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Abstract
This paper reviews diffraction tomography as it applies to electromagnetic and acoustical imaging. We have dis-
cussed the various approximations that are used and shown their effects by computer simulation. In addition
results are shown for three reconstruction algorithms and their computational requirements are explored.*

1. Introduction
During the past ten years the medical community has increasingly called on X -Ray computerized tomography
(CT) to help make its diagnostic images. With this increased interest has also come an awareness of the dangers
of using ionizing radiation and this has made X -Ray CT unsuitable for use in mass screening of the female breast,
for example.

For this reason researchers have turned to microwaves and acoustics as possible imaging modalities. While at
low levels-microwaves and ultrasound are considered safe, they both suffer from diffraction effects in biological tis-
sue. In the past these problems have been ignored ICra821 or approximated using digital ray tracing (And82J. A
complete solution requires the theory of inverse scattering and has been labelled "Diffraction Tomography."

This paper will discuss several of the problems that must be solved for diffraction tomography to produce
acceptable images. We will first discuss a scattering model and two of the approximations that must be made will
then be presented. In the third section we will formulate the forward process which will be inverted in section 4
to give us an estimate of the imaging parameter of the object. We will also present computer simulation results
to illustrate the effects of the approximations made.

In section 5 we will discuss several of the algorithms used for diffraction tomography and compare the resulting
reconstructions both from the standpoint of accuracy and the computing effort required. This will be followed in
sections 6 by a discussion of several of the experimental limitations and a derivation of the optimum sampling
interval.

2. The Wave Equation

We will discuss the inverse scattering problem in terms of the scalar Helmholtz equation. Diffraction tomography
algorithms are derived from the following general equation for wave propagation in an inhomogeneous medium

(2.1)
(o2+k2)0(i) = -o(1)01)

where >1() represents the scalar field. The wavenumber, k, is calculated from the average properties of the
medium and thus 0(1) is a function of the deviations of the medium from the average.

For the acoustic case, first order approximations give the following expression for 0(1) (Kak83J,

= 00-0_11 (2.2)

where n(1) is the refractive index of each point in the object. On the other hand, if we ignore the effect of polari-
zation, the function O(1) for the electromagnetic case is given by
*This work was supported by the Walter Reed Army Institute of Research.
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where ^(7) represents the scalar field. The wavenumber, Jfc, is calculated from the average properties of the 
medium and thus 0(7) is a function of the deviations of the medium from the average.

For the acoustic case, first order approximations give the following expression for 0(7) [Kak83],

Of?) = *2[n 2(7Hl (2'2)

where n(7) is the refractive index of each point in the object. On the other hand, if we ignore the effect of polari­
zation, the function 0(7) for the electromagnetic case is given by
*This work was supported by the Walter Reed Army Institute of Research.
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where n(1) is

O(íß) = 2k2(n (7)-11 (2.3)

(2.4)

Here we have used p and e to represent the magnetic permeability and dielectric constant and the subscript zero
to indicate their average values.

The incident field, ,I,o, is a solution to the homogeneous Helmholtz equation

(V2+ k2)00(1) = o.

The total field may be represented as a sum of the incident field, 00(1), and the scattered field, 0,(i),

OM = 'Goty) +'G.(1)-

From (2.1) and (2.6) we see that 0,(1) satisfies the following wave equation

(2.6)

(2.6)

(V2 + k2)08 (/)_- O íY)iG(íY).
(2.7)

The scalar Helmholtz equation (2.1) cannot be solved for C(íi) directly but a solution can be written in terms
of a Green's function IMor53l. The Green's function, which is a solution of the differential equation

is written as

with

(o2+ kg) C(1) 1' = (2.8)

out
CVII1)- 4xR

R=I7-1 iI.

(2.9)

(2.10)

In two dimensions the solution of (2.8) is written in terms of a zero-order Hankel function of the first kind, and
can be expressed as

C(7I1 I) = ÷1141)(kR ). (2.11)

Since equation (2.8) represents the radiation from a two-dimensional impulse source, the total radiation from
all sources on the right hand side of (2.7) must be given by the following superposition:

14?) = J'Gt?Il' )OV901' )d-l' .
(2.12)

Since in general, it is impossible to solve equation (2.12) for the scattered field, approximations must be made.
Two types of appoximations are available: the Born and the Rytov. For the first order Born approximation the
integral equation of (2.12) is solved by assuming that the total field, 1(1), differs only slightly from the incident
field and therefore the total field can be approximated by the incident field, 00(1),

?P.M Jctl11' )0(t' )+GoV' )á' .
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(2.13)

0(7) = 2*2|n| 

where nf?) is

(2.4)

Here we have used /i and e to represent the magnetic permeability and dielectric constant and the subscript zero 
to indicate their average values.

The incident field, 00 , is a solution to the homogeneous Helmholtz equation

The total field may be represented as a sum of the incident field, Vo(?)> and the scattered field, VM?),

From (2.1) and (2.6) we see that $,(?) satisfies the following wave equation

(2'7)

The scalar Helmholtz equation (2.1) cannot be solved for 0 t (7) directly but a solution can be written in terms 
of a Green's function [Mor53]. The Green's function, which is a solution of the differential equation

(V2 -I- kl }G(f\ f ' ) = -«(*-? ' ), <2 '8) 

is written as

with

In two dimensions the solution of (2.8) is written in terms of a zero-order Hankei function of the first kind, and 
can be expressed as

Since equation (2.8) represents the radiation from a two-dimensional impulse source, the total radiation from 
all sources on the right hand side of (2.7) must be given by the following superposition:

Since in general, it is impossible to solve equation (2.12) for the scattered field, approximations must be made. 
Two types of appoximations are available: the Born and the Rytov. For the first order Born approximation the 
integral equation of (2.12) is solved by assuming that the total field, ^(7), differs only slightly from the incident 
field and therefore the total field can be approximated by the incident field,
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Due to R in equation (2.10) being a function of the difference 1-1 1, this may be expressed as the following two-
dimensional convolution

0.(1- f C(e-7' )O(v )0o(v )d l' .
(2.14)

The first order Born approximation is valid only when the magnitude of the scattering is small compared to
the incident field. When this is true the incident field is a close approximation to the total field in the integral of
equation (2.12). It can be shown [SIa821 that one condition for this to be true is that the total phase shift in the
incident field as it passes through object must be less than x.

Higher order approximations for the total field are possible with the Born approach. The total field is now
represented as

G() = o() +11'#) + G2() + (2.15)

We have already presented an equation for the first order scattering term (01 =0.) in equation (2.14). Higher
order terms are given by

11) i(?) C(' )O(' )(' )' (2.15)
G

More work is needed to determine the region of convergence for this series.

The Rytov approximation is derived by assuming that the total field can be expressed as a complex phase or

The total phase is then expressed as

1G() = eik,M.
(2.17)

(2.18)
01= 00M+0,M

Substituting this new expression for the total field into the inhomogeneous Helmholtz equation (2.1) and simplify-
ing by subtracting out the effect of the homogeneous solution we find that (Ish78, Che60J

+Go(r)01(r) = f G(1-1' )0o( ' )[00, 0O, + O( ' )1(11
(2.19)

Under the Rytov solution we assume that the term in brackets can be approximated by only the object term or

(2.20)o0,00, +0(1')0(1')
The Rytov solution to the scattered field then becomes

or comparing to equation (2.14)

0,C1) -
to

f CC-1' )00(1' )0(1' )d7'

0.(11-
Oat?)

+Go(7)

(2.21)

(2.22)

Contrary to the Born approximation the Rytov approximation assumes that the term V, 05, is small com-
pared to the object function, 0(11). This condition is equivalent to saying that the change in the scattered field
per unit length must be small. Since no assumptions were made about the size of the object the Rytov approxi-
mation is considered to be a better approximation to the true fields 1Ke169I.

4
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(*-15)

We have already presented an equation for the first order scattering term (^1=0,) in equation (2.14). Higher 
order terms are given by

More work is needed to determine the region of convergence for this series.

The Rytov approximation is derived by assuming that the total field can be expressed as a complex phase or

The total phase is then expressed as

(2 * 18)
Substituting this new expression for the total field into the inhomogeneous Helmholtz equation (2.1) and simplify­ 
ing by subtracting out the effect of the homogeneous solution we find that [Ish78, CheCO]

Under the Rytov solution we assume that the term in brackets can be approximated by only the object term or

The Rytov solution to the scattered field then becomes

</>,(?) =    /G(7^7 l )V>ot?')0(?')<fiM 

or comparing to equation (2.14)

Contrary to the Born approximation the Rytov approximation assumes that the term V^f -V0f is small com­ 
pared to the object function, 0(?'). This condition is equivalent to saying that the change in the scattered field 
per unit length must be small. Since no assumptions were made about the size of the object the Rytov approxi­ 
mation is considered to be a better approximation to the true fields [Kel69|.
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The similarity between the expressions for the first order Born and Rytov solutions will form the basis of our
reconstructions. In the Born approximation we measure the complex amplitude of the scattered field and use this
as an estimate of the function 1' while in the Rytov case we estimate O. from the phase of the scattered field.
Since the Rytov approximation is considered more accurate than the Born approximation it should provide a
better estimate of O..

3. The Forward Process
Let us consider the effect of a single plane wave incident on the object. The forward scattered field will be meas-
ured at the receiver line as is shown in figure 1.

A single plane wave in two dimensions can be represented as

+Go() = ek
where k = (ks,k,) satisfies the following relationship

k2= ks +kir2.

(3.1)

(3.2)

Let us now consider the scattered field from an object, O(íß), by analyzing equation (2.13) in the Fourier
domain. We will use the plots of figure 2 to illustrate the various transformations that take place.

FIgure 1. A simple diffraction tomography experiment
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The similarity between the expressions for the first order Born and Rytov solutions will form the basis of our 
reconstructions. In the Born approximation we measure the complex amplitude of the scattered field and use this 
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Let us now consider the scattered field from an object, 0(7), by analyzing equation (2.13) in the Fourier 
domain. We will use the plots of figure 2 to illustrate the various transformations that take place.

Figure 1. A simple diffraction tomography experiment
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Figure 2. Several of the Fourier tranforms involved in the calculation of the scattered field. a) The Fourier
transform of the object, b) the Fourier transform of the incident field, c) the convolution (in the fre-
quency domain) of (a) and (b), d) the Fourier Transform of the 2D Green's function and (e) the Fourier
transform of the first order Born scattered field.
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The integral equation for the scattered field (2.13) can be considered as a convolution of the Green's Function,
G(- II I ), and the product of the object function O(r) , and the incident field, 7/60(7). First we will define the fol-
lowing Fourier transform pairs.

(3.3)
O(1«-6(k)

(3.4)
G(r-1 ' )4.4 d"(1)

0, /a,A (3.5)

6

Figure 2. Several of the Fourier tranforms involved in the calculation of the scattered field, a) The Fourier 
transform of the object, b) the Fourier transform of the incident field, c) the convolution (in the fre­ 
quency domain) of (a) and (b), d) the Fourier Transform of the 2D Green's function and (e) the Fourier 
transform of the first order Born scattered field.

The integral equation for the scattered field (2.13) can be considered as a convolution of the Green's Function, 
G(~?\~?' ), and the product of the object function 0(f) , and the incident field, il>Q(?). First we will define the fol­ 
lowing Fourier transform pairs.

(3.3)

(3.4)

(3.5)
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Equation (2.14) can now be written in terms of these Fourier transforms or

= G(A){601)*1Go(r)1
(3.8)

where we have used ` *' to represent convolution and X = (a(). In equation (3.1) we presented an expression for
'Go. It's Fourier transform is given by

;P0(Á) = 27r0-4)

and thus the convolution of equation (3.6) becomes a shift in the frequency domain or

G(A) *;/)o(r) = 2g0(Á k).

(3.7)

(3.8)

This convolution is illustrated in figures 2a -c for a plane wave propogating with direction vector, k= (0,k). Figure
2a shows the Fourier transform of a single cylinder of radius 1X and figure 2b is the Fourier Transform of the
incident field. The resulting multiplication in the space domain or convolution in the frequency domain is shown
in figure 2c.

Taking the Fourier transform of equation (2.8) it follows that the Fourier transform of the Green's function is
LMor53l

-- r ért'G(AI )= .

This function has a singularity for all k such that

A2=a2+72=k2.

(3.9)

(3.10)

An approximation to G(k) is shown in figure 2d.

The effect of the convolution shown in equation 2.14 is a multiplication in the frequency domain of the shifted
object function, (3.8), and the Green's function, (3.9), evaluated at 7 ' O. The scattered field is written as

>¡i(Á)=27r
Ó Á-k
AZ-k2

.
(3.11)

This result is shown in figure 2e for a plane wave propogating along the y -axis. Since the largest frequency
domain components of the Green's function satisfy equation (3.10) the Fourier transform of the scattered field is
dominated by a shifted and sampled version of the object's Fourier transform.

We will now derive an expression for the field at the receiver line. For simplicity we will assume that the
incident field is propagating along the positive y axis or _ (0,k). The scattered field along the receiver line
(x ,y =10) is simply the inverse Fourier transform of the field in equation (3.11). This is written as

1G(z,y=to) = 472ffi/i,(71)e»nldadry

which, using (3.11), can be expressed as

1G.(z,y=1o) = 1 f f
G(a,k) ei(«s+7ro)dadry.

471.2
a2 +72-k2

(3.12)

(3.13)

In order to evaluate this inversion it is necessary to perform contour integration, choosing the path of integra-
tion to lead to outgoing waves [Mor53J. Performing the contour integration with respect to ry we find

7
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Defining

we can write equation (3.14) as

or

(a,,rk)eivl°I(zy=lo ) f { da.
927

DU(a) (a,7-k) eiTo
j27

+G(z,y=lo) = f U(a)ei°sda

ft,6(z,y=lo)e-i«zdz = 27r 0(a).

(3.14)

(3.15)

(3.16)

(3.17)

Thus the Fourier transform of the received field is a simple function of the Fourier transform of the object along a
circular arc. This is diagramed in figure 3. This can be further justified by noting that in figure 2e, only those
frequencies that satisfy equation (3.10) will be propogated to the receiver line (Goo68J.

This result was first presented by Wolf (Wo169(. Devaney (Dev82( later extended this result to show that in
the limit of very small wavelengths that this result approaches the formulas used in X -ray CT imaging (Ros82J.

We have derived an expression (3.17) that relates the scattering by an object to the field received at a line.
Within the diffraction limit it is possible to invert this relation to estimate the object scattering distribution based
on the received field. Because of diffraction effects it is only possible to receive waves with a wavenumber such

Measured forward
scattered field

Fourier transform

Space domain

kY

Frequency Domain

Figure 3. The measured scattered field is an estimate of the Fourier transform of the object along a circular arc.
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Figure 3. The measured scattered field is an estimate of the Fourier transform of the object along a circular arc.
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that both a and -y are real. If either part of the wavenumber is complex then this component of the field will be
exponentially attenuated and will be negligible at distances greater than 10X. This limits the wavenumbers of the
received field to those such that

and thus

a < k

ry = k2-a2 < k.

Within this limitation, the relationship between the object function and the received field is exact.

4. Inversion

(3.18)

(3.19)

In order to estimate an object, its Fourier transform must be known for all frequencies in a neighborhood of the
origin. We have shown how the scattered field from an object provides an estimate of the Fourier transform of
the object along a circular arc. In order to obtain an estimate of the object for all frequencies within a disk it is
necessary to change the incident field and the object's orientation.

There are two different approaches that are currently being investigated. The most straightforward was dis-
cussed by Mueller [Mue79[ and consists of rotating the object and measuring the scattered field for different orien-
tations. Each orientation will produce an estimate of the object's Fourier transform along a circular arc and these
arcs will rotate as the object is rotated. When the object has rotated through a full 360 degrees an estimate of the
object will be available for the entire Fourier disk.

The coverage for this method is shown in figure 4. Notice that there are two arcs that pass through each point
of Fourier space. Generally it will be necessary to choose one estimate as better.

Figure 4. Frequency domain coverage. Each arc represents a single diffracted projection.
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Transmitter gY(

X

Figure 5. An experiment using the approach of [Nah82) is shown here. A single view consists of measuring the
diffracted projections for every possible position, 77, of the transmitter.

Nahamoo and Kak [Nah82 have proposed a method that requires only two rotational views of an object. Con-
sider an arbitrary source of waves in the transmitter plane as is shown in figure 5. The field produced can be
represented as a set of plane waves by taking the Fourier transform of the transmitter aperture function (Goo68].
Doing this we find

1kt(x) =

Moving the source to a new position, 77, we find that

Gt(x +r1) =

Given the plane wave decomposition the incident

00

+(rl;x,!!) = f
-00

oo

1 f At(k:)ejk'dks.
47r2 -00

the plane wave

00

,k
14

rnl

follows

j(kjs+ky)

decomposition becomes

jkzs
dkz.

simply as

dks.

(4.1)

(4.2)

(4.3)

f At(ks)el
-00

field in the plane

1 jksq
e

4rr2At(k:)e

In equation (3.11) we presented an equation for the scattered field from a single plane wave. Because of the
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Object

Transmitter

Figure 5. An experiment using the approach of [Nah82] is shown here. A single view consists of measuring the 
diffracted projections for every possible position, r;, of the transmitter.

Nahamoo and Kak [Nah82] have proposed a method that requires only two rotational views of an object. Con­ 
sider an arbitrary source of waves in the transmitter plane as is shown in figure 5. The field produced can be 
represented as a set of plane waves by taking the Fourier transform of the transmitter aperture function [Goo68]. 
Doing this we find

.
47T -oo

Moving the source to a new position, rj, we find that the plane wave decomposition becomes

(4.1)

(4.2)

Given the plane wave decomposition the incident field in the plane follows simply as

(4.3)

In equation (3.11) we presented an equation for the scattered field from a single plane wave. Because of the

10

Downloaded From: http://spiedigitallibrary.org/ on 10/11/2014 Terms of Use: http://spiedl.org/terms



linearity of the Fourier transform we can write the Fourier transform of the total scattered field due to the
incident field 7,Gi(x +n) as [Nah82J

"G(n;a) = f Ai(k3 )ei)."
O(a-k :, kr ) ( 4

dks.
.4 )

-o0 j27

Taking the Fourier transform of both sides with respect to the transmitter position, n, we find that

Ö(a- k :,7-k, )
iG(k:;a) = Ai(k) kz.

(4.5)

By collecting the scattered field along the receiver line as a function of transmitter position, n, we have an
expression for the scattered field. Like the simpler case with plane wave incidence, the scattered field is related to
the Fourier transform of the object along an arc. Unlike the previous case, though, the coverage due to a single
view of the object is a pair of circular disks as shown in figure 6. Here a single view is defined as consisting of
transmitting from all positions in a line and measuring the scattered field at all positions along the receiver line.
By rotating the object by 90 degrees it is possible to generate the complimentary disk and to fill the Fourier
domain.

Several simulations were done comparing and contrasting the Born and Rytov approximations. The resulting
reconstructions are shown in figures 7 -9. Both the Born and Rytov solutions produced excellent results for the

..* s *

ky

Figure 6. The object coverage in the Fourier domain for synthetic aperature tomography. The dotted semicircle
represents the possible incident waves while the othersemicircles are the possible received waves.
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Figure 8. Reconstructions of a 4X cylinder with a refractive index of 1.20. Maximum phase shift across the
object is 3.22r. (a) Born approximation, and (b) Rytov approximation.
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Figure 9. Reconstructions of a 40X cylinder with a refractive index of 1.005. Maximum phase shift across the
object is .8r. (a) Born approximation, and (b) Rytov approximation.

relatively uninteresting case of a .1% change in refractive index. On the other hand neither approximation pro-
duced a good reconstruction for a 20% change. Figure 9 highlights the difference between the Born and Rytov
approximations for a .5% change. Notice that while the Born approximation produced a better estimate of the
step refractive index the overall reconstruction is not as good as the Born approximation. This is consistent with
the limitations of each approximation as presented above.

6. Reconstruction Algorithms
Exactly estimating the scattered field for every point within the Fourier disk would require an infinite amount of
data so generally the scattered field is measured only for a finite number of views and receiver positions. In addi-
tion the object is usually sampled using a rectangular grid so that an FFT based algorithm can be used to find its
inverse. It it then necessary to estimate the Fourier transform at discrete points in the frequency domain given an
estimate of the Fourier transform along circular arcs.

We will discuss several reconstruction algorithms as they apply to the simple plane wave incidence. Similar
reconstructions can also be derived for the approach presented in (Nah82J but the math is not nearly as straight-
forward.

In order to estimate the Fourier transform of the object for points on a rectangular grid it would be simplest to
choose enough views so that every point in the grid is on one of the scattered arcs. This is generally not reason-
able because of the large number of views this implies.

A much more reasonable approach is to use two dimensional interpolation to estimate the Fourier transform of
the object function from the data collected along circular arcs in the frequency domain. Several techniques can be
used for interpolation. These include nearest neighbor (the simplest and least accurate), bilinear interpolation,
and zero padding the signal to increase the resolution of the Fourier transform. The application of these ideas is
discussed in (Pan83I.
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choose enough views so that every point in the grid is on one of the scattered arcs. This is generally not reason­ 
able because of the large number of views this implies.

A much more reasonable approach is to use two dimensional interpolation to estimate the Fourier transform of 
the object function from the data collected along circular arcs in the frequency domain. Several techniques can be 
used for interpolation. These include nearest neighbor (the simplest and least accurate), bilinear interpolation, 
and zero padding the signal to increase the resolution of the Fourier transform. The application of these ideas is 
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Figure 10. A 128 by 128 reconstruction obtatined with bilinear interpolation from 64 projects and 128 samples
per projection. Prior to applying bilinear interpolation, the frequency domain sampling density was
increased eightfold by the zero padding technique. (a) is the full reconstruction and (b) is a numerical
comparison of the true and reconstructed values on the line y= -.605 through the phantom

Figure 10 shows simulations for a phantom similar to the Shepp and Logan X -ray CT skull phantom. Using a
combination of increasing the sampling density by zero padding the signal and bilinear interpolation, results were
obtained in 2 minutes of CPU time on a VAX 11/780 minicomputer with a floating point accelerator (FPA). The
reconstructions were done over a 128 by 128 grid using 64 views and 128 receiver positions. The number of opera-
tions required to carry out the interpolation and invert the object function is on the order of NzlogN.

Devaney IDev82I has derived a filter -backpropagation algorithm that directly calculates the object function
without the need for interpolation and a two dimensional inverse FFT. The filtered -backpropagation algorithm
differs from the filtered -backprojection algorithm in conventional tomography because the projection filter is
different for each depth. This is diagrammed in figure 11. For the most accurate reconstruction it is necessary to
backpropagate the field to every depth represented by the object array.

In Devaney's algorithm, the object function is reconstructed by

O(a , y) =
8 22

f d f dal al I'á()e(rt)(o-weiaE (5.1)

where ¿ and >7 represent the rotated versions of the z and y coordinate system as shown in figure 5. The function,
ro, is a function of the scattered field and the projection angle and is given by

F0(a)
-j*I°0

(a)
z

(5.2)

This calculation requires on the order of N`NdN1ogN operations where No is the number of projections, Nd is the
number of depths the backpropagation is performed and each projection consists of N values.

If only a small portion of the entire object is of interest, then it is possible to reduce the computational
requirements by only backpropagating to a single depth. This method has been called the Modified Back Propa-
gation Algorithm.

Pan and Kak [Pan83] presented the reconstructions shown in figures 12 and 13. Figure 12 represents the result
of back propagating the data to 128 depths for each view while figure 13 is the result of back propagation to only
a single depth centered near the three small ellipses at the bottom of the picture. The results were simulated on a
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per projection. Prior to applying bilinear interpolation, the frequency domain sampling density was 
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k2
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requirements by only backpropagating to a single depth. This method has been called the Modified Back Propa­ 
gation Algorithm.

Pan and Kak [Pan83] presented the reconstructions shown in figures 12 and 13. Figure 12 represents the result 
of back propagating the data to 128 depths for each view while figure 13 is the result of back propagation to only 
a single depth centered near the three small ellipses at the bottom of the picture. The results were simulated on a
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Figure 11. For each 77- constant line shown in this figure, the diffracted projection must be filtered with a
different transfer function.
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Figure 12. Reconstructions obtained by using the filter -backpropagation algorithm on 64 projections and 128
samples in each projection. Nd =128.. (a) is the full reconstruction and (b) is a numerical comparison
of the true and reconstructed values on the line y= -.605 through the phantom
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Figure 12. Reconstructions obtained by using the filter-backpropagation algorithm on 64 projections and 128 
samples in each projection. JV^ = 128.. (a) is the full reconstruction and (b) is a numerical comparison 
of the true and reconstructed values on the line y=-.605 through the phantom
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Figure 13. Reconstructions obtained by using the modified filter- backpropagation algorithm on 64 projections
and 128 samples in each projection. The filter function corresponds to what would yield local accuracy
at the site of the three small ellipses. (a) is the full reconstruction and (b) is a numerical comparison of
the true and reconstructed values on the line y= -.605 through the phantom

VAX 11/780 minicomputer and the resulting reconstructions were done over a 128 by 128 grid. Like the previous
image the input data consisted of 64 projections of 128 points each.

There was a significant difference in not only the reconstruction time but also the resulting quality. While the
modified back propagation only took 1.25 minutes the resulting reconstruction is much poorer than the full back
propagation which took 50 minutes of CPU time.

6. Limitations

There are a number of limitations in diffraction tomography. We have already considered the limits of the Born
and Rytov approximations. These serve to limit the maximum change in refractive index that can be imaged.

There are several other factors that limit the quality of reconstructions possible (Sla82(. The most fundamen-
tal limitations is due to the propagation of evanescent waves. Since these waves have a complex wavenumber
(Goo68( they are severely attenuated as they propagate. Thus at a distance of more than 10 wavelengths their
contribution to the total field is almost negligible.

The severe attenuation of the evanescent waves limits the highest frequency that can be measured at the
receiver line. Since the field at the receiver line corresponds directly to the Fourier transform of the object this
limits the highest frequency in the reconstruction.

In addition to the limitation on reconstruction bandwidth due to the propagation of evanescent waves the sam-
pling interval and the number of data points collected along the receiver line effect the reconstruction. A simple
Nyquist rate analysis shows that the reconstruction is limited to frequencies less than one half the sampling rate.
Spatial frequencies higher than this will be aliased into the lower frequencies.

Measuring the scattered field in the near field also introduces a low pass filtering of the reconstruction. Con-
sider the effect of the point scatter shown in figure 14. The scattered field that is measured at the receiver line is
a function of the scatterer's distance from the receiver line and the angle of incidence. At a point, (x,y =1o) the
scattered field is given by

U(x=lo,y) =
z2+yz

eJx :s+0 (6.1)

The instantaneous spatial frequency is found by taking the partial derivative of the phase with respect to y
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Figure 13. Reconstructions obtained by using the modified filter-backpropagation algorithm on 64 projections 
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VAX 11/780 minicomputer and the resulting reconstructions were done over a 128 by 128 grid. Like the previous 
image the input data consisted of 64 projections of 128 points each.

There was a significant difference in not only the reconstruction time but also the resulting quality. While the 
modified back propagation only took 1.25 minutes the resulting reconstruction is much poorer than the full back 
propagation which took 50 minutes of CPU time.

6. Limitations

There are a number of limitations in diffraction tomography. We have already considered the limits of the Born 
and Rytov approximations. These serve to limit the maximum change in refractive index that can be imaged.

There are several other factors that limit the quality of reconstructions possible [Sla82j. The most fundamen­ 
tal limitations is due to the propagation of evanescent waves. Since these waves have a complex wavenumber 
[Goo68] they are severely attenuated as they propagate. Thus at a distance of more than 10 wavelengths their 
contribution to the total field is almost negligible.

The severe attenuation of the evanescent waves limits the highest frequency that can be measured at the 
receiver line. Since the field at the receiver line corresponds directly to the Fourier transform of the object this 
limits the highest frequency in the reconstruction.

In addition to the limitation on reconstruction bandwidth due to the propagation of evanescent waves the sam­ 
pling interval and the number of data points collected along the receiver line effect the reconstruction. A simple 
Nyquist rate analysis shows that the reconstruction is limited to frequencies less than one half the sampling rate. 
Spatial frequencies higher than this will be aliased into the lower frequencies.

Measuring the scattered field in the near field also introduces a low pass filtering of the reconstruction. Con­ 
sider the effect of the point scatter shown in figure 14. The scattered field that is measured at the receiver line is 
a function of the scatterer's distance from the receiver line and the angle of incidence. At a point, (s,y=/0) the 
scattered field is given by
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The instantaneous spatial frequency is found by taking the partial derivative of the phase with respect to y
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Figure 14. Schematic diagram of the receiver process for a single point scatterer.

iGag78J. This results in

krecv(x=to,Y) = ip +y2

kto (6.2)

Thus for a given receiver distance the maximum received frequency is a monotonically increasing function of
length of the receiver line.

When sampling the diffracted projection with a constant number of points, N, there is a tradeoff between the
sampling interval and the length of the receiver line. If, for example, the sampling interval is increased then more
of the high frequency scattering information will be measured but the Nyquist rate will be lowered. By balancing
the effect of sampling interval and receiver length it is possible to derive an estimate for the optimum sampling
interval, T, as a function of the receiver's field of view, a, or

z 2a
XM tanB

Setting the Nyquist rate equal to equation (6.2) results in

(6.4)

T 64a2+1+1 (6.4)
X 8

Figure 15 shows the effect of varying the receiver sampling interval. The reconstructions shown are for a
cylinder of radius 10X and a refractive index of 1.01. The optimum sampling interval as predicted by equation
(6.3) is 1.3X.
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Figure 15. The effect of a finite receiver window. Optimum sampling interval is predicted by equation (6.4) as
1.3X. The receiver line was 100X from the object and was sampled at 64 positions. (a) Sampling inter-
val is .5X, (b) 1.OX, (c) 1.5X, (d) 2.OX.
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Figure 15. The effect of a finite receiver window. Optimum sampling interval is predicted by equation (6.4) as 
1.3X. The receiver line was 100X from the object and was sampled at 64 positions, (a) Sampling inter­ 
val is .5X, (b) l.OX, (c) 1.5X, (d) 2.0X.
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7. Conclusions

In this paper we have presented an overview of the state of diffraction tomography. The most severe limitation is
due to the Born and Rytov approximations used to derive the forward scattering equations. In order to circum-
vent this limitation it will be necessary to derive better approximations to the field. One possibility is to use the
higher order Born and Rytov approximations [Ish78].

We have also discussed two formulations of the diffraction tomography algorithm. These involve differences in
the choice of incident fields and computations needed to perform the inversion.

We have also shown comparisons of reconstructions using interpolation and Devaney's backpropagation algo-
rithm. The most significant difference was the large amount of time required to perform the reconstructions.
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