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ABSTRACT 
This paper describes several higher order models 

for the fields scattered by an object and the computa- 
tional techniques involved. The Born and the Rytov 
approximations are easily extended to  include higher 
order terms but like most series their range of conver- 
gence is limited. Another technique to  be described is 
based on algebraic techniques and can be shown t o  
always converge. Unfortunately, numerical instabilities 
limit this approach to  objects with a refractive index 
change of less than 20-30%. This paper will describe 
numerical approaches for each of these higher order 
models It reports the region of convergence for the Born 
and Rytov series and objects t h a t  lead to  stable solu- 
tions for the algebraic approach. 

1. INTRODUCTION 
To da te  the success of ultrasound (and 

microwaves) for quantitative medical imaging has been 
severly limited by the approximations needed to  derive 
a reconstruction procedure. Two  techniques have been 
used to reconstruct cross sectional images of an object 
from the scattered ultrasonic fields. B-scan imaging has 
certainly had the greater clinical success and generates 
a n  image of the object’s reflectivity distribution by 
assuming t h a t  the refractive index is constant. As the 
refractive index (and thus the object’s reflectivity) 
increases there is first geometric distortion and then 
severe artifacts due to  multiple scattering. 

Diffraction tomography provides a more quantita- 
tive approach t o  ultrasound imaging. It was first 
developed by Wolf ‘201 and then applied to  ultrasound 
by Mueller , 14 ‘ .  

First order diffraction tomography is based on a n  
approximate solution to  the wave equation. For the 
purposes of this paper we assume a wave equation of 
the form 

( m - k o 2 ) u ( 7 )  = -o(F+)u(7) (1) 

where k, is the average wavenumber of the media and 
is related to  the average wavelength, 1, of the field by 
k,=2:/i. The complex amplitude of the field a t  posi- 
tion 7=(x ,y)  is denoted byou(F)  and finally the object 
function is written o(7)=ko‘  n2(7)-1 where n ( 7 )  is the 
(complex) refractive index change of the object I10.121. 
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The differential equation is easily converted to the 

u,(7) = J ius(7‘)+.l0( 7)]o(7’)g(7-FFf)d7’  (2) 

where us(7)  is called the scattered field, u o ( 7 )  is the  
incident field and satisfies the equation 

following integral equation 

(~’2+ko’)uo(7)  = 0. (3) 
Finally g(7-F’) is the Green‘s function. It represents 
the solution of the wave equation for a point distur- 
bance or the equation 1121 

( n - k o 2 ) g ( 7 )  = ++). (4) 

The conventional approach to  solve for the unk- 
nown object is to  use one of two approximations in 
equation (2) so tha t  the integral equation can be 
inverted. These two approximations are  known as the 
Born and the Rytov approximations and both assume 
t h a t  the incident field is not significantly altered inside 
the object. 

The Born approximation is realized by assuming 
tha t  u o t u , ~ u o  inside the integral. An approximate 
expression for the scattered field is 

~ ~ ( 7 )  z fuo(7)o(7’)g(7i-’)d7’  (5) 

and can be readily solved using the Fourier Slice 
Theorem as  described in : I O j  17, 4,  14, 111. 

The Rytov approximation, on the other hand,  is 
found by writing the field a s  

( 6 )  
>o(F-)+7,(F-) = e’’(’) = e 

where uo(7)=e”0(’1. The scattered field is then 
expressed as 

U ~ ( ~ ) < . J ~ ( F + )  = Jg(7-F+’)uo(7’).(T, ~s(7’))2_to(7’),d7‘. ( 7 )  

The Rytov approximation is then made by assuming 
tha t  the term in brackets above can be approximated 
by 

(T(.Js(7))’b(7’) O ( 7 ) .  ( 8 )  

uo(F)c ~ ~ ( 7 )  Jg(7-F”’)uo(T’)o(7’)d7’ (9) 

The scattered field is now written 

and using the Fourier Slice Theorem this equation can 
be easily inverted to  find a n  estimate for the object. 

The Born and the Rytov approximation assume 
that  the scattered field. U,, is small compared to the 
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incident, uo. These approximations severely limit the 
types of objects tha t  can be successfully imaged. As 
shown in ‘16, 2,  only objects with a product of radius 
(in wavelengths) and the change in refractive index, 
n-1, less then 0.2 can be successfully imaged with the 
Born. While the Rytov approximation limits good 
reconstructions to objects with a refractive index 
change of less than a few percent. 

The remainder of this paper will investigate two 
different iterative techniques to better model the scat- 
tered fields. They can be briefly described as  a fixed 
point method, where each estimate is assumed better 
then the previous and is used t o  calculate an even 
better estimate, and a n  algebraic approach. where the 
wave equation is written as a matrix equation and 
linear algebra techniques a re  used t o  solve it. LVith a 
better understanding of these techniques it is then pos- 
sible to derive better reconstruction techniques. 

Two other approaches to  generate better recon- 
structions will not be presented here. Ray  tracing 
assumes geometric optics holds and solves a sparse 
matrix equation. -4s reported in 111 this technique has 
problems with refractive indices greater than  10%. In 
addition a second technique based on Generalized 
Radon Transforms has been presented by Beylkin 3 
and will not be discussed here. 

2. FIXED POINT METHODS 
One way to solve a n  equation of the form 

is to  pick a value, x,,, and to assume tha t  

is closer to  the correct answer then the original guess. 
This iterative procedure 

x,+1 = f(x,) (12) 
can then be repeated until the answer is as exact as 
necessary. This procedure is diagramed in Figure 1 .  

It can be shown t h a t  the procedure m i l l  always 
converge is there exists a region a G < b  where 

I fyx)I < 1 (13) 
and an initial guess, xo, can be made that  falls within 
this region j17, 18,. If this rondition can not be met 
then the iteration series will probably diverge. 

The technique can be easily applied to  the wave 
equation, (2). For the Born approximation the first 
iteration is given by 

U (7) = 1 uo( 7’)o( 7’) g (7-FF’)d 7’ (14) 
and higher order t e r m  are  written 

uI ( 7) = s [U,, ( 7‘) +u I (7’) ] O( 7’)g [ 7 4 ‘ ) d 7 ’  [ 1 5 )  
Rewriting this equation so t h a t  

U‘-’ ( 7) = s U’( 7 ’ )o  ( 7’)g ( 7-FF‘)dF’ (16) 

and 
I 

q(7) = 2: u J ( 7 )  
J = l  

/ 
/ 

/ 
/ 

/ 
/ 

/ 
1 

a xo X I  x2 1 3  b 

Figure 1 .  From a n  initial guess, xo, a better estimate 
for the solution of x=f(x) is found by iterating 
XI + I  = f(  XI ). 

it is easy to  see t h a t  the fixed point technique accu- 
rately models what is known as the multiple scattering 
approach. 

The same technique also applies to  the Rytov 
approximation. The  Rytov series can be written as  161 

1 
C l  . 3  ----- 1g(7-F4’)uo[7’) (Tf I~ l (7) )* ia (7’ )~dF+’  (18) 

U O ( 7 )  

where = 0. 

T o  implement these fixed point techniques on a 
digital computer a number of “tricks” are  needed t o  
quickly compute each iteration. Each of these tech- 
niques will be briefly mentioned and the reader is 
referred t o  [171 for more of the implementation details. 

Certainly the most significant implementation 
detail is to  realize t h a t  the integrals in (15) and (18) 
represent a convolution. Because of thi5 each iteration 
is best computed in the frequency domain. This is rela- 
tively straightforward as  long as each matrix is ade- 
quately zero padded so t h a t  convolutions are aperiodic 
instead of circular. Even with the appropriate zero 
padding it is possible to  reduce the number of opera- 
tions to  compute a 128x128 matrix by a factor of 600. 
With a careful implementation we were able to  compute 
each iteration of a 128x128 matrix in one to  two 
seconds on a Floatin.. Point Svstems hP120B with 64K 
words of memory. 

A second problem is presented by a singularity in  
the Green’s function a t  the origin. This turns out not 
to  be a problem if the  function t h a t  is convolved with 
the Green’s function is smooth within each pixel. With 
this assumption it is possible to  compute the average 
value of the pixel when the Green’s function is con- 
volved with a smooth function. 
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Finally the derivative required as  par t  of the Rytov 
series requires careful attention. The obvious way to  
compute the Tz operation is to perform it in the fre- 
quency domain. Cnfortunately this technique does not 
work for this application because of the zero padding 
needed for the F F T  convolution. Adding zeroes to  the 
d a t a  creates discontinuities a t  the edge of the array 
tha t  lead to large errors. In our experience a better 
technique is to  calculate a four point ( two in each direc- 
tion) derivative a t  each point. While this is less accu- 
rate from a signal processing point of view it does gen- 
erate  less artifacts. 

Two questions are most important when discussing 
a n  iterative technique. First does it converge t o  the 
correct answer and secondly under what conditions does 
this happen? The first question is easily answered by 
comparing the iterative answer to  the exact field as  cal- 
culated hy solving the boundary conditions 121. The 
convergence of the series for one object is demonstrated 
in Figure 2. 

Describing conditions for convergence is more 
difficult. For a one dimensional Taylor series the region 
of convergence can usually be described as  a region 
around the origin. An object used to  study the conver- 
gence of the Born or  Rytov series is decidedly more 
complex and can require a n  infinite number of parame- 
ters to  describe it. For this study we limited our 
objects to  those tha t  are a function of two parameters, 
in this case the radius and  refractive index of a 
cylinder. 

For each object the decision on convergence is 
made by calculating a number of terms and noting 
whether the magnitude of the change in field is increas- 
ing or decreasing. Empirically it was determined t h a t  it 
was only necessary t o  look for a monotonic sequence of 
four, in the Born case, and six, in the Rytov case, terms 
to  establish convergence of divergence. 

1 iteration 

, -  ' --I 

Figure 2. This figure shows (upper left) the exact scat- 
tered field from a cylinder of radius 2X and refractive 
index 1.10. The other plots show the Born iterated field 
after 1, 10 and 100 terms. In each case the real par t  of 
the field is a solid line and the imaginary par t  is shown 
as  a dashed line. 

The results from this study of the Born and the 
Rytov convergence are shown in Figure 3. As might be 
expected from the behavior of the first order approxi- 
mations both series converge for small objects with 
small refractive index changes but as  the object's radius 
and refractive index increase each series s ta r t s  to  
diverge. 

The series convergence was also studied in the 
presense of attenuation. Figure 4 shows the region of 
convergence when the object is attenuating. As 
expected the region of convergence gets smaller as  the 
attenuation increases. 

On the other hand i f  the object and the media in 
which it is embedded are both at tenuat ing t,hen the 
average attenuation can be incorporated into the 
wavenumber, k,. Now the Green's function represents 
the field scattered by a point disturbance in a n  
attenuating media and the resulting convergence is 
shown in Figure 5. The region of convergence gets 
larger now because the attenuating media reduces the 
effect of multiple scattering. In both cases the results 
using the Rytov approximation are  similar. 

'-7 

I I.". . . 
I OIW =.an I - 3 I I.IW I se.* 3 w a .  1 IW v 0.1- 

R ~ O I U I  (Y.uLinoini1 

Figure 3. 
Rytov series is compared here. 

The region of convergence of the Born and 

Figure 4. The region of convergence for the Born series 
is shown here in the preserise of an at tenuat ing object. 
Attenuation is plotted in terms of nepers ( 1  neper 
represents the attenuation of the field by 63% per 
wavelength) . 
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Figure 5. The region of convergence for the Born series / 
is shown here when the average at tenuat ion of the 
object and the surrounding media is included in the 
model. Figure 6. By projecting the initial solution x1 onto the 

AB hyperplane a better solution can be found. 

3. AN ALGEBRAIC APPROACH 
.A second approach to higher order diffraction 

tomography was first proposed by Johnson .7 ,  19. 8 and  
is based on linear algebra. By appropriately sampling 
the original integral equation it is possible t o  write a 
matrix equation. A solution t o  the matrix equation is 
then found by considering each row of the matrix to  
represent the equation for a hyperplane and then itera- 
tively projecting a n  initial guess onto each hyperplane. 

In the algebraic approach the object and the field 
are sampled on an NxN square grid and then assigned 
as  elements of a one dimensional N2xN' element vector. 
Doing this the integral equations of (2) can be rewritten 
as 

U, = AuOSAU, (19) 
where the A matrix has Sz elements on a side and 
incorporates the Green's function and the object. The  
equation can then be formulated as  a s tandard matrix 
equation or 

(A4)u9  = Au,. (20) 
Iiere both the A matrix and the vector uo are  known so 
we will consider the more general case of Ax=b. 

A t  this point it is important to realize tha t  it is 
not necessary to  calculate the inverse of A; but only 
one particular x t h a t  solves the equation. This distinc- 
tion is important because for a small (by medical stan- 
dards) 61x64 image the A matrix has over 16 million 
non-zero entries. 

A very successful solution to  this problem -5 is to  
consider the solution to  be a t  the intersection of all the 
hyperplanes. .4n initial guess is then refined by finding 
the nearest point on one of the hyperplanes. This is 
done using the formula 

where a,  is the i th  row of the A matrix, b, is the i t h  ele- 
ment and < ~ > represents a dot product. This process 
is diagramed in Figure 6 and can be seen to never 
diverge because the result of each projection, x2, is 
always closer to  the intersection point than any other 
point on the line CD. 

Certainly the biggest advantage of the Kaczmarz 
approach to  solving the matrix equation is that  only 
one row of the A must be present a t  a time. Since each 
row of the A matrix is relatively inexpensive to  coni- 
pute it is not necessary to store the entire matrix. 
Doing this we were able to  implement a routine to pro- 
ject onto all of 64x64 hyperplanes in one C P U  second 
on a Cyber 20.5 super-computer (real cost 21 cents). 

The theory predicts t h a t  this method will never 
diverge and this is confirmed in numerical simulation. 
Cnfortunately there is no guarantee tha t  the method 
will converge in a reasonable ra te  and this leads to 
problems. The plots of Figure 7 shows the scattered 
fields after 32 iterations. While the exact limits of the 
Kaczmarz approach are difficult to define it is possible 
Lo say that  the Kaczmarz algorithm seems to converge 
for refractive indices up  to  1:4 when a sampling interval 
of . I \  is used and 1.2 with a sampling interval of .231. 

4. CONCLUSIONS 
In  this paper we have presented two different tech- 

niques for modeling the fields scattered by a n  object. 
The fixed point method can be used to better the Born 
and Rytov approximations but like the first order 
approximations the series have a small region of appli- 
cability. A second approach based on linear algebra 
techniques was also studied but its convergence proper- 
ties are difficult to  define. 

Both approaches have been used to develop recon- 
struction schemes. Workers in high energy physics ,9. 
13. 1.5' have presented iterative techniques but  they are 
all based on the Born series. This has serious 
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Figure 8. An ideal first order reconstruction is shown 
Y 

for a n  object with radius 31 and refractive index 1.083. 
The Born series will converge for this object but if 

Figure 7.  The field calculated by the algebraic either the refractive index or the radius is increased 
approach (top) is compared to the  exact field (bottom). then the series will diverge. 
A cylinder with a refractive index of 1.3 and a radius of 
.4X (left) vs. 1A (right) is modeled here. 

. ,  , .  ~, . .  , .  . .  
.I 0 

1 2  - I  I P 
-1 P 

ramifications because the region of convergence of the 
Born series is not much greater than where the first 
Born approximation produces good results. This is 
shown in Figure 8 where a first order Born reconstruc- 
tion is shown for a n  object tha t  is on the boundary of 
convergence for the Born series. Thus if a first order 
reconstruction is worse then this one then a n  iterative 
technique based on the Born series will not converge. 
Up to the limit imposed by the Born series a n  iterative 
technique should be more accurate. 

Reconstruction techniques based on the algebraic 
approach are also difficult because both the field inside 
the object and the object itself a re  unknown. Thus  the 
matrix equation becomes non-linear and the computa- 
tions are much more difficult 8 .  
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