinusoidal modulators in a manner similar to the spectral masking of tones by narrow-band
noises. Modulation tuning has also been measured physiologically [e.g., 9]. However, other
modulation masking experiments, using sinusoids, have been less conclusive [19] [1]. None-
theless, a model of modulation filtering has been implemented and shown to be correlated
with many aspects of amplitude-modulation perception [3].

In essence, modulation filtering replaces the single low-pass filter in the envelope statis-
tic model with a second bank of filters. The modulation filtering simulations also include a
better approximation of auditory filtering than the single band-pass filter used in the enve-
lope statistic model.

Therefore, there are at least three modeling approaches which may be helpful for analyz-
ing the periodic envelope fluctuations in voiced speech: autocorrelation or interval-based
temporal processing, the measurement of an envelope statistic and explicit modulation filter-
ing. To choose among them, implementations of each were first fit to predict TMTF data and
then each was used to predict the discrimination of voicing for strident fricatives in noise.

2.    A Strident Fricative Case Study

Fricatives are generated by forcing air through a sufficiently narrow constriction in the
vocal tract, resulting in a turbulent, noise-like source. With voiced fricatives the vocal folds
also vibrate, adding low-frequency energy to the spectrum. The relative level of the first har-
monic, compared with that of the adjacent vowel, has been shown to serve as an effective
indicator of voicing distinctions for fricatives [18] [16]. 

2.1  Characterizing [s] and [z]

For our study, the strident fricatives [s] and [z], along with the vowels [a], [i] and [u]
were recorded as CV syllables from four talkers. Figure 1 compares average log-magnitude
spectral estimates for [s] and [z]. The voiced [z] has low-frequency energy not present in the
[s].

Current ASR systems use the presence of low-frequency spectral energy to discriminate
these sounds. However, there are situations where this particular spectral cue can be
obscured (e.g. a high-pass channel or with a competing low-pass noise). 

Figure 2 shows examples of the temporal waveform for [s] and [z], after each has been
high-pass filtered above 3 kHz. Without low-frequency spectral components, the low-fre-
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quency pitch-rate information is represented in the envelope of the high-frequency, noise-
like carrier. These figures provide evidence that the vibrating vocal folds can modulate the
pressure source that drives the turbulence for a voiced fricative. The modulated noise source
leads to a potentially redundant voicing cue in a spectral region with significant speech
energy. ASR systems that integrate spectral estimates over multiple glottal periods do not
distinguish such sounds, while human listeners can distinguish them even at low signal-to-
noise ratios (see Section 4).

2.2  Perceptual Measurements

To measure the perceptual sensitivity to this potential voicing cue, the discrimination of
these sounds was measured in wide-band noise. The syllable-initial fricatives were tempo-
rally isolated from the adjacent vowel, and high-pass filtered above 3 kHz. During the per-
ceptual tests, tokens were centered within a one-second span of spectrally flat noise.

Adaptive tests [16] were used to track the perceptual discrimination of the isolated frica-
tive as a function of SNR at two d’ levels. For each trial, the subject was required to identify
a randomly chosen token as either [s] or [z]. Feedback was provided. The initial SNR was
sufficiently high that the fricatives were clearly distinguishable for all subjects. The SNR
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was increased after an incorrect response and decreased after either two or three consecu-
tively correct responses. (A reversal is defined as a change in the direction of the SNR step).
The SNR step size started at 4 dB, and was reduced to 2 dB after the first reversal, and to 1
dB after the third. The average of the SNR at the next 6 reversals provided an initial thresh-
old estimate. If the variance in this estimate was less than 2 dB, the measurements stopped,
otherwise the experiment continued for up to 6 more reversals. The average of three such
measurements provided a final threshold estimate for each subject. When 2 (or 3) correct
responses are required, the threshold estimate converges to a 70.7% (or 79.4%) correct
response rate. For this experiment, these correspond to d’ values of 1.09, and 1.64, respec-
tively. Four audiometrically normal subjects participated in the experiment. Average thresh-
olds across these four subjects are shown together with model predictions in Figure 10
below.

3.    AM-Detection Mechanisms

The task in this experiment requires detecting periodic envelope fluctuations, which
become increasingly weak with the addition of noise. Perhaps the most direct approach is to
model this perceptual process using an envelope statistic.

3.1  Envelope Statistic

Figure 3 shows a block diagram of the signal processing in an envelope-statistic model.
This classical approach reduces auditory processing to the following steps: auditory filtering

Figure 2   Examples of temporal waveforms after high-pass filtering.
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(measured along the basilar membrane), half-wave rectification (approximated in inner-hair-
cell transduction) and low-pass filtering (computed throughout the higher levels of auditory
processing). From an engineering perspective, the band-pass filter selects a channel, while
the half-wave rectifier serves as a non-linearity that modulates the carrier down to DC, with
the low-pass filter tracking the envelope.

The model’s sensitivity to amplitude-modulated wideband noise increases with a broad-
ening of the bandwidth in the initial filter, while the reduction of sensitivity with increasing
envelope frequency is mostly determined by the final low-pass filter. 

3.2  Modulation Filtering

A schematic overview of an implementation of modulation filtering is shown in Figure 4.
Building from the envelope-detection processing above, the model includes multiple 4th-
order gammatone filters [15] which provide a reasonable approximation of auditory filtering,
and replaces the single low-pass filter with a second filterbank that analyzes the envelope
spectrum.

The frequency response for the modulation filters used (Q3dB of 2, and -12 dB DC gain)
was adapted from [3]. For each filter the implementation used a second-order pole and a
first-order (real) zero at DC. The distance of the zero to the unit circle was set to meet the
DC specification. The resulting frequency responses are shown in Figure 5.

Both the modulation filtering and the envelope-detection model compute the magnitude
of the fluctuations of the envelope of the acoustic waveform. As stated previously, the pri-
mary difference is that modulation filtering assumes a second, filtering stage tuned to differ-
ent envelope modulation rates. Figure 6 compares the processing output of these two models
to a noise carrier with no modulation, as well as one with 56% modulation [20 log(m) = 5 dB
depth]. Although the standard deviation of the input is the same for the modulated and
unmodulated cases, the outputs of both models exhibit relatively more fluctuation in the
modulated case. 

3.3  Correlational Analysis

An overview of the correlational analysis is shown in Figure 7. This is an implementation
of Licklider’s model [11] together with a final stage that adds correlation estimates across
channels [13] [14]. The first stage is the same gammatone approximation of cochlear filter-
ing, used above. The transduction stage includes half-wave rectification, low-pass filtering,
and a 2nd-order Butterworth high-pass filter with a cut-off of 4 Hz. Running autocorrelations
are computed in each filter channel and the results are summed across channels.

Our implementation of running autocorrelation for each channel involves two stages.
First, the instantaneous product of the current input, and a version of the input delayed by the
interval, τ, is computed for all time and all values of τ:

x1(t,τ) = x(t) x(t-τ).

H(f)

f

H(f)

f
I

O

Band Pass HWR Low Pass

Figure 3   Schematic illustration of the envelope detection process used in the current study.
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Second, to form a running autocorrelation estimate, these sequences are low-pass filtered
(for each value of τ) to below one half of the final correlation sampling rate: 

x2(t,τ) = x1(t,τ) * hlpf(t).

In the evaluations below, the correlation sampling rate was 25 Hz, and hlpf(t) was imple-
mented as a 6th-order Butterworth filter with a -3 dB point at 10 Hz. That is, after the low-
pass filter, the running autocorrelations were sampled every 40 ms and then summed across
frequency channels to generate a sequence of summary correlogram estimates.

As described above, the position of the peak in the summary correlogram has often been
shown to be correlated with the reciprocal of the perceived pitch (in units of frequency),
although some models utilize the entire waveform of the summary correlogram [13] [14].
Our analysis represents a compromise between these two approaches. For each sample of the
summary correlogram, our statistic is the maximum difference, across all delay values τ,
between the summary correlogram values at delays of τ and τ/2:

statistic = max [sc(τ) - sc(τ/2)], (0 < τ < 20 ms).

With a sinusoidal envelope, this difference peaks at a value of τ, equal to the period of the
sinusoid. Figure 8 includes examples of this decision statistic using the same noise carrier,
but with either no modulation or with 56% modulation (i. e., 5 dB depth) at 100 Hz. In the
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Figure 5   Responses of the modulation filterbank. Each filter is implemented using a complex pole and a
real zero
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Figure 4   A schematic illustration of the modulation filtering performed in the current study.
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modulated case, the first peak (after zero delay) in the summary correlogram occurs at the
period of the modulation, 10 ms. When there is no modulation, the summary correlogram
approximates an impulse. Adding the individual correlation estimated across channels
reduces some of the variance; consistent modulation patterns across channels add together,
while inconsistent ones generally cancel each other. However, considerable variation
remains across summary correlogram samples (shown in the lower half of Figure 8) due to
the stochastic nature of the carrier.

4.    Comparing Predictions

The temporal modulation transfer function (TMTF) is a measure of auditory sensitivity
to amplitude modulation as a function of modulation frequency. More specifically, the mini-
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mum detectable sinusoidal amplitude modulation depth is typically measured as a function
of modulation frequency using wide-band noise carriers. 

Each of the three models was initially adjusted to predict TMTF measurements derived
from previous studies [20] [3]. The resulting models were then used to predict the discrimi-
nation thresholds for the high-pass filtered [s] and [z] tokens in noise. Because the natural
fricatives are non-stationary all three models were evaluated using multiple measurements in
time (or multiple “looks”) [22].

For the envelope-statistic model, the best match was found using an initial filter band-
width of 3 kHz, centered at 5.5 kHz. With these parameters, the filter approximated a
matched-filter for the high-pass filtered [s] and [z] segments. The low-pass filter was a 1st-
order Butterworth with a cut-off of 90 Hz. The normalized fourth-moment statistic [19] [20]
was used.

To obtain multiple measurements in time, the output of the envelope detection mecha-
nism was segmented using partially overlapping, 50-ms windows that had 10-ms raised-
cosine onset and offsets, as well as a 30-ms steady-state center. The windows were incre-
mented by 40 ms. The window length was chosen to ensure multiple periods in each window
for the pitch-frequency range of interest. By modulating the DC offset in the envelope, the
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shape of the window can dominate measurements using the standard deviation or the fourth-
moment. Therefore, the DC offset for each 50-ms window was removed before weighting by
the raised-cosine and then added back before computing the statistic.

Threshold predictions were obtained by using the difference in the decision statistic in
signal and non-signal intervals over 100 simulations in order to estimate d’ for each “look.”
Assuming independence of individual measurements, a total detection d’ was estimated as
the length of a d’ vector containing all looks [7]. With a stimulus duration of 500 ms used for
the TMTF data, the vector included 12 elements (or looks). A line was fit to the log of total
d’ estimates as a function of the log of the modulation depth. From this line, the modulation
threshold was estimated from the point where the line crossed the d’ threshold of 1.26
tracked in the perceptual TMTF measurements [20] [3].

With the modulation filtering and correlation models, the initial filtering stage was six,
4th-order gammatone filters with center frequencies range between 4.28 Hz and 6.97 kHz.
Filters overlapped at their half-power points, and the bandwidths were set using the equation
described in [6]. To predict the TMTF data using modulation filtering only the modulation

τ

sc(τ)

τo / 2
τo

Decision Statistic:

0 5 10 15 20
−2

−1

0

1

2

3

4

AC delay (ms)

su
m

m
ar

y 
A

C

no modulation

0 5 10 15 20
−2

−1

0

1

2

3

4

AC delay (ms)

su
m

m
ar

y 
A

C
20log(m) = −5

statisticstatistic

0 5 10 15 20
0

1

2

3

4

5

6

7

AC delay (ms)

no modulation

fil
te

r 
nu

m
be

r,
 A

C

0 5 10 15 20
0

1

2

3

4

5

6

7

AC delay (ms)

20log(m) = −5

fil
te

r 
nu

m
be

r,
 A

C

Correlograms:

Figure 8   Samples of the correlogram output and super-imposed examples of the summary correlogram deci-
sion statistic. Input signals are the same as in Figure 6.



B. P. Strope and A. A. Alwan / Perception of Pitch-Rate Amplitude Modulation in Noise 325        

filter tuned to the probe envelope frequency was considered. When predicting the fricative
data two modulation filters centered at 120 Hz and 200 Hz were used. The windowing
applied to the envelope-detection simulations was also used for the modulation filtering. The
standard deviation was the measured statistic.

As observed previously [3], the modulation filtering was too sensitive to predict human
performance without adding a large amount of internal noise. To obtain the best match to the
TMTF data, internal noise was added both before and after modulation filtering.

Using the correlation model, the peak distance statistic described above was measured
every 40 ms for the summary correlogram. To approximate the shape of the TMTF data, the
first-order, low-pass filter was used with a cut-off frequency at 280 Hz. 

TMTF threshold predictions for all three models are shown in Figure 9. Each model pro-
vides a reasonable prediction across this frequency range. Predicting the voicing detection
thresholds for the natural, non-stationary, fricatives in noise required finding the fricatives
(or more specifically finding the voicing in the fricative) within the 1-second interval of
noise. For all model predictions below, only the three consecutive temporal segments that
maximized the difference from the background noise were analyzed, providing three tempo-
ral looks per token. Total d’ values were then estimated as a function of SNR.

Figure 10 shows the d’ estimates for each model’s prediction of the discrimination of the
high-pass filtered [s] and [z] tokens in noise. The model based on correlations provided the
best prediction.

5.    Modeling Implications

The envelope statistic was not sufficient, by itself, to discriminate reliably between [s]
and [z] (even at relatively high SNR values) because this measurement does not distinguish
the periodic voicing cues in [z] from the aperiodic fluctuations in [s]. Both the modulation
filtering and the autocorrelation processing include specific modulation tuning and as a
result more accurately fit the observed data. 

Reasons for the difference in performance between these two models are less clear, and
could be specific to these simulations. By reducing the amount of internal noise, the modula-
tion filtering model provides a better estimate of the [s] and [z] data, but over-estimates the
TMTF sensitivity. One primary difference is that the autocorrelation mechanism integrates
correlation estimates across frequency, while the modulation-filtering simulations use the
more general assumption that each output corresponds to an independent measurement. Inte-
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grating correlation estimates across frequency channels de-emphasizes envelope compo-
nents uncorrelated across frequency in favor of correlated components. Another difference is
that the correlation simulations uses a low-pass filter to limit sensitivity, while the modula-
tion simulation incorporates internal noise. 

It is interesting to note that if the auditory system does include a cross-channel interval-
based representation, redundancies in this representation are likely to make it inefficient to
maintain across many regions of the pathway. Efficient decorrelation of the (potentially
smooth and periodic) summary correlogram might approximate a cosine transform. Such
periodic transformations exist in other perceptual systems [23]. In this case the decorrelated
representation would have many of the properties of the (demodulated) output of a modula-
tion filterbank. The difference is that the envelope analyzed is first processed to identify
common correlations across a broad frequency range.

6.    Conclusion

This chapter has identified a secondary temporal cue that can reliably distinguish
between [s] and [z] on the basis of voicing. This amplitude-modulation cue had not been
identified in previous studies of voiced fricatives [18] [16]. Once the cue has been identified
it is not clear what processing should be used to reliably extract it. Three possibilities were
investigated in this study.

While cross-channel, interval-based processing has been quite successful in predicting
many properties of pitch perception, we have shown that these mechanisms can also predict
TMTF thresholds and the detection of voicing for high-pass filtered fricatives in noise. Sim-
ulations using envelope-statistic and modulation-filtering models fit TMTF data, but do not
predict the isolated speech data. 
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1.    Introduction
It is well known that the human auditory system is an “expert” speech recognizer. If a

computer-based speech recognition system could be designed that sufficiently reflects the
processing of the auditory system, the resulting representations should be superior to repre-
sentations based on non-biological criteria commonly used in computer speech recognition
algorithms. The potential advantages of using auditory modeling for automatic speech rec-
ognition (ASR) depend on how accurate the models are in simulating the relevant properties
of the human auditory system. Developing such models relies on the knowledge we cur-
rently possess about the auditory system. This knowledge is acquired by combining data that
have been collected using psychophysical, physiological and auditory phenomena. Due to
extensive studies of the auditory system we now know quite a lot about the kinds of transfor-
mations that occur, at least at the peripheral level of the pathway, and it has become feasible
to build computational models that take these auditory properties into account. Different
types of auditory representations for speech may make it easier to identify those features of
the signal that are most relevant for automatic speech recognition. In addition to the com-
monly used Mel Frequency Cepstral Coefficients (MFCC) front-end [9], a number of alter-
native auditory approaches have recently been proposed. 

The perceptual linear prediction (PLP) technique proposed in [3] uses some concepts
from the psychophysics of hearing to derive an estimate of the auditory spectrum, consistent
with many properties of human hearing. Even though PLP is computationally efficient and
yields a low-dimensional representation of speech, it considers limited aspects of auditory
processing. A joint synchrony/mean-rate auditory speech processing scheme proposed in
[11] provided promising results in a case study but its utilization with a commonly used Hid-
den-Markov-model (HMM) based classifier has not been very successful [4]. Cohen pro-
posed another scheme in [1] but did not apply the method within the HMM framework.
Ghitza [2] developed an ensemble interval histogram (EIH) model. In comparison with the
commonly used MFCC front-end, on an isolated word database in adverse conditions [4],
the reduction of error rate with the EIH model was rather small with a high computational
load. In addition, auditory modeling research has been widely carried out for purposes other
than automatic speech recognition [5].

In short, many researchers have shown that an auditory modeling approach can lead to
enhanced representations of the speech signal. In this chapter we combine certain previously
proposed auditory functions and apply them to an ASR front-end in order to obtain improved
noise robustness.
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MODELING IN SPEECH RECOGNITION
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Speech and Audio Systems Laboratory
Nokia Research Center
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2.    Auditory Modeling

2.1  The Human Auditory System

Sound travels through the external auditory meatus (the ear canal) to produce a pattern of
vibration at the tympanic membrane (ear drum). A series of three small bones (i.e., the osci-
cles) — the malleus (attached to the tympanic membrane), the incus and the stapes — trans-
mit the pressure variation to the oval window of the cochlea (Figure 1). The system acts as
an amplifier because the area of the tympanic membrane is greater than the area of the oval
window, increasing the total sound pressure. The cochlea contains three compartments: 

(1) the scala tympani, which follows the outer contours of the spiral, 
(2) the scala vestibuli, which follows the inner contours and connects with the scala tympani

at the helicotrema, and
(3) the scala media, which is not connected with the other two and ends blindly at the apex. 

The scala tympani and scala vestibuli are filled with perilymph. The scala media contains
the organ of Corti and is filled with endolymph. The stapes acts on the oval window of the
scala vestibuli. The pressure is then transmitted to the scala tympani and the round window.
This pressure pattern is translated into oscillatory movements of the basilar membrane on
which sits the organ of Corti. The sensory receptors are hair cells located in the organ of Corti.
There are three rows of outer, and one row of inner hair cells. The apical surface of the outer
hair cell stereocilia are embedded in the underside of the tectorial membrane, which is rela-
tively stiff. The stereocilia of the inner hair cells are not directly attached to the tectorial mem-
brane, but their tips lie close to this structure. The oscillatory movements of the basilar
membrane result in minute deflections of the stereocilia. Sound creates a traveling-wave pat-
tern along the basilar membrane. Different frequencies result in peak amplitudes of the travel-
ling wave at different locations along the basilar membrane, resulting in discrete stimulation of
different populations of hair cells. The vibrations of hair cells are transformed into action
potentials in auditory-nerve fibers. The fibers of the auditory nerve are most sensitive to a lim-
ited range of frequencies and such selectivity is commonly illustrated by means of a frequency

Figure 1   The structure of the peripheral auditory system. (After Lafon, “The functional anatomy of the speech
organs,” Manual of Phonetics, B. Malmberg)
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threshold (tuning) curve. The central auditory pathway consists of the cochlear nucleus, supe-
rior olivary complex, the lateral lemniscus, the inferior colliculus, the medial geniculate body
and the auditory cortex, all specialized to preserve time and frequency information (see [8] for
more details).

2.2  Auditory Front-End

The auditory system can be divided into the auditory periphery and the central auditory
pathway. Since the central auditory pathway is not thoroughly understood, most of the audi-
tory modeling approaches focus on the auditory periphery. The speech processing of the
auditory periphery consists of the following basic stages:

(1)  low- and high-frequency attenuation in the outer and middle ear,
(2)  basilar membrane filtering, and
(3)  mechanical to neural transduction.

The outer ear modifies sound by transferring the acoustic vibrations to the eardrum. It
consists of a partially cartilaginous flange (the pinna) which includes a resonant cavity at the
entrance to the ear canal. The resonances of the outer ear increase the sound pressure at the
eardrum, particularly in the range of frequencies of 2–7 kHz (i.e., it functions as a band-pass
filter). The transformer action of the middle ear helps to match the impedance of the air in
the ear canal to the much higher impedance of the cochlea fluid. In doing so, the middle ear
also performs a band-pass function. The outer and middle ear combine to give an approxi-
mately flat-topped, band-pass function. The basilar membrane behaves like a filter bank
which decomposes sound waves into separate frequency bands. The mechanical motion of
the basilar membrane is converted into neural spikes in the post-synaptic auditory nerve.
This conversion is performed by the inner hair cells, and is explained in detail in the remain-
ing part of this section.

Despite the extensive research in auditory modeling, the human auditory system is not
yet fully understood. Hence, in this chapter we only take into account certain critical audi-
tory functions relevant to speech recognition in order to build an auditory front-end. The
basic idea is to incorporate nonlinear frequency scaling, amplitude compression (loudness),
short-term adaptation and the firing rate of auditory neurons into the model. 
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Figure 2   Block diagram of the auditory front-end.
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A block diagram of the auditory front-end is given in Figure 2. The digitized speech sig-
nal (sampled at 8 kHz) is fed into the first-order, high-pass, pre-emphasis filter as seen in
Equation (1). This step compensates for the negative spectral slope of approximately 20 dB
per decade in the human articulatory system. This pre-emphasis filter models the functions
of the outer and middle ear up to 4 kHz. 

(1)

The power spectrum of each frame is computed by applying an FFT on the windowed
speech after pre-emphasis. Next, intensity-to-loudness conversion (also known as cubic root
compression) is applied (i.e., loudness = intensity1/3). This operation is an approximation to
the power law of hearing and simulates the nonlinear relationship between the intensity of
sound and its perceived loudness.

An approximation to the variable sensitivity across frequency at ca. 40 dB is given by
equation (2) [3].

(2)

A filter bank can be regarded as a crude model for the transduction of the basilar mem-
brane in the human auditory system. A mapping of acoustic frequency, f, to a perceptual fre-
quency mel can be defined as

(3)

A set of 24 band-pass filters (whose bandwidth increases with frequency) models the
basilar membrane. For simplicity, each band-pass filter is centered at the middle of the corre-
sponding mel band and is triangular, starting and ending at the central frequencies of the
adjacent mel bands.

A model for the transduction of mechanical motion of the basilar membrane to activity of
auditory-nerve fibers is described here. The inner hair cells and auditory-nerve fibers are
modeled as a transduction from loudness to firing rate. The Schroeder–Hall model [10],
based on the generation and depletion of electrochemical “quanta” in a hypothetical inner
hair cell, is consistent with neurophysiological phenomena. The model is defined as follows.
The quanta of an electrochemical agent are generated in the inner hair cell at a fixed average
rate, r. The probability of firing of an auditory-nerve fiber is directly proportional to the
number of quanta currently existing and to the permeability function related to the instanta-
neous input stimulus level, s(t) (the square root of loudness). The quanta are used up by pro-
ducing spontaneous firings, gs, and a natural decay, gd, without causing any firing. Thus
Equation (4) describes the number of quanta as a function of time and the instantaneous fir-
ing rate f(t) of an auditory neuron: 

(4)
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where n(t) is the number of quanta at time instant, t, and c is a constant. The discrete form of
the above equation is given by the following iterative equation group:

(5)

By applying a discrete cosine transform (DCT, see Equation (6)) to the firing rates from
all the sub-channels, we obtain 13 de-correlated features which form the feature vector for
one frame.

, (6)

2.3  Parameters of the Auditory Model

The parameters (r, c, gd, gs) of the auditory front-end (equation (5)) are determined
according to the relevant physiological data [1] [10]. Because r is a fixed firing rate, it can be
set arbitrarily to one so that all other quantities are viewed as a fraction of this scale factor.
The firing rate in response to a tone burst can be simulated as a decaying exponential form
including steady (A) and transient (B) states. 

 (7)

By differentiating Equation (7) and comparing with the result of Equation (4), the time
constant, T, of the auditory model can be written:

(8)

The time constant of fast adaptation is about 2 ms, which is too short to be significant in
the frame-based features where the frame shift interval is typically around 10 ms. When the
stimulus is turned off the firing rate recovers to the spontaneous rate with a time constant, T0,
of around 50 ms. From Equation (8), we have:

(9)

Another time constant is associated with the decreasing response to a stimulus which is a
general characteristic of auditory neurons. It is reasonable to assume that the time constant,
Tmax, corresponding to the maximum input stimulus level, smax, is around 30 ms. Substitut-
ing Equation (9) and the parameters into the Equation (8), yields:

(10)

The remaining parameters to be solved are the spontaneous firing constant, gs, and the
decay constant, gh. By observing the steady-state firing rate fs(t), we have:

n k( ) r n k 1–( )+
1 gs gd c s k( )⋅+ + +
--------------------------------------------------=

f t( ) gs c s k( )⋅+( ) n k( )⋅=





ci f j
π i⋅
24

--------- j 0.5–( ) 
 cos⋅

j 1=

24

∑= 0 i 12≤ ≤

n t( ) A B e
t T⁄–⋅+=

T 1 gd gs c s t( )⋅+ +( )⁄=

T 0 1 gd gs+( )⁄=

c
1

smax
---------- 1

T max
------------ 1

T 0
------– 

 =



334 J. Tian et al. / Auditory Modeling in Speech Recognition                      

                             

(11)

The dynamic range, β, can be defined as the ratio of the firing rate corresponding to the
maximum stimulus and the spontaneous firing rate. We have:

(12)

The parameters gs and gd can be obtained by setting the appropriate value for β in equation
(12). 

Figure 3 shows the relationship between the steady-state firing rate, the spontaneous fir-
ing constant and the square root of stimulus loudness. The spontaneous firing constant, gs,
can vary between 0 and 0.2. The low spontaneous-rate fibers were simulated with a high
steady-state dynamic range when gs is low, and the high-spontaneous-rate fibers with a nar-
row, steady-state dynamic range are generated when the high value of gs was selected. 

2.4  Two-Stream Approach

The spectrum of the feature vector components were studied in order to enhance the
noise robustness of the auditory front-end. Figure 4 shows the ratio of the averaged spectra
between the feature vector component trajectories of clean speech and car noise. A test set
containing 110 sentences, spoken by seven male and four female speakers, was chosen from
the TIMIT corpus. The ratio was computed by averaging across all 13 feature vector compo-
nents over all the utterances. We observe that there is high local SNR in the low-frequency
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channels and that the local SNR decreases as the frequency increases. Furthermore, it has
been shown that the frequency content beyond a certain frequency value of feature vector
component trajectory of the speech contains a significant amount of estimation error [7]. In
principle the front-end should be more noise robust if we can utilize information derived
from the local SNR. The overall SNR could be increased by weighting the lower band more
than the higher one. This approach also reduces the sharp peaks at the transitions produced
by the short-term adaptation, resulting in parameter statistics that better fit our HMM frame-
work.

In order to realize this weighting pattern the original feature stream, derived from a dis-
crete cosine transform (DCT), is split into low- and high-frequency channels. These two
channels are later recombined by proper weighting and subjected to normalization to form
the final feature vector. Figure 5 shows the block diagram of the enhanced front-end. We
assume that the transfer functions of the low-pass Hl(z) and high-pass Hh(z) filters are com-
plementary, i.e. 

(13)

The equivalent transfer function H(z) of the recombined stream is given by the following
equation:

                 (14)

where δ (-1 ≤ δ ≤ 1) is defined as a weighting factor, and the weights are given by wl=1+δ
and wh=1-δ. H(z) is a low-pass, all-pass and high-pass filter when δ is 1, 0 and -1, respec-
tively. Figure 6 shows the amplitude response of the low-pass, high-pass and combined filter
with δ=0.4. Based on our experiments, the optimum cut-off frequency was found to be
around 5 Hz. Figure 6 also shows the amplitude response of the conventional linear regres-
sion filter used to generate delta coefficients. It is clear from the figure that the new filter
contains more high-frequency information than the conventional filter.
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3.    Experiments

3.1  Observations on the TIMIT Database

The TIMIT corpus was designed to provide speech data for the acquisition of acoustic-
phonetic knowledge and for the development and evaluation of automatic speech recognition
systems including the front-end. We have randomly picked an utterance sa1 (“she has your
dark suit in greasy wash water all year”) in order to illustrate some simple comparisons
between the MFCC and auditory front-ends.

The trajectories of the first components of the feature vectors generated by MFCC and
auditory front-end representations are shown in Figure 7. It appears that the auditory front-
end can capture dynamics better than the MFCC front-end. Specifically, the peaks at the
transition portions of speech are emphasized and can be clearly observed. Though it looks
like the auditory front-end might be capable of bringing some new information, it is not at all
clear that it does so. In order to really know, we studied the separability between different
phones at the feature level to base our conclusions on more statistical measures. It might be
that the peaks do not match the Gaussian density assumption and performance is reduced.
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The separability of speech units in the feature space is a key indicator for evaluating the
front-end. One of the J-measures, defined in equation (15), was used for this purpose.

(15)

where matrix B is the between-class covariance, or covariance of class means, and measures
how close the speech classes are to each other. Matrix W is the within-class covariance, or
the average of the class covariance. We applied the J-measure as the phonetic separability
indicator to the test set of TIMIT database containing 1680 sentences in both clean and noisy
conditions. Table 1 gives the results for both MFCC and auditory front-end.

Based on the separability values for phones, it can be seen that the auditory front-end can
provide better discrimination ability in adverse conditions than the MFCC front-end, but is
worse in less noisy environments.

While many current speech recognizers provide rather good recognition accuracy in
noise-free conditions, their performance degrades rapidly when they are exposed to noisy
environments.

Table 1 Separability values (J-measure) of phones in the test set of TIMIT database for MFCC and
auditory front-ends, without normalization, for clean and noisy speech.

SNR clean 10 dB 0 dB -10 dB

Aud FE 0.7123 0.6062 0.5016 0.3337

MFCC 1.2215 0.7445 0.4691 0.2380
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In order to get noisy samples, noise from a Volkswagen car traveling at 115 km/h was
recorded and further mixed with clean speech (again the utterance sa1 is used for illustra-
tion) to generate noisy speech for different signal-to-noise ratios (SNR).

Figure 8 compares the cross-correlation between the clean and noisy features for the
three front-ends at different SNRs. First, each feature was normalized by removing the mean
and normalizing the variance to be one. With each SNR (10, 0 and -10 dB), the cross correla-
tion was calculated between the clean and the corresponding noisy speech to measure their
similarity. Obviously, if the cross-correlation is low, the features are heavily corrupted by the
noise and, if the cross-correlation is high, it means the features are noise robust. In order to
optimize the weighting factor for the two-stream approach, recognition experiments were
initially carried out at different SNRs. The optimum weighting factor, δ, was found be
around 0.4 ∼ 0.6. 

It is clear that the features produced by the two-stream auditory front-end are more noise
robust than the features produced by the other front-ends, and the auditory front-end is more
noise-robust than the MFCC front-end. We can also see that the features, c1 and c0, are less
distorted among all features.

3.2  Isolated-Word Recognition Test

The final goal in any front-end development work is improved speech recognition accu-
racy. Improvements in the visual representation or in a certain phonetic separability measure
are practically worthless without a noticeable difference in the back-end. We decided to test
the auditory front-end in an isolated-word, speaker-dependent recognition task. The reason
for such a test decision was that we have a high-performance, name-dialing engine which is
very difficult to improve.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c0 
0.6

0.8

1

cr
os

s 
co

rre
la

tio
n

SNR = 10 dB

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c0 
0.4

0.6

0.8

1

cr
os

s 
co

rre
la

tio
n

SNR = 0 dB

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c0 
0

0.5

1

cr
os

s 
co

rre
la

tio
n

SNR = −10 dB

Figure 8   Similarity measure of the features between clean and noisy speech over a range of SNR conditions.
The features were generated by the two-stream auditory (solid line), a previously proposed auditory
model (dashed line) and MFCC (dash-dot line) front-ends.
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The test database contained 30 Finnish first names spoken by six male and two female
speakers. The recordings were carried out in an office environment during three separate ses-
sions (12 repetitions of each name overall).

Again, noise from a Volkswagen car traveling at 115 km/h was recorded and further
mixed with clean speech to generate the noisy speech under certain signal-to-noise ratios
(SNR).

Continuous Gaussian-density, left-to-right, state-duration-constrained, hidden Markov
models (HMMs) with a global variance vector were estimated with a single training utter-
ance [6]. Table 2 summarizes the results obtained with the auditory and MFCC front-ends
without using the normalization block. It should be mentioned that the MFCC based front-
end produced 13 cepstral coefficients including the energy value. It can be seen that the audi-
tory front-end provides enhanced noise robustness, though with somewhat lower recognition
accuracy in a clean environment. 

We have previously proposed a feature-vector normalization (FVN) method to enhance
noise robustness of MFCC features [12]. With this normalization, short-term means and
variances of each feature vector component are set to zero and one respectively, regardless of
environment.

When this normalization is performed on the auditory features we hope that the sharp
peaks in the trajectory of each feature vector component are suppressed and that the features
become more suitable to the HMM framework (that is, fit better to unimodal Gaussian densi-
ties). We also hope that the other advantages of the normalization method, mentioned above,
are also present in the auditory modeling case, and not just in the MFCC case. It should be
noted that all the remaining experiments were carried out by using auditory or MFCC front-
end with normalization.

Table 3 summarizes the results obtained with the auditory and MFCC front-ends with the 
normalization block enabled (see Figure 4). It can be seen that the auditory front-end still 
provides enhanced noise robustness. However, there is a marginal decrease in the recogni-
tion accuracy for the auditory front-end in the clean environment. 

Time domain dynamics of speech can be incorporated into the MFCC by adding delta
coefficients that are normally calculated with linear regression to estimate instantaneous
derivatives (delta) for cepstral coefficients. All calculated delta parameters are appended to
the feature vector. We compared the recognition performance between the auditory front-end

Table 2 Recognition rates for MFCC and auditory front-ends, without normalization, for different noise
conditions.

SNR clean 5 dB 0 dB -5 dB -10 dB

Aud FE 97.42 91.02 81.63 58.90 27.12

MFCC 98.94 86.25 68.90 37.99 13.49

Table 3 Recognition rates for MFCC and auditory front-ends, with normalization, for different noise
conditions

SNR clean 5 dB 0 dB -5 dB -10 dB

Aud FE 99.09 97.12 93.64 84.55 58.98

MFCC 99.43 96.36 91.59 80.42 53.41
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and MFCCs with delta information. In Table 4, it is shown that the MFCC with dynamics
performs slightly better than the auditory front-end. However, it should be noted that the
length of the feature vector using MFCC front-end is 26.

Recognition tests were carried out between the previously proposed auditory front-end
and the two-stream auditory front-end to compare their performance. Both approaches had a
feature vector dimension of 13.

Figure 9 shows the recognition results using the two front-ends. It is clearly seen that the
two-stream auditory front-end outperforms the previously proposed auditory front-end. The
average error rate reduction, over all noise conditions, was found to be around 27%.

We also compared the two-stream auditory front-end approach with the standard MFCC
front-end. Figure 10 presents the results for the MFCC front-end with only static features
(MFCC13) and also with both static and delta features (MFCC26). Delta-delta coefficients
were not used in these speaker-dependent tests, as they produced worse results as compared
to MFCCs with statics and deltas. It can be clearly seen that the two-stream auditory
approach outperforms the MFCC front-ends in all noisy conditions. There is an average
error-rate reduction of 39% and 17% for the new approach over MFCC13 and MFCC26,
respectively. However there seems to be a small decrease in the recognition performance in
clean conditions

Finally, the superiority of the two-stream approach is demonstrated by comparing it to
the previously proposed auditory front-end with delta features, computed using linear
regression, thereby having a feature vector dimensionality of 26. It can be seen from Table 5

Table 4 Recognition rates for MFCC (with dynamic information, i.e.: MFCC26) and auditory front-ends,
with normalization, for different noise conditions.

SNR clean 5 dB 0 dB -5 dB -10 dB

Aud FE 99.09 97.12 93.64 84.55 58.98

MFCC26 99.73 97.58 94.58 86.55 63.11

Figure 9   Recognition rates at different SNRs using an earlier form of auditory front-end (AudFE), as well as
the two-stream auditory front-end (two-stream AudFE).
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that the proposed two-stream auditory front-end, with a feature vector dimensionality of 13,
produces better recognition accuracy than the auditory front-end with delta features.

4.    Conclusions

The auditory front-end proposed in this chapter incorporates a number of auditory prop-
erties pertaining to the inner ear. It captures dynamic features, such as onsets and offsets,
that produce observable peaks at the transient components of the signal, thus negating the
need for incorporating separate features representing dynamic information as are required
for an MFCC front-end. In this chapter it has been shown that the auditory front-end per-
forms better than the MFCC front-end under all conditions except the clean (i.e., highest
SNR) environment. In addition, we have shown that the normalization method proposed ear-
lier for the MFCC front-end also improves the performance of the auditory front-end, espe-
cially in noisy environments. This performance improvement is due to the fact that the
normalization procedure reduces the mismatch between training and testing environments.
Applying the normalization to the auditory front-end can suppress the sharpness of the peaks
and make the features more suitable to fit within the HMM scheme.

We have proposed a new noise-robust, two-stream auditory feature-extraction method.
Speaker-dependent, isolated-word recognition tests performed using the new approach show

Table 5 Recognition rates obtained with different front-ends at different SNRs

SNR MFCC13 MFCC26 AudFE AudFE26 tsAudFE

clean 99.43 99.73 99.09 99.02 99.13

5 96.36 97.58 97.12 97.39 97.88

0 91.59 94.58 93.64 95.61 96.14

-5 80.42 86.55 84.55 88.60 88.45

-10 53.41 63.11 58.98 67.99 69.92

Ave. 84.24 88.31 86.67 89.72 90.30
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Figure 10   Recognition rates at different SNRs using a MFCC front-end with only static features (MFCC13).
An MFCC front-end with static and delta features (MFCC26) and a two-stream auditory front-end.
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that this front-end outperforms the previously proposed auditory and conventional MFCC
front-end in terms of recognition accuracy in all noisy environments. 

Incorporating other auditory phenomena should be considered as a means of improving
recognition performance. Our current research has focused on modeling the auditory periph-
ert. We will henceforth concentrate on trying to incorporate several phenomena associated
with the central auditory system. It is also important to ensure that the resulting auditory
front-end integrates well within the HMM framework used in automatic speech recognition
systems.
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1.    Introduction

It would be interesting to develop a system to manipulate the underlying parameters of
speech signals without introducing quality degradation due to the manipulations. Such a sys-
tem would be useful for investigating human speech perception capabilities using close to
natural speech stimuli while enabling precise control on relevant parameters. In other words,
it would possibly allow us to investigate normal hearing under the operating conditions for
which our auditory system is designed.

It is generally difficult to predict the behavior of highly nonlinear processes, such as
auditory perception, for very complex stimuli (for example, speech sounds) only from
responses to simple elementary stimuli. Investigations in the vicinity of natural speech
examples with precisely controlled deviations from the original, however, can provide com-
plementary clues to understanding “hearing” better. It is because, even though speech sig-
nals are complex mixtures of numerous components and are very different from usual
psychophysical stimuli, the precisely controlled deviations can be designed to be parameter-
ized with a small number of psychophysically meaningful parameters.

A versatile speech manipulation method called STRAIGHT has been developed [2] aim-
ing at fulfilling the requirement outlined above. STRAIGHT is based on a concept intro-
duced by the channel VOCODER [1], which separates spectral envelope information and
source information such as periodicity. This separation is useful in designing experiments
for investigating the physical correlates of perceptual attributes provided that such a separa-
tion does not introduce perceptible degradations.

Speech coding procedures using an analysis and synthesis scheme like the VOCODER
have been understood to have a rather low upper limit of speech quality. It is widely believed
that the original speech waveform needs to be replicated to produce highly natural speech.
The highly natural re-synthesized speech achieved by our STRAIGHT procedures, however,
provide a counterexample to these conventional views and make the proposed method a
powerful research tool.

2.    Basic Concepts

STRAIGHT consists of three key procedures to achieve its goal. The first procedure
extracts a smoothed time–frequency representation, which is free from interference due to
the source periodicity. This procedure uses pitch-adaptive, time–frequency analysis com-
bined with a surface reconstruction method in the time–frequency region. The second com-
ponent extracts F0 and other source related information with high reliability and precision. It
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FOR AUDITORY AND SPEECH PERCEPTION RESEARCH

Hideki Kawahara

Faculty of Systems Engineering, Wakayama University
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extracts the speech F0 as the instantaneous frequency of the fundamental component of com-
plex sounds like voiced speech, by using a new concept called “fundamentalness.” “Funda-
mentalness” is defined as the negative logarithm of the total amount of AM (amplitude
modulation) and FM (frequency modulation) magnitudes of a wavelet transform using an
auditory-like analyzing wavelet. The third procedure designs the excitation source for resyn-
thesis using group-delay manipulations, and this enables artificial “naturalness” to be added
to the synthetic speech. This procedure takes advantage of the fact that humans are very sen-
sitive to specific group-delay attributes.

2.1  Elimination of Periodicity Interferences

A periodic signal can be represented as the convolution of a unit waveform and a peri-
odic pulse train. For speech a unit waveform can be modeled as the convolution of a single
glottal source waveform and the impulse response of the vocal tract and acoustic radiation.
Because articulatory organs generally move, the spectral representation of a unit speech
waveform will vary with time. As a result, plotting the magnitude of such a spectral repre-
sentation in the time–frequency plane, can provide a smooth three-dimensional surface
S(w,t).

Due to the second convolution with the pulse train, however, the original surface, S(w,t),
is not directly observable. The time–frequency representations of such signals can suffer
from interference caused by the signal periodicity. In other words, only partial information
about the surface, S(w,t), is available. Therefore, the goal of the current procedures is to
recover this hypothetical surface S(w,t) using partial information sampled at every τ0(funda-
mental period) in the time domain and every F0=1/τ0 in the frequency domain.

A spectrogram |F(w,t)|2 calculated using a short-term Fourier transform exhibits a regular
structure reflecting the signal periodicity in both the time and frequency domains. If it were
possible to derive a spectrogram not having the regular interfering structure in the time
domain, the problem of reconstructing the time–frequency surface would be reduced to the
problem of eliminating the regular interfering structure in the frequency domain.

2.1.1 Power Spectrum with Reduced Phasic Interference

A practical solution for calculating a temporally stable short-term Fourier transform for a
periodic signal has been to use a rectangular pitch synchronous window or to use a relatively
long time window spanning three or more pitch periods. However, these alternatives do not
work very well for speech signals, because speech is not purely periodic nor stable in time.

One reasonable selection of the time window is to use an adaptive time window, which
has comparable time and frequency resolution in terms of the signal periodicity. A spectro-
gram using such a window generally has regular a “hole” both in the time and frequency
domains. This temporal variation of the spectrogram is mainly due to the phasic interference
between neighboring harmonic components.

The compensatory time window, wc(t; η, τ0), is designed to exhibit interference charac-
teristics complementary to the original Gaussian window wo(t; η, τ0), where  _ represents
the temporal stretching factor. 
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                                     (2)

A spectrogram with reduced phasic interference |Fr(w,t)|2 is represented as the weighted
squared sum of spectrograms |Fc(w,t)|2 and |Fo(w,t)|2 using this compensatory window and
the original time window, respectively.

|Fr(w,t)|2 = |Fo(w,t)|2 + ξ(η)|Fc(w,t)|2 (3)

Here,  represents the optimum mixing factor that minimizes the temporal variation of
|Fr(w,t)|2.

2.1.2 Pitch-Adaptive Spectral Smoothing

A second-order, cardinal B-spline smoothing function h(w), as defined below, is
employed to eliminate the periodicity interference in the frequency domain.

(4)

where w0(t)=2πf0(t) and -w0(t)≥w≥w0(t). Since the fundamental angular frequency w0(t) is a
function of time, the smoothing function is adaptive to the fundamental frequency. The
smoothed spectrogram at time t is calculated using this smoothing kernel and the spectro-
gram with reduced phasic interference.

(5)

This smoothing operation is equivalent to piecewise linear interpolation, when the original
spectrum is represented as a line spectrum. Note that the proposed operation is local and this
makes the procedure less sensitive to F0 errors and noise.

In Equation 5, g( ) defines what quantity is to be preserved through the smoothing opera-
tion. For example, the identity mapping, g(x) = x, preserves the energy of the signal and the
1= /3 power law, g(x) = x1/3, preserves the perceived loudness, approximately.

2.2  Reliable and Precise F0 Extraction

A new algorithm based on the instantaneous frequency has been developed to provide
source information in order to guide the STRAIGHT procedures. The proposed method
extracts the fundamental frequency as the instantaneous frequency of the fundamental com-
ponent of a complex sound. This may sound strange, because selecting the fundamental
component seems to require a prior knowledge about the fundamental frequency to be
extracted. However, a new measure called “fundamentalness” provides a built-in mechanism
for selecting the fundamental component without referring to F0 information.

This “fundamentalness” is designed to have the maximum value when the filter output
only consists of the fundamental component. It is possible to use a bank of asymmetric con-
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stant-Q band-pass filters; each filter has a gradual slope for the lower cut-off and a steeper
slope for the higher cut-off. By defining the “fundamentalness” to be proportional to the neg-
ative logarithm of the total amount of FM and AM of the filter output by using the filter bank
mentioned above, the desired behaviors can be shown.

An analyzing wavelet, wAG(t;η), made from a complex Gabor filter, wg(t), having a
slightly finer resolution in frequency (i.e., η > 1) can form such a filter bank. The input sig-
nal, s(t), can be divided into a set of filtered complex signals B(t; τc).

(6)

(7)

The characteristic period of the analyzing wavelet is used to represent the corresponding fil-
ter channel. 

The “fundamentalness” index, Mc(t; τc), is calculated for each channel (τc) based on the
output. The definition of the index has been slightly modified from a previous report,
because the F0 trajectories of speech signals normally consist of moving components that
carry prosodic information. Removing the contribution of the monotonic F0 movement
reduces artifacts in the “fundamentalness” evaluation caused by prosodic components.
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where the integration interval Ω=(t-T, t+T) is selected to cover the range where the weight-
ing factor w(u-t;τc) (in Equation(8), the first three terms, w(u-t), are abbreviated as w) is
effectively non-zero. Therefore, index Mc(t; τc) is normalized in terms of the scale. Extract-
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ing F0 simply means finding the maximum index of Mc(t; τc) in terms of τc and calculating
the average (or more specifically, interpolated) instantaneous frequency using the outputs of
the channels neighboring τc.

For a discrete time system with fs as the sampling frequency, the instantaneous frequency
fi(t, τc) of the output of channel,  _c, is calculated using the following equation:

(12)

where ∆ represents the differentiation operator.

2.3  Excitation Source Design

There are two different ways of resynthesizing speech using the extracted smoothed
spectrogram and fundamental frequency information. They are a source-filter implementa-
tion and a sinusoidal representation.

In this chapter, the former is used to resynthesize the speech signal from the time–fre-
quency representation and periodicity information. In this implementation, the minimum
phase impulse responses calculated from spectral slices of the time–frequency representa-
tion are used as a time-varying filter.

In a source-filter model, the extracted f0 (in fine resolution) is used to re-synthesize the
speech signal, y(t), using the following equation:

(13)

where      

where Q represents a set of positions in the excitation for the synthesis, and G( ) represents
the pitch modification. The all-pass filter function, Φ(w), is used to control the fine pitch and
the temporal structure of the source signal and is described in the next section. In the dis-
crete-time system the range of integration in the equation to derive vt(τ) becomes [-π, π]
using the normalized angular frequency w = 2πf/fs, where fs represents the sampling fre-
quency.

V(w, ti) represents the Fourier transform of the minimum phase impulse response, which
is calculated from the modified amplitude spectrum, A(S(u(w), r(t)), u(w), r(t)), where A( ),
u( ), and r( ) represent manipulations in the amplitude, frequency, and time axes, respec-
tively.
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                             (15)

where q represents the quefrency.
The all-pass filter function Φ(w) allows the control of the excitation source waveform by

group delay manipulation. This is necessary because while there is no degradation in speech
quality caused by parameter manipulations using the STRAIGHT procedures, there is still
some initial degradation in quality under headphone listening when no temporal fine struc-
ture control is employed.

The all-pass filters used here have the following form:

                      (16)

where random group delay τg( ) is made from band-limited gaussian white noise. The αw
term is introduced for fine pitch control.

The following equation is used to shape the group-delay frequency characteristics, where
wc represents the lower-boundary frequency where the group delay dispersion starts. The
parameter, bw,   defines the width of the transitional area:
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Figure 1  Illustration of the method for the vowel [a] pronounced by a male speaker. Shown are channels cen-
tered on F0, 2F0 and 3F0. For each, the waveform input to the filter is plotted in perspective, fol-
lowed by a polar representation of the complex output. The radius of the thick circle represents the
instantaneous amplitude, which is constant for the filter centered on F0 and pulsating for those cen-
tered on 2F0 and 3F0.
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Figure 3   Smoothed spectrogram of a female’s pronunciation of “right” using a pitch-adaptive smoothing operation.

Figure 2   Spectrogram of a female’s pronunciation of “right” using a pitch-adaptive window.
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                                      (17)

Detailed discussions of group delay is given in the literature. In addition, in a preliminary
test using temporally asymmetric group-delay functions, it was revealed that humans are
sensitive to the identity of the asymmetry and that the asymmetry introduces an interesting
timbre [3].

2.4  Numerical Examples

Figure 1 illustrates how the outputs of auditory-like filters behave. Only the filter output
corresponding to F0 exhibits a stable behavior without AM and FM.

Figure 2 shows a 3-dimensional plot of a pitch-adaptive spectrogram with interference
due to periodicity. Figure 3 shows a smoothed spectrogram for the same speech material.
The interference caused by the signal periodicity is removed while the general spectral shape
is kept intact. This illustrates that the basic concept of the time–frequency smoothing of
STRAIGHT is effective.
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Figure 4 All-pass filter example. The left plot represents a group-delay function designed from random
numbers with frequency weighting (thick lines). The top right plot shows a mapping function to
introduce group delay asymmetry. The bottom right plot shows the corresponding impulse
response.
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3.    Improving the Reproduction Quality

The original implementation described above provides reasonably high-quality repro-
duction via loudspeakers; however, significant degradation is still perceived when head-
phones are used. This section introduces several post-processing methods for improving
reproduction quality.

3.1  Post-processing of the Spectral Envelope

The smoothed time–frequency representation obtained using the second-order cardinal
B-spline smoothing kernel was found to introduce speech quality degradation due to over-
smoothing, because the smoothing effect of time windowing was not taken into account in
the original implementation. It was additionally found that the degradation due to this over-
smoothing was more salient in female speech.

Two steps were introduced into the reproduction procedure to solve this over-smoothing
problem. First, we used a second-order cardinal B-spline for the smoothing, so it was possi-
ble to design an optimal smoothing function that, at least for knot points, could compensate
for any over-smoothing. This reduced the problem to an inverse filtering problem (i.e.,
recovering the original impulse from the smoothed impulse).

The optimum smoothing coefficient vector, c, is calculated from the target unit impulse
vector u and the coefficients matrix H made from the over-smoothed unit impulse (i.e.,
{H}kl = vk+l, where v is the over-smoothed vector):

 c = (HTH)-1HTu (18)
                                 u = [u-M, u-M+1, ..., u0, ..., uM-1, uM]′ 

                           c = [c-N, c-N+1,..., c0,..., cN-1, cN]′

The second step for recovering from the over smoothing is to compensate for any exces-
sive decay in the vicinity of the point of excitation. Based on an approximation of the decay
effect using a Taylor expansion up to the t2 term, the following weighting function is intro-
duced to compensate for the total decay effect caused by the time windowing and the opti-
mum smoothing function represented in an alternative form using parameters b1,...., bk.
These parameters are recursively calculated from the elements of c:

(19)

where ζ represents an additional controlling factor. This operation in the time domain is
equivalent to enhancing the spectral envelope by adding its second-order derivative to the
original in the frequency domain. However, the time-domain procedure is preferable,
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Table 1   Test conditions for re-synthesis.

Symbol Condition

AD
Prev
SYN
EH
EH2

Original sound
Control with additional √40dB white noise
Optimal smoothing
Temporal processing 1
Temporal processing 2
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because it makes it easier to implement pitch synchronous variation of the vocal tract trans-
fer function in the time domain.

3.2  Experiment

A preliminary experiment was conducted to test the effects of spectral and temporal post-
processing. Table 3.2 represents the resynthesis conditions tested. Because the reproduced
speech quality was almost equivalent to the original natural speech, the 2AFC procedure
(paired comparison with two alternative forced choice) was used. The test material was a
female’s utterance of “kousyou ni oware te imasu” (busy in making negotiations), sampled
at 24 kHz with 16-bit resolution.

Figure 5 shows the results obtained on the psychometric scale calculated by Thurstone’s
case V procedure. The total number of subjects was 10.

The best re-synthesized speech is almost indistinguishable from the original in terms of
“naturalness.” Note that a similar synthetic sound with some (40 dB S/N) additional white
noise was rated the worst.

4.    GUI and Implementation

All the STRAIGHT procedures (one of them is described in the previous section) are
implemented in MATLAB and its signal processing toolbox. MATLAB provides portability
among various platforms and also provides accessibility to internal variables. These features
make STRAIGHT a flexible tool. Furthermore, the recent introduction of GUI has made it
easy to use STRAIGHT.

Figure 6 shows the GUI-based control panel of STRAIGHT. The top center sub-panel is
for general procedures. The usual way of using STRAIGHT is to click buttons from top to
bottom in this center panel. This represents the standard ordering of constituent procedures
for manipulating speech. The bottom right sub-panel has a collection of buttons to display
information about the speech sample under inspection. The sub-panel also provides audio
monitoring of the signal. Parameters mainly used in the analysis stage are accessible from
the top left sub-panel and are controllable using the “edit” and “menu selection” GUI-primi-

95% intvl. (0.43)

AD(0.35)

EH2(0.23)

EH(0.09)

SYN(-0.16)

Prev(-0.51)

Natural

Figure 5 Effects of time-domain processing. The horizontal axis represents the psychometric scale calcu-
lated based on Thurstone’s case V.
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tives of MATLAB. Parameters used in the synthesis stage are accessible from the bottom left
sub-panel and are controllable using the “edit,” “slider,” and “radio button” GUI-primitives
of MATLAB. Any nonlinear arbitrary mapping of an original and the synthesis parameters
can be controlled using a direct manipulation controller.

Users with MATLAB knowledge can use component procedures of STRAIGHT to con-
struct programs for their specific purpose, because thy are implemented as function subpro-
grams for general use.

5.    Summary and Conclusions

A new set of simple procedures called STRAIGHT has been introduced to provide tools
for speech perception research using artificial stimuli that sound highly natural. The pro-
posed method is a speech analysis, modification and synthesis system that provides naturally
sounding manipulated speech even with a large number of parameter modifications. The
proposed method uses pitch-adaptive spectral analysis combined with a surface reconstruc-
tion method in the time–frequency region, and an excitation source design based on group-
delay manipulation. It also consists of a pitch-extraction method using instantaneous fre-
quency calculation based on a new concept called “fundamentalness.”

STRAIGHT has revived the underlying concept of the channel VOCODER to implement
a powerful research tool for speech perception, primarily because, it has revealed that it is
not necessary to replicate waveforms to re-synthesize highly natural speech. This method

Figure 6 STRAIGHT control panel.
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allows researchers to control spectral envelope characteristics and source related parameters
independently and precisely without introducing artificial degradation. Experiments using
STRAIGHT will provide complimentary clues to existing psychophysical data in analyzing
the properties of the human auditory system pertinent for speech processing.
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