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Microwave Imaging with First Order 
Diffraction Tomography 

Malcolm Slaney,* Mani Azimi,** Avinash C. Kak,*** and 
Lawrence E. Larsen**** 

Tomographic imaging with microwave radiation is discussed from the perspective of re­
lating the Fourier transformation of projection views (both bistatic and monostatic) to 
samples of the two-dimensional Fourier transformation of the scattering object. The 
limitations of the first order Born and Rytov approximations in scalar diffraction to­
mography are explored. The role of a complex index of refraction for the coupling medi­
um and/ or target is emphasized. 

1. INTRODUCTION 

During the past ten years the medical community has in­
creasingly called on X-Ray computerized tomography (CT) 
to help make its diagnostic images. With this increased in­
terest has also come an awareness of the dangers of using 
ionizing radiation and this, for example, has made X-Ray 
CT unsuitable for use in mass screening for cancer detection 
in the female breast. As a result, in recent years much at­
tention has been given to imaging with alternative forms of 
energy such as low-level microwaves, ultrasound and NMR 
(nuclear-magnetic-resonance). Ultrasonic B-scan imaging 
has already found widespread clinical applications; however 
it lacks the quantitative aspects of ultrasonic computed to­
mography, which in turn can only be applied to soft tissue 
structures such as the female breast. 

A necessary attribute of any form of radiation used for 
biological imaging is that it be possible to differentiate be­
tween different tissues on the basis of local propagation 
parameters. It has already been demonstrated by Larsen and 
Jacobi in a companion paper elsewhere in this volume and 
in reference [1] that this condition is satisfied by microwave 
radiation with the relative dielectric constant and the electric 
loss factor in the 1-10 GHz range. When used for tomogra­
phy, a distinct feature of microwaves is that they allow one 
to reconstruct cross-sectional images of the molecular 
properties of the object. The dielectric properties of the 
water molecule dominate the interaction of microwaves and 
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biological systems [2], [3] and thus by interrogating the 
object with microwaves it is possible to image, for example, 
the state of hydration of an object. 

The past interest in microwave imagery has focused pri­
marily on either the holographic, or the pulse-echo modes. 
In the holographic mode, most attention has focussed on 
conducting targets in air, such as that described elsewhere 
in this volume by Farhat. There are exceptions as repre­
sented by the work of Yue et al. [4] wherein low-dielectric­
constant slabs embedded in earth were imaged. The ap­
proach of Yue et al. is not applicable to the cross-sectional 
imaging of complicated three-dimensional objects, because 
of the underlying assumptions made regarding the avail­
ability of a priori information about the "propagators" in a 

. volume cell of the object. Another example of microwave 
imaging with holography is the work of Gregoris and Izuka 
[5], wherein conductors and planar dielectric voids were 
holographically imaged inside flat dielectric layers. A re­
flection from the air-dielectric interface provided the ref­
erence beam. Again this work is not particularly relevant for 
microwave imaging of biosystems since many important 
biological constituents are dielectrics dominated by water. 
When used in the pulse-echo mode, microwaves again pos­
sess limited usefulness due to the requirement that the 
object be in the far field of the transmit/receive aperture, 
although the video pulse technique, described by Kim & 
Webster elsewhere in the volume mitigate this objection to 
some extent. 

Tomography represents an attractive alternative to both 
holography and pulse-echo for cross-sectional (or three­
dimensional) reconstruction of geometrically complicated 
biosystems, but there is a fundamental difference between 
tomographic imaging with x-rays and microwaves. X-rays, 
being non-diffracting, travel in straight lines, and therefore, 
the transmission data measures the line integral of some 
object parameter along straight lines. This makes it possible 
to apply the Fourier-slice theorem [6], which says that the 
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Fig. 1. The Fourier Diffraction Theorem. 

Fourier transform of a projection is equal to a slice of the 
two-dimensional Fourier transform of the object. 

On the other hand, when microwaves are used for tomo­
graphic imaging, the energy often does not propagate along 
straight lines. When the object inhomogeneities are large 
compared to a wavelength, energy propagation is charac­
terized by refraction and multipath effects. Moderate 
amounts of ray bending induced by refraction can be taken 
into account by combining algebraic reconstruction algo­
rithms [7] with digital ray tracing and ray linking algorithms 

[8]. 
When the object inhomogeneities become comparable in 

size to a wavelength, it is not even appropriate to talk about 
propagation along lines or rays, and energy transmission 
must be discussed in terms of wavefronts and fields scattered 
by the inhomogeneities. Polarization or vector fields must 
also be considered in this circumstance as discussed in a 
review article on inverse scattering by Boerner and Chan 
elsewhere in this volume. A tutorial presentation of polar­
ization description and polarimetric imaging is in a com­
panion paper by Larsen & Jacobi elsewhere in this volume. 
When consideration is limited to scalar fields, it has been 

v 
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shown [9], [10], [11], [12] that with certain approximations 
a Fourier-slice like theorem can be formulated. In [13] this 
theorem was called the Fourier Diffraction Projection 
Theorem. It may simply be stated as follows: 

When an object is illuminated with a plane wave as 
shown in Fig. 1, the Fourier transform of the forward 
scattered fields measured on a line perpendicular to 
the direction of propagation of the wave (line TT in 
Fig. 1) gives the values of the 2-D Fourier transform of 
the object along a circular arc as shown in the figure. 

In Section 2 we will review the proof of this theorem. In our 
review, we will show how the derivation of the theorem 
points to a FFT-based implementation of higher order Born 
and Rytov algorithms, which are currently under develop­
ment by us and other researchers. The Fourier Diffraction 
Projection Theorem is valid only when the inhomogeneities 
in the object are weakly scattering. 

According to the Fourier Diffraction Projection Theorem, 
by illuminating an object from many different directions and 
measuring the diffracted data, one can in principle fill up the 
Fourier space with the samples of the Fourier transform of 
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the object over an ensemble of circular arcs and then 
reconstruct the object by Fourier inversion. 

The above theorem forms the basis of first order diffrac­
tion tomography. The work of Mueller et iii. [ 11] was initially 
responsible for focusing the attention of many researchers 
on this approach to cross-sectional and three-dimensional 
imaging, although from a purely scientific standpoint the 
technique owes its origins to the now classic paper by Wolf 
[12], and a subsequent article by Iwata and Nagata [14]. 

This chapter will review the theory, implementation and 
some of the mathematical limitations of diffraction tomog­
raphy with microwaves. As will be shown in the review of 
Section 2, the algorithms for diffraction tomography are 
derived from the classical wave equation. The wave equation 
is a non-linear differential equation that relates an object 
to the surrounding fields. To estimate a cross-sectional iamge 
of an object, it is necessary to find a linear solution to the 
wave equation and then to invert this relation between the 
object and the scattered field. The necessary approximations 
for this purpose limit the range of objects that can be suc­
cessfully imaged to those that do not severely change the 
incident field or have a small refractive index gradient 
compared to the surrounding media. 

In Section 3 we will look at several different methods to 
collect the scattered data and then invert it to find an esti­
mate of the object. To generate a good estimate of the object 
it is necessary to combine the information from a number 
of different fields and this can be done with several different 
approaches. Then a simple algorithm based on the Fourier 
Diffraction Projection Theorem can be used to invert the 
scattered data. 

Finally in Section 4 we will show the effects of these ap­
proximations by calculating the scattered fields for computer 
simulated objects using a number of different approaches. 
For cylindrical objects with a single refractive index it is 
possible to use the boundary conditions to solve for the exact 
scattered field. These simulations will establish the first 
order Born approximation to be valid for objects where the 
product of the change in refractive index and the diameter 
is less than 0.35;\ and the first order Rytov approximation 
for changes in the refractive index of less than a few percent, 
with essentially no constraint on the object size. The scat­
tered fields from objects that consist of more than one cy­
lindrical object will then be calculated using Twersky's 
multiple scattering theory. These simulations will show that 
even when each component of the object satisfies the Born 
approximation the multiple scattering can degrade the re­
construction. Finally simulations will show that when at­
tenuation is included in the model the high frequency in­
formation about the object is lost. 

2. THE FOURIER DIFFRACTION 
THEOREM 

Diffraction tomography is based on a linear solution to the 
wave equation. The wave equation relates an object and the 
scattered field and by linearizing it we can find an estimate 

of a cross section of the object based on the scattered field. 
The approximations used in the linearization process are 
crucial to the success of diffraction tomography and we will 
be careful to highlight the assumptions. 

2.1 The Wave Equation 

In a homogeneous medium, electromagnetic waves, lf;(r), 
satisfy a homogeneous wave equation of the form 

(\72 + ko2)1f;(r) = o, (1) 

where the wave number, k0, represents the spatial frequency 
of the plane wave and is a function of the wavelength, A., or 
ko = 27r/A. It is easy to verify that a solution to Eq. (1) is 
given by a plane wave 

if(r) = e-iko·r (2) 

where ko = (kx,ky) is the wave vector of the wave and satisfies 
the relation lkol = ko. For imaging, an inhomogeneous me­
dium is of interest, so the more general form of the wave 
equation is written as 

(\72 + k2(r) )1/;(r) = o. (3) 

For electromagnetic fields, if the effects of polarization are 
ignored, k(r) can be considered to be a scalar function rep­
resenting the refractive index of the medium. We then 
write 

k(r) = kon(r) = ko[l + no(r)], (4) 

where k0 now represents the average wavenumber of the 
media, and n(r) is the refractive index as given by 

n(r) = . I µ(r)E(r) . 
V µoEo 

(5) 

The parameter n0(r) represents the deviation from the av­
erage of the refractive index. In general it will be assumed 
that the object of interest has finite support so n0(r) is zero 
outside the object. Here we have used µ and E to represent 
the magnetic permeability and dielectric constant and the 
subscript zero to indicate their average values. 

If the second order terms in n0 (i.e., n0 « 1) are ignored we 
find 

(\72 + k0
2)lf;(r) = -2ko2no(r)lf;(r) = -lf;(r)O(r), (6) 

where O(r) = 2k0
2n0(r) is usually called the object func­

tion. 
Note that Eq. (6) is a scalar wave propagation equation. 

Its use implies that there is no depolarization as the elec­
tromagnetic wave propagates through the medium. It is 
known [15] that the depolarization effects can be ignored 
only if the wavelength is much smaller than the correlation 
size of the inhomogeneities in the object. If this condition is 
not satisfied, then strictly speaking the following vector wave 
propagation equation must be used: 

(7) 
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where E is the electric field vector. A vector theory for dif­
fraction tomography based on this equation has yet to be 
developed. 

In addition 1/;0Cr), the incident field, may be defined as 

(\72 + ko2)1/;o(r) = 0. (8) 

Thus 1/;0 (r) represents the source field or the field present 
without any object inhomogeneities. The total field then is 
expressed as the sum of the incident field and the scattered 
field 

1/;(r) = fo(r) + l/ls(r), (9) 

with f 8 satisfying the wave equation 

(\72 + ko2)f s(r) = -f(r)O(r) (10) 

which is obtained by substituting Eqs. (8) and (9) in Eq. (6). 
This form of the wave equation will be used in the work to 
follow. 

The scalar Helmholtz equation (10) cannot be solved for 
f s(r) directly but a solution can be written in terms of a 
Green's function [16]. The Green's function, which is a so­
lution of the differential equation 

(\72 + ko2)G(rlr') = -o(r - n, (11) 

is written in 3-space as 

G(
•

1

.,) _ eikoR 
rr ---, 

47rR 
(12) 

with 

R= li:-i:'I· (13) 

In two dimensions, the solution of (11) is written in terms of 
a zero-order Hankel function of the first kind, and can be 
expressed as 

G(rlr') = i Ho(1l(koR). 
4 

(14) 

In both cases the Green's function, G(i:lf'), is only a function 
of the difference r - r' so the argument of the Green's func­
tion will often be represented as simply G(r - r'). Because 
the object function in Eq. (11) represents a point inhomo­
geneity, the Green's function can be considered to represent 
the field resulting from a single point scatterer. 

Since Eq. (11) represents the radiation from a two-di­
mensional impulse source, the total radiation from all 
sources on the right hand side of (10) must be given by the 
following superposition: 

fs(f) = f G(r - r')O(r')f(r')df'. (15) 

In general, it is impossible to solve Eq. (15) for the scattered 
field, so approximations must be made. Two types of ap­
proximations will be considered: the Born and the Rytov. 

2.2 The Born Approximation 

The Born approximation is the simpler of the two ap­
proaches. Consider the total field, 1/;(r), expressed as the sum 

of the incident field, f 0(r), and a small perturbation, fs(f), 
as in Eq. (9). The integral of Eq. (15) is now written as 

fs(r) = f G(r - r')O(r')fo(r')dr' 
+ f G(r - r')O(r')f8 (r')dr'. (16) 

If the scattered field, f 8 (f), is small compared to fo(i:), the 
effects of the second integral can be ignored to arrive at the 
approximation 

f s(i:) = f G(i: - r')O(r')fo(r')dr'. (17) 

This constitutes the first-order Born approximation. For a 
moment, let's denote the scattered fields obtained in this 
manner by f 8(1l(r). If one wished to compute f 8 (

2l(r) which 
represents the second order approximation to the scattered 
fields, that could be accomplished by substituting fo + f 5(l) 
for fo in the right hand side of Eq. (17), yielding 

fs(2l(r) = f G(i: - r')O(r'}[foW) + fs<ll(r')]dr'. (18) 

In general, we may write 

fs(i+ll(r) = f G(r - r')O(r'}[fo(r') + fs<il(r')]dr' (19) 

for the higher (i + l)'th approximation to the scattered fields 
in terms of the i'th solution. Since the science of recon­
structing objects with higher order approximations is not 
fully developed, this particular point will not be pursued any 
further and the first order scattered fields will be represented 
by f 8 (i.e., without the superscript). 

Note again that the first-order Born approximation is 
valid only when the magnitude of the scattered field, 

fs(r) = f(i:} - fo(r), (20) 

is smaller than that of the incident field, f 0• If the object is 
a cylinder of constant refractive index it is possible to express 
this condition as a function of the size of the object (radius 
=a) and the refractive index. Let the incident wave, fo(i:), 
be a plane wave propagating in the direction of the unit 
vector, k0. For a large object, the field inside the object will 
not be given by 

f(r) = f obiect(r) ~ Aeiko·r, (21) 

but instead will be a function of the change in refractive 
index, n0• Along a ray through the center of the cylinder and 
parallel to the direction of propagation of the incident plane 
wave, the field inside the object becomes a slow (or fast) 
version of the incident wave or 

f object(i:) = Aei(l+ni)ko·r. (22) 

Since the wave is propagating through the object, the 
phase difference between the incident field and the field 
inside the object is approximately equal to the integral 
Lhrough the object of the change in refractive index. 
Therefore, for a cylinder the total phase shift through the 
object is approximately 

a 
Phase Change = 47rn0 );: , (23) 

where A. is the wavelength of the incident wave. For the 
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first-order Born approximation to be valid, a necessary 
condition is that the change in phase between the incident 
field and the wave propagating through the object be less 
than 1r. This condition can be expressed mathematically 
as 

(24) 

2.3 The Rytov Approximation 

The Rytov approximation is valid under slightly less severe 
restrictions. It is derived by considering the total field to be 
represented as [15] 

if;(r) = e'W>, 

and rewriting the wave Eq. (1) as 

(V'¢)2 + 72¢ + k0
2 = -2ko2no. 

(25) 

(26) 

Expressing the total phase, ¢, as the sum of the incident 
phase function <Po and the scattered complex phase <Ps or 

¢(r) = <Po(r) + <Ps(r), (27) 

where 

(28) 

we find that 

(V' ¢o)2 + 2V' <Po·Y' <Ps + (V' <Ps)2 + Y'2¢o + V'2<Ps + ko2(1 + 2no) = 0. 
(29) 

As in the Born approximation, it is possible to set the zero 
perturbation equation equal to zero to find 

2V'¢o·Y'<Ps + V'2¢s = -(Y'<Ps)2 - 2ko2n0• (30) 

This equation is inhomogeneous and nonlinear but can 
be linearized by considering the following relation 

Y'2( fo<Ps) = Y'21/;o·<Ps + 2V'if;o·Y' <Ps + fo Y'2¢s· (31) 

Recalling that 

(32) 

we find 

21/;oY'<Po·Y'<Ps + foY'2<Ps = Y'2(1/;o<Ps) + ko2fo<Ps· (33) 

This result can be substituted into Eq. (30) to find 

(V'2 + ko2)1/;o<Ps = -if;of (V' <Ps)2 + 2ko2nol · (34) 

As before, the solution to this differential equation can again 
be expressed as an integral equation. This becomes 

fo<Ps = f G(r - r')if;0 [(Y'<Ps) 2 + 2k0
2no]dr', (35) 

Jv' 

where the Green's function is given by (14). 
Under the Rytov approximation, it is assumed that the 

term in brackets in the above equation can be approximated 
by 

(36) 

When this is done the first-order Rytov approximation to 
the scattered phase, ¢" becomes 

<Ps(r) ~ ,,, 2• f G(r - r')if;o(r)k0
2nodr'. (37) 

'l'o(r) Jv, 

Substituting the expression for f s given in Eq. (17) yields 

,i.. (r) ~ fs(f) . 
'l's if;o(f) (38) 

It is important to note that, in spite of the similarity of the 
Born (17) and the Rytov (37) solutions, the approximations 
are quite different. As will be seen later, the Born approxi­
mation produces a better estimate of the scattered fields for 
objects small in size with large deviations in the refractive 
index. On the other hand, the Rytov approximation gives a 
more accurate estimate of the scattered field for large sized 
objects with small deviations in refractive index. 

When the object is small and the refractive index deviates 
only slightly from the surrounding media, it is possible to 
show that the Born and the Rytov approximations produce 
the same results. Consider our definition of the scattered 
phase in Eq. (25) and (27). Expanding the scattered phase 
in the exponential with the Rytov solution to the scattered 
field, it is seen 

(39) 

For very small 1/;8 (r), the first exponential can be written in 
terms of the power series expansion to find 

if;(r) ~ fo(r)[l + exp(-jko·r)fs(r)] = fo(r) + fsCr). (40) 

Thus when the magnitude of the scattered field is very small 
the Rytov approximation simplifies to the Born approxi­
mation. 

The Rytov approximation is valid under a less restrictive 
set of conditions than the Born approximation [17], [18]. In 
deriving the Rytov approximation, the assumption was made 
that 

(V' ¢5 )
2 + 2ko2n0 ~ 2ko2no. 

Clearly this is true only when 

'- (V' <Ps)2 
no:>/--. 

ko2 

(41) 

(42) 

This can be justified by observing that to a first approxi­
mation the scattered phase, <Ps, is linearly dependent on n0 
[ 17]. If n0 is small, then 

(43) 

will be even smaller and therefore the first term in Eq. (41) 
above can be safely ignored. Unlike the Born approxima­
tion, the size of the object is not a factor in the Rytov ap­
proximation. The term V' <Ps is the change in the complex 
scattered phase per unit distance and by substituting k0 = 

27r/A we find a necessary condition for the validity of the 
Rytov approximation is 

(44) 
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Fig. 2. A typical diffraction tomography experiment. 

Therefore in the Rytov approximation, it is the change in 
scattered phase, </>8 , over one wavelength that is important 
and not the total phase. Thus, because of the V' operator the 
Rytov approximation is valid when the phase change over 
a single wavelength is small. 

2.4 The Scattered Fields 

The Fourier Diffraction Theorem relates the Fourier 
transform of the scattered field, the diffracted projection, 
to the Fourier transform of the object along a circular arc. 
While a number of researchers have derived this theory [11], 
[9], [13], [19] we would like to propose a system theoretic 
analysis of this result which is fundamental to first order 
diffraction tomography. This approach is superior not only 
because it allows the scattering process to be visualized in 
the Fourier domain but also because it points to efficient 
FFT-based computer implementations of higher order Born 
and Rytov algorithms currently under development. Since 
it appears that the higher order algorithms will be more 
computationally intensive, any savings in the computing 
effort involved is potentially important. 

Consider the effect of a single plane wave incident on an 
object. The forward scattered field will be measured at a 
receiver line as shown in Fig. 2. We will find an expression 
for the field scattered by the object, O(r), by analyzing Eq. 
(17) in the Fourier domain. We will use the plots of Fig. 3 to 
illustrate the transformations that take place. 

The first Born equation for the scattered field (17) can be 

considered as a convolution of the Green's Function, G(r), 
and the product of the object function, O(f), and the incident 
field, fo(f). First we will define the following Fourier 
transform pairs: 

and 

O(f)- O(A), 

G(r)- G(A) 

f(r) -i/;(A), 

where we have used the relationships 

O(A) = f f O(r)e-iA·'dr, 

(45) 

(46) 

A = (a,/3) and (a,{3) being the spatial angular frequencies 
along the x and y directions respectively. 

The integral solution to the wave Eq. (17) can now be 
written in terms of these Fourier transforms 

(47) 

where we have used"*" to represent convolution. When the 
illumination field, f 0, consists of a single plane wave 

fo(r) = eiko·r 

with ko = (kx,ky) satisfying the following relationship 

ko2 = kx2 + ky2 

its Fourier transform is given by 

i/;o(A) = 27ro(A - ko). 

(48) 

(49) 

(50) 
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The delta function causes the convolution of Eq. (47) to 
become a shift in the frequency domain as given by 

(51) 

This convolution is illustrated in Figs. 3a-c for a plane wave 
propagating with direction vector, ko = (O,k0). Figure 3a 
shows the Fourier transform of a single cylinder of radius L\ 
and Fig. 3b is the Fourier transform of the incident field. The 
resulting convolution in the frequency domain (or multi­
plication in the space domain) is shown in Fig. 3c. 

To find the Fourier transform of the Green's function, the 
Fourier transform of Eq. (11) is taken to find 

(-A2 + k02)G(Alr') = -e-iA·r', (52) 

(b) Incident Field 

1638'1 0 

109c?i' 7 

5'+61 JJ 

0 00000 

0 

(d) Green'• Function 

Fig. 3. Two dimensional Fourier representation of the Helmholtz 
equation. (a) The object, (b) the incident field, (d) the Green's 
function, (c) the (space domain) product of the object and the 
incident field obtained by convolving a and band (e) the two di­
mensional Fourier transform of the scattered field obtained by 
multiplication of c and d. 

where A2 = cx2 + (32. Rearranging terms we see that 

-jA-r1 

G(Ajr') = e , (53) 
A2 - ko2 

which has a singularity for all A such that 

A2 = a2 + (32 = ko2. (54) 

In the space domain the two dimensional Green's function, 
Eq. (14), has a singularity at the origin so it is necessary to 
approximate the Green's function by using a two dimen­
sional average of the values of the Green's function near the 
singularity. An approximation to G(A) is shown in Fig. 
3d. 
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/2 /1 

Fig. 4. Integration path in the complex plane for inverting the two 
dimensional Fourier transform of the scattered field. 

The Fourier representation in Eq. (53) is misleading be­
cause both point sources and point sinks are valid solutions 
to Eq. (52). Thus the simple expression ofEq. (53) includes 
the effects of both waves moving toward and waves moving 
away from the point at r'. Later, when we move back from the 
Fourier domain to the space domain, it will be necessary to 
choose the proper Fourier components so that only waves 
traveling away from the point scatterer are retained. 

The effect of the convolution shown in Eq. (17) is a mul­
tiplication in the frequency domain of the shifted object 
function, Eq. (51), and the Green's function, Eq. (53), eval­
uated at 'i' = 0. The scattered field is written as 

l/ls(A) = 27r O(A - ko) . 
A2 - ko2 

(55) 

This result is shown in Fig. 3e for a plane wave propagating 
along the Y-axis. Since the largest frequency domain com­
ponents of the Green's function satisfy Eq. (1), the Fourier 
transform of the scattered field is dominated by a shifted and 
sampled version of the object's Fourier transform. 

We will now derive an expression for the field at the re­
ceiver line. For simplicity it will be assumed that the incident 
field is propagating along the positive y axis or ko = (O,ko). 
The scattered field along the receiver line (x,y = 10) is simply 
the inverse Fourier transform of the field in Eq. (55). This 
is written as 

l/ls(x,y = lo) = _!_2 ff l/ls(A)eiA·fdadf), (56) 
47r 

which, using Eq. (55), can be expressed as 

.1, ( = 1) = 2._ IJ O(a,{3 - ko) "(ax+/)Jo)d df.l (57) 
'l"s x,y o 27r J.. a2 + (32 - ko2 el a /.'· 

We will integrate with respect to {3. For a given a, the in­
tegral has a singularity at 

!31.2 = ± vko2 - a 2 . (58) 

Using contour integration we can close the integration path 
at infinity and evaluate the integral with respect to f3 along 
the path shown in Fig. 4 to find 

i/;8 (x,lo) = f f1(a;lo)ei"xda + f f2(a;lo)ei"xda, (59) 

where 

r 
O(a, vko2 

- a 2 - ko) . ~ (
6

o) 
1 

= eiv Ko--a-10 
j2 vko2 - a2 

and 

r2 = O(a, -v'ko2 - a2 - ko) eiv"ko2-a210. (61) 
-j2 vko2 - a2 

Examining the above pair of equations, it is seen that r 1 
represents the solution in terms of plane waves traveling 
along the positive y axis while r 2 represents plane waves 
traveling in the -y direction. These distinct solutions rep­
resent the two solutions to the wave equation for a point 
discontinuity [see Eq. (53)). In both cases, as a ranges from 
-k0 to k0, r represents the Fourier transform of the object 
along a semicircular arc. 

Since we are interested in the forward traveling waves, 
only the plane waves represented by the r 1 solution are 
valid; and, thus, the scattered field becomes 

l/ls(x,10) = f f1(a;y)ei"xda lo> object (62) 

where we have chosen the value of the square root to lead 
only to outgoing waves. 
Taki~g the Fourier transform of both sides of Eq. (62) we 

find that 

f i/;.(x,y = lo)e-iaxdx = f'(a,lo). (63) 

But since r(x,10) is equal to a phase shifted version of the 
object function, the Fourier transform of the scattered field 
along the line y = lo is related to the Fourier transform of the 
object along a circular arc. The use of the contour integration 
is further justified by noting that only those waves that 
satisfy the relationship 

I 

a2 + (32 = ko2 (64) 

will be propagated. Thus it is safe to ignore all waves not on 
the ko-circle. 

This result is diagramed in Fig. 5. The circular arc repre-
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Fig. 5. Estimate of the two dimensional Fourier transform of the 
object are available along the solid arc for transmission tomog­
raphy and the dashed arc for reflection tomography. 
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· Fig. 6. The Fourier transform of a projection is equal to the two dimensional Fourier transform of the object along a radial line. 

sents the locus of all points (a,/3) such that /3 = ± vko2 - (}'2. 
The solid line shows the outgoing waves for a receiver line 
at y = lo greater than the object. This can be considered 
transmission tomography. Conversely the dashed line in­
dicates the locus of solutions for y = 10 less than the object 
or the reflection tomography case. 

Straight-ray (i.e., X-ray) tomography is based on the 
Fourier Slice Theorem [lOJ, [6] 

The Fourier transform of a parallel projection of an 
image f(x,y) taken at an angle(} gives a slice of the 2-D 
transform, F(w1,w2) subtending an angle (}with the w1 

axis. 

This is diagramed in Fig. 6. 
Equatlon (63) leads us to a similar result for diffraction 

tomography. Recall that a and /3 in Eq. (63) are related 
by 

/3 = vko2 - a 2. (65) 
Thus f'(a), the Fourier transform of the received field, is 
proportional to O(a,/3 - k0), the Fourier transform of the 
object along a circular arc. This result has been called the 
Fourier Diffraction Projection Theorem [13] and is dia­
gramed in Fig. 1. 

We have derived an expression, Eq. (63), that relates the 
scattering by an object to the field received at a line. Within 
the diffraction limit it is possible to invert this relation to 
estimate the object scattering distribution based on the re­
ceived field. 

3. THE RECONSTRUCTION PROCESS 

The best that can be hoped for in any tomographic experi­
ment is to estimate the Fourier transform of the object for 
all frequencies within a disk centered at the origin. For 
objects that do not have any frequency content outside the 
disc, then the reconstruction procedure is perfect. 

There are several different procedures that can be used 
to estimate the object function from the forward scattered 
fields. A single plane wave provides exact information (up 
to a frequency of -)2k0) about the Fourier transform of the 
object along a circular ate. Two of the simplest procedures 
involve changing the orientation and frequency of the inci­
dent plane waves to move the frequency domain arcs to a 
new position. By appropriately choosing an orientation and 
a frequency it is possible to estimate the Fourier transform 
of the object at any given frequency. In addition, it is possible 
to change the radius of the semicircular arc by varying the 
frequency of the incident field and thus generating an esti­
mate of the entire Fourier transform of the object. This 
concept is contained in a companion paper by Farhat else­
where in this volume. 

An important point to notice here is that reflection and 
transmission tomography provide completely different in­
formation about the object (see Fig. 5). A transmission ex­
periment gives information about the object up to a spatial 
frequency of y'2k0. On the other hand, a reflection experi­
ment gives the information for spatial frequencies between 
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Fig. 7. Estimates of the object's two dimensional Fourier transform are available along the circular arcs for plane wave illumination. 

.J2"k0 and 2k0. In principle it should be possible to combine 
the two e~periments and obtain an estimate of the amplitude 
of all the spatial frequencies up to 2ko. 

3.1 Plane Wave Illumination 

The most straightforward data collection procedure consists 
of rotating the object and measuring the scattered field for 
different orientations. Each orientation will produce an es­
timate of the object's Fourier transform along a circular arc 
and these arcs will rotate as the object is rotated. When the 
object is rotated through a full 360 degrees an estimate of the 
object will be available for the entire Fourier disk. 

The coverage for this method is shown in Fig. 7 for a 
simple experiment with 8 projections of 9 samples each. 
Notice that there are two arcs that pass through each point 
of Fourier space. Generally it will be necessary to choose one 
estimate as better. 

On the other hand, if the reflected data is collected by 
measuring the field on the same side of the object as the 
source then estimates of the object are available for 
frequencies greater than .J2"k0• This follows from Fig. 5. 

The first experimental results for diffraction tomography 
were presented by Carter and Ho [20], [21], [22]. They used 
an optical plane wave to illuminate a small glass object and 
were able to measure the scattered fields using a hologram. 

Later a group of researchers at the University of Minnesota 
carried out the same experiments using ultrasound and ge­
latine phantoms. Their results are discussed in Ref. [23]. 

3.2 Synthetic Aperture 

Nahamoo and Kak [24], [25] and Devaney [26] have pro- · 
posed a method that requires only two rotational views of 
an object. Consider an arbitrary source of waves in the 
transmitter plane as shown in Fig. 8, The transmitted field, 
i/lt. can be represented as a weighted set of plane waves by 
taking the Fourier transform of the transmitter aperture 
function [27]. Doing this the transmitted field can be ex­
pressed as 

i/lt(X) = _l_ f 00 

At(kx)eikxxdkx. 
411"2 -oo 

(66) 

Moving the source to a new position, 7), the plane wave de­
composition of the transmitted field becomes 

i/lt(X;7)) = -
1
- f 00 

(At(kx)e-ikx~)eikxxdkx. (67) 
411"2 -oo 

Given the plane wave decomposition, the incident field in 
the plane follows simply as 

i/;;(7);x,y) = 1: (4~2 At(kJe-ikx~)ei(kxx+kyY)dkx. (68) 
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Fig. 8. A typical synthetic aperture tomography experiment. 

Eq. (59) is an equation for the scattered field from a single 
plane wave. Because of the linearity of the Fourier transform, 
the effect of each plane wave, ei(k,x+kyYl, can be weighted by 
the expression in brackets above and superimposed to find 
the Fourier transform of the total scattered field due to the 
incident field lf;t(x;TJ) as [24] 

i/Js(TJ,O') = f 00 

(At(kx)e-ikx~) O(a - ~x, 'Y - ky) eh1odkx. 
-oo J2'Y 

(69) 

The quantityi/;8 (TJ;a) represents the one-dimensional Fourier 
transform of the field along a receiver line at a distance of 
10 from the origin due to a point source at TJ. Taking the 
Fourier transform of both sides with respect to the trans­
mitter position, TJ, the Fourier transform of the scattered 
field with respect to both the transmitter and the receiver 
position is given by 

i/Js(kx;a) = At(kx) O(a - ~x, 'Y - ky) ehlo. (70) 
J2'Y 

This approach is named synthetic aperture because 
a phase is added to the field measured for each transmitter 
position to synthesize a transmitted plane wave. Thus this 
method has much in common with the theory of phased ar­
rays. Figure 9 shows that by properly phasing the wave 
transmitted at each transmitter location a plane wave can 
be generated that travels in an arbitrary direction. Since the 
system is linear it doesn't matter whether the phase is added 
to the transmitted signal or as part of the reconstruction 
procedure. Thus multiplying the received field for each 
transmitter position by the pure phase term e-ikx~, where T/ 

represents the location of the transmitter, is equivalent to 
an experiment with an incident plane wave with the direc­
tion vector (kx, vk02 - kx2). The concept is similar to that 
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Fig. 9. By adding a phase to the field transmitted from each 
transmitter any desired plane wave can be synthesized. 

of beam steering as discussed by Foti et al elsewhere in this 
volume. 

By collecting the scattered field along the receiver line as 
a function of transmitter position, T/, an expression can be 
written for the scattered field. Like the simpler case with 
plane wave incidence, the scattered field is related to the 
Fourier transform of the object along an arc. Unlike the 
previous case, though, the coverage due to a single view of 
the object is a pair of circular disks as shown in Fig. 10. Here 
a single view consists of transmitting from all positions in 
a line and measuring the scattered field at all positions along 
the receiver line. By rotating the object by 90 degrees it is 
possible to generate the complimentary pair of disks and to 
fill the Fourier domain out to ±2k0 along both axes. 

The coverage shown in Fig. 10 is constructed by calcu­
lating (K - A) for all vectors (K) and (A) that satisfy the 
experimental constraints. Not only must each vector satisfy 
the wave equation, but it is also necessary that only forward 
traveling plane waves be used. The dashed line in Fig. 10 
shows the valid propagation vectors (-A) for the transmitted 
waves. To each possible vector (-A) a semicircular set of 
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Received Plane Wave 
ror an Inc Iden t Field 
or (-k0 ,0) 

- 'Trans~itted Plane Wave 

Fig. 10. Estimates of the Fourier transform of an object in a synthetic aperture experiment are available in the shaded region. 

vectors representing each possible received wave can be 
added. The locus of received plane waves is shown as a solid 
semi-circle centered at each of the transmitted waves indi­
cated by an "x." The entire coverage for the synthetic ap­
erture approach is shown as the shaded areas. 

In addition to the diffraction tomography configurations 
proposed by Mueller and Nahamoo other approaches have 
been proposed. In Vertical Seismic Profiling (VSP) [26] the 
scattering between the surface of the Earth and a borehole 
is measured. Alternately a broadband incident field can be 
used to illuminate the object. In both cases, the goal is to 
estimate the Fourier transform of the object. 

In geophysical imaging it is not possible to generate or 
receive waves from all positions around the object. If it is 
possible to drill a borehole then it is possible to perform VSP 
and obtain information about most of the object. A typical 
experiment is shown in Fig. 11. So as to not damage the 
borehole, acoustic waves are generated at the surface using 
acoutic detonators or other methods and the scattered field 
is measured in the borehole. 

The coverage in the frequency domain is similar to the 
synthetic aperture approach. Plane waves at an arbitrary 
downward direction are synthesized by appropriately 
phasing the transmitting transducers. The receivers will 
receive any waves traveling to the right. The resulting cov­
erage for this method is shown in Fig. 12a. If it can be as­
sumed that the object function is real valued then the sym-

metry of the Fourier transform for real valued functions can 
be used to obtain the coverage in Fig. 12b. 

Borehole\ 

Scattered 
Wave 

Fig. 11. A typical Verticla Seismic Profiling (VSP) experiment. 
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Objects 
kx 

Fig. 12. Estimate of the Fourier transform of an object are avail­
able in the shaded region for a VSP experiment (a). If, in addition, 
the object is real valued then the symmetry of the Fourier trans­
form can be used to get the coverage shown in (b). 

3.3 Broadband Illumination 

It is also possible to perform an experiment for broadband 
illumination [19]. Up until this point only narrow band il­
lumination has been considered; wherein the field at each 
point can be completely described by its complex ampli­
tude. 

Now consider a transducer that illuminates an object with 
a wave of the form at(kx,t). Taking the Fourier transform in 
the time domain this wave can be decomposed into a number 
of experiments. Let 

At(kx,w) = 1: at(kx,t)e-iwtdt 

where w is related to kw by 

(71) 

kw=.£ • (72) 
w 

c is the speed of propagation in the media and the wavevector 
(kx,ky) satisfies the wave equation 

(73) 

If a plane wave illumination of spatial frequency kx and 
a temporal frequency w leads to the scattered field u8 (kx,w;y), 
then the total scattered field is given by a weighted super­
position of the scattered fields or 

For plane wave incidence, the coverage available with this 
method is shown in Fig. 13a. Figure 13b shows that by doing 
four experiments at 0, 90, 180, and 270 degrees it is possible 
to gather information about the entire object. 

3.4 Reconstruction by Interpolation 

The Fourier Diffraction Theorem as derived in Section 2 
shows that when an object is illuminated with a plane wave 

Objects 
k, 

(a) 

(b) 

k=oo 

Fig. 13. One view of a broadband diffraction tomography exper­
iment will generate estimates of the object along the arcs in (a). 
With four views of the object complete coverage can be obtained 
as shown in (b). 
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frequency domain 

Fig. 14. Each projection is measured using the phi-omega coor­
dinate system shown here. 

traveling in the positive y-direction, the Fourier transform 
of the forward scattered fields gives values of the object's 
Fourier transform on an arc. Therefore, if an object is illu­
minated from many different directions it is possible, in 
principle, to fill up a disc of diameter v'2ko in the frequency 
domain with samples of the Fourier transform of the object 
and then reconstruct the object by direct Fourier inversion. 
Therefore, diffraction tomography, using forward scattered 
data only, determines the object up to a maximum angular 
spatial frequency of v'2ko. To this extent, the reconstructed 
object is a low pass version of the original. In practice, the 
loss of resolution caused by this bandlimiting is negligible, 
being more influenced by considerations such as the aperture 
sizes of the transmitting and receiving elements, etc. 

The fact that the frequency domain samples are available 
over circular arcs is a source of computational difficulty in 
reconstruction algorithms for diffraction tomography since 
for convenient display it is desired to have samples over a 
rectangular lattice. It should also be clear that by illumi­
nating the object over 360°, a double coverage of the fre­
quency domain is generated; note, however, that this double 
coverage is uniform. If the illumination is restricted to a 
portion of 360°, there still will be a complete coverage of the 
frequency domain; however, in that case, there would be 
patches in the (w1,W2)-plane where there would be a double 
coverage. In reconstructing from circular arc grids to rec­
tangular grids, it is often easier to contend with a uniform 
double coverage, as opposed to a coverage that is single in 
most areas and double in patches. 

However, for some applications not given to data collec­
tion from all possible directions, it is useful to bear in mind 
that it is not necessary to go completely around an object to 
get complete coverage of the frequency domain. In principle, 

it should be possible to get an equal quality reconstruction 
when illumination angles are restricted to a 180°-plus in­
terval. The few angles in excess of 180° are required to 
complete the coverage of the frequency domain. 

There are two computational strategies for reconstructing 
the object given measurements of the scattered field. As 
pointed out by [28] the two algorithms can be considered as 
interpolation in the frequency domain and in the space do­
main and are analogous to the direct Fourier inversion and 
backprojection algorithms of conventional tomography. 
Unlike conventional tomography, where backprojection is 
the preferred approach, the computational expense of space 
domain interpolation of diffracted projections makes fre­
quency domain interpolation the preferred approach. 

The remainder of this section will consist of derivations 
of the frequency domain interpolation algorithm. The reader 
is referred to Devaney [9] and Pan [13] for excellent expla­
nations of the space domain interpolation algorithm and [29] 
for the general case. 

In order to discuss the frequency domain interpolation 
between a circular grid on which the data is generated by 
diffraction tomography, and a rectangular grid suitable for 
image reconstruction, parameters for representing each grid 
must be selected. Then the relationship between the two sets 
of parameters can be written. 

In Section 2, i/!E(w) was used to denote the Fourier 
transform of the transmitted data when an object is illumi­
nated with a plane wave traveling along the positive y di­
rection. Now i/;8 ,</>(w) is used to denote this Fourier trans­
form, where the subscript ¢ indicates the angle of illumi­
nation. This angle is measured as shown in Fig. 14. Similarly, 
Q(w,¢) will be used to indicate the values of O(w1,w2) along 
a semi-circular arc oriented at an angle¢ as shown in Fig. 15. 

I 
I 

I 

I 
I 

/ 
/ 

/-----

frequency domain 

Fig. 15. A second change ofva;iables is used to relate the projec­
tion data to the object's Fourier transform. 
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Fig. 16. Uniformly sampling the projection in the space domain leads to uneven spacing of the samples of the Fourier transform of the 
object along the semi-circular arc. 

Therefore, when an illuminating plane wave is incident at 
angle ¢, the equality 

lfB(w,lo) = j e.h/ko2
-w

2lo()(w, Vko2 - w2 - ko) 
2-v'i{T-w2 

can be rewritten as 

1/;B,¢(W) = j l expLilo Vko2 - w2]Q(w,</J) 
2 vko2 - w2 

(75) 

for lwl < ko. (76) 

In most cases, the transmitted data will be uniformly 
sampled in space, and a discrete Fourier transform of this 
data will generate uniformly spaced samples ofl/;B,</>(w) in 
the w domain. Since Q(w,</J) is the Fourier transform of the 
object along the circular arc AOB in Fig. 14, and since K is the 
projection of a point on the circular arc onto the tangent line 
CD, the uniform samples Qin A. translate into non-uniform 
samples along the arc AOB as shown in Fig. 16. For this 

reason, designate each point on the arc AOB by its (w,¢) 
parameters. [Note that (w,¢) are not the polar coordinates 
of a point on arc AOB in Fig. 15. Therefore, w is not the ra­
dial distance in the (w1,w2) plane. For point E shown, the 
parameter w is obtained by projecting E onto line CD.] The 
rectangular coordinates in the frequency domain will remain 
(w1,W2). 

Before the relationships between (w,¢) and (w1,w2), are 
presented, it must be mentioned that the points generated 
by the AO and OB portions of the arc AOB must be consid­
ered separately as</> is varied from 0 to 211". This is done be­
cause, as mentioned before, the arc AOB generates a double 
coverage of the frequency domain, as </> is varied from 0 to 
2?r, which is undesirable for discussing a one-to-one trans­
formation between the (w,</J) parameters and the (w1,w2) 
coordinates. 

Now reserve (w,</J) parameters to denote the arc grid 
generated by one projection. It is important to note that for 
this arc grid, w varies from 0 to k and </> from 0 to 211". 

The transformation equations between (w,</J) and (w1,w2) 
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will now be presented. This is accomplished in a slightly 
round-about manner by first defining polar coordinates (Q,8) 
in the (wi,w2)-plane as shown in Fig. 15. In order to go from 
(w1,w2) to (w,</>), first transform from the former coordinates 
to (Q,8) and then from (Q,8) to (w,</>). The rectangular 
coordinates (w1,w2) are related to the polar coordinates (Q,8) 

by (Fig. 15) 

(77) 

8 = tan-1 (:~) . (78) 

In order to relate (Q,8) to (w,</>), a new angle fJ, which is the 
angular position of a point (wi,w2) on arc OB in Fig. 15, is 
introduced. Note from the figure that the point characterized 
by angle fJ is also characterized by parameter w. The rela­
tionship between w and fJ is given by 

w = ko sin{J. (77) 

The following relationship exists between the polar coordi­
nates (Q,8) on the one hand and the parameters fJ and <Pon 
the other: 

. Q 
{J=2sm-1-

2ko 

7r fJ 
</> = 8+-+-. 

2 2 

(79) 

(80) 

By substituting Eq. (79) in (77) and then using (77), w can 
be expressed in terms of w1 and wz. This result is shown 
below. Similarly, by substituting Eq. (78) in (80), the fol­
lowing expression is obtained for w and cf> 

. {2 . -1 (V W12 + w22)} W = Sln Sill 
2ko 

(81) 

8 = tan-1 (w2) + sin-1 (-J w12 + w22) + ~ . 
W1 2ko 2 

(82) 

These are the transformation equations for interpolating 
from the (w,</>) parameters used for data representation to 
the (wi,w2) parameters needed for inverse transformation. 

To convert a particular rectangular point into (w,¢) do­
main, substitute its w1 and w2 values in Eqs. (81) and (82). 
The resulting values for w and <P may not correspond to any 
for which Q(w,</>) is known. By virtue ofEq. (76), Q(w,¢) will 
only be known over a uniformly sampled set of values for w 
and cf>. In order to determine Q at the calculated w and ¢,the 
following procedure is used. Given Nw X Nq, uniformly lo­
cated samples, Q(wi,</Jj), calculate a bilinearly interpolated 
value of this function at the desired w and cf> by using 

(83) 

where 

{1-~ 0 
h1(w) = Aw 

I w I .::5 Aw otherwise, 

(84) 

and 

{
1-1.<tl 

h2(</>) = A</> 

l<t>l .::5A</> 

0 
(85) 

otherwise; 

A</> and Aw are the sampling intervals for <P and w, respec­
tively. When expressed in the manner shown above, bilinear 
interpolation may be interpreted as the output of a filter 
whose impulse reponse is h1(w)h2(</>). 

The results obtained with bilinear interpolation can be 
considerably improved if the sampling density in the 
(w,</>)-plane is increased by using the computationally effi­
cient method of zero-extending the inverse two-dimensional 
inverse Fast Fourier Transform (FFT) of the Q(wi.</>) ma­
trix. The technique consists of first taking a two-dimensional 
inverse FFT of the Nw X Nq, matrix consisting of the Q(wi.</Jj) 
values, zero-extending the resulting Nw X Nq, array of 
numbers to, perhaps, mNw X nMq, and then taking the FFT 
of this new array. The result is an mn-fold increase in the· 
density of samples in the (w,¢)-plane. After computing 
Q(w,</>) at each point of a rectangular grid by the procedure 
outlined above, the object f(x,y) is obtained by a simple 2-D 
inverse FFT. 

The use of bilinear interpolation and zero padding are 
both good techniques for resampling a function but they are 
used here in a non-standard way. Typically interpolation 
algorithms are derived assuming that the sampled data can 
be described as nearly linear (when using bilinear interpo­
lation) and frequency limited (when using Fourier domain 
zero padding) [30], [31], [32]. In this application, when re­
sampling the data from a circular grid to a rectangular grid, 
the function is assumed to be smooth in the Fourier domain. 
This assumption is reasonable since the data is assumed to 
be well behaved. 

The interpolation described above, however, is carried out 
in a rectilinear version of the (w,</>) coordinate system. Thus 
four points in the (w,</>) space, where data is available, are 
first assumed to be at the four corners of a rectangle and then 
the interpolation is calculated for a point in the middle. This 
is an approximation because the four data points actually 
define a smooth function that is defined along four points 
on two circular arcs. As will be seen in the reconstruc­
tions, the effect of this approximation is small; but it 
should be remembered when comparing interpolation 
schemes. 

4. LIMITS OF FIRST ORDER 
APPROXIMATIONS 

In diffraction tomography there are different approxima­
tions involved in the forward and inverse directions. In the 
forward process it is necessary to assume that the object is 
weakly scattering so that either the Born or the Rytov ap­
proximations can be used. Once we arrive at an expression 
for the scattered field it is necessary to not only measure the 
scattered fields but then to numerically implement the in­
version process. 
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1.001 1.01 1.10 1.20 

Fig. 17. Simulated reconstructions using the Born approximation for 16 objects with four refractive indices between 1.001 and 1.20 and 
four radii between 1 and lOA.. 

The mathematical and experimental effects limit the re­
construction in different ways. The most severe mathe­
matical limitations are imposed by the Born and the Rytov 
approximations. These approximations are fundamental to 
the reconstruction process and limit the range of objects that 
can be examined. On the other hand, the experimental 
limitations are caused because it is only possible to collect 
a finite amount of data. Up to the limit in resolution caused 
by evanescent waves, it is possible to improve a reconstruc­
tion by collecting more data. 

By carefully setting up the simulations it is possible to 
separate the effects of these errors. To study the effects of 
the Born and Rytov approximations, it is necessary to cal­
culate (or even measure) the exact fields and them make use 
of the best possible (most exact) reconstruction formulas 
available. The difference between the reconstruction and 
the actual object can then be used as a measure of the quality 
of the approximations. 

Only the mathematical limitations will be described here. 
For a discussion of some of the experimental factors the 
reader is referred to [33], [34]. 

4.1 Qualitative Analysis 

The exact field for the scattered field from a cylinder as 
shown by Weeks [35] was calculated for cylinders of various 

sizes and refractive index. In the simulations that follow a 
single plane wave was incident on the cylinder and the 
scattered field was calculated along a line at a distance of 100 
wavelengths from the origin. 

At the receiver line the received wave was measured at 512 
points spaced at 1/2 wavelength intervals. In all cases the 
rotational symmetry of a single cylinder at the origin was 
used to reduce the computation time of the simulations. 

The simulations were performed for refractive indices that 
ranged from 0.1 % change (refractive index of 1.001) to a 20% 
change (refractive index of 1.2). For each refractive index, 
cylinders of size 1, 2, 4, and 10 wavelengths were recon­
structed. This gave a range of phase changes across the cyl­
inder [see Eq. (23) above] from 0.0047r to 87r. The resulting 
reconstructions using the Born approximation are shown in 
Fig.17. 

Clearly, all the cylinders of refractive index 1.001 in Fig. 
17 were perfectly reconstructed. As Eq. (24) predicts, the 
results get worse as the product of refractive index and radius 
gets larger. The largest refractive index that was successfully 
reconstructed was for the cylinder in Fig. 17 of radius 1 
wavelength and a refractive index that differed by 20% from 
the surrounding medium. 

While it is hard to evaluate the two dimensional recon­
structions, it is certainly reasonable to conclude that only 
cylinders where the phase change across the object was less 
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Fig. 18. Simulated reconstructions using the Born approximation for 16 objects with four refractive indices between 1.001and1.10 and 
four radii between 1 and 100,\. 

than or equal to 0.87!' were adequately reconstructed. In 
general, the reconstruction for each cylinder where the phase 
change across the cylinder was greater than 71' shows severe 
artifacts near the center. This limitation in the phase change 
across the cylinder is consistent with the condition expressed 
in Eq. (24) above. 

A similar set of simulations was also done for the Rytov 
approximation and is shown in Fig. 18. In this case the re­
constructions were performed for cylinders of radius 1, 2, 40, 
and 100 A and refractive indices of 1.001, 1.01, 1.05, and 1.10. 
Because of the large variation in cylinder sizes all recon­
structions were performed so the estimated object filled half 
of the reconstruction matrix. While the error in the recon­
structions does increase for larger cylinders and higher re­
fractive indices, it is possible to successfully reconstruct 
larger objects with the Rytov approximation. 

4.2 Qualitative Comparison of the Born and 
Rytov Approximation 

Reconstructions using exact scattered data show the simi­
larity of the Born and Rytov approximations for small 
objects with small changes in the refractive index. For a 
cylinder of radius 1 wavelength and a refractive index that 
differs by 1 % from the surrounding medium, the resulting 
reconstructions are shown in Fig. 19. In both cases, the re­
constructions are clean and the magnitude of the recon­
structed change in refractive index is close to the simulated 
object. 

On the other hand, the reconstructions of objects that are 
large or have a refractive index that differ by a factor of ca. 
20% from unity, illustrate the differences between the Born 
and the Rytov approximations. Figure 20 shows a simulated 
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Born 

Rytov 

Fig. 19. Born and Rytov reconstructions of a cylinder of radius 
1,\ and 1.01 refractive index. 

reconstruction for an object of radius 1 and refractive index 
1.20. In this region the Born approximation is superior to the 
Rytov. 

According to Chernov [17] and Keller [18] the Rytov ap­
proximation should be much superior to the Born for objects 
much larger than a wavelength. Reconstructions were done 
based on the exact scattered wave from a cylinder of radius 
40 wavelengths and a refractive index that differed by 1 % 
from the surrounding medium. The reconstructed refractive 
index is shown in Fig. 21. While the Born approximation has 
provided a good estimate of the size of the object, the re­
construction near the center is clearly not accurate. 

The results in Figs. 20 and 21 are consistent with the re­
gions of validity of the Born and Rytov approximations. The 
Born approximation is sensitive to the total phase shift in 
the object. Thus, in the reconstruction of Fig. 21 the Born 
approximation has done a good job of representing the step 
change in refractive index; but as the incident field under­
goes a phase shift through the object, the reconstruction 
becomes poor. On the other hand, the Rytov approximation 
is sensitive to the change in refractive index. Thus the Rytov 

Fig. 20. Reconstructions of a cylinder of radius L\. and refractive 
index 1.20 showing the advantage of the Born over the Rytov. 

reconstruction is accurate near the center of the object but 
provides a very poor reconstruction near the boundary of the 
object. 

4.3 Quantitative Studies 

In addition to the qualitative studies, a quantitative study 
of the error in the Born and Rytov reconstructions was also 
performed. As a measure of error we used the relative mean 
squared error in the reconstruction of the object function 
integrated over the entire plane. If the actual object function 
is O(r) and the reconstructed object function is O'(r) then 
the relative Mean Squared Error (MSE) is 

MSE = JJ[O(r) - O'(r)]2dr. 
JJ[O(r)]2dr 

(86) 

To study the quantitative difference between the Born 
and the Rytov approximations, several hundred simulated 
reconstructions were performed. For each simulation the 
exact scattered field was calculated for a single cylinder with 
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Fig. 21. Reconstructions of a cylinder ofradius 40\ and refractive 
index 1.01 showing the advantage of the Rytov over the Born. 

an arbitrary radius and refractive index. The reconstructions 
were divided into two sets to highlight the difference be­
tween the Born and the Rytov approximations. 

The plots of Fig. 22 present a summary of the mean 
squared error for cylinders of 1, 2, and 3,\ in radius and 
twenty refractive indices between 1.01 and 1.20. In each case 
the error for the Born approximation is shown as a solid line 
while the error for the Rytov approximation is shown as a 
dashed line. The exact scattered fields were calculated at 512 
receiver points along a receiver line 10,\ from the center of 
the cylinder. 

Only for the 1,\ cylinders is the relative mean squared 
error for the Born approximation always lower than the 
Rytov. It is interesting to note that while the Rytov ap­
proximation shows a steadily increasing error with higher 
refractive indices the error in the Born reconstruction is 
relatively constant until a threshold is reached. For the 2,\ 
and the 3,\ cylinder, this breakpoint occurs at a phase shift 
of 0.6 and 0.77f. Thus a criteria for the validity of the Born 
approximation is that the product of the radius of the cyl­
inder in wavelengths and the change in refractive index must 
be less than 0.175. 
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Fig. 22. The relative mean squared error for reconstructions using 
the Born (solid line) and Rytov (dashed line) approximations. The 
error for a total of 60 objects with a radius of 1, 2 and 3 wave­
lengths are shown. 

Figure 23 presents a summary of the relative mean 
squared errors for cylinders of refractive index 1.01, 1.02, and 
1.03 and for forty radii between 1 and 40,\. Because the size 
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Fig. 23. The relative mean squared error for reconstructions using 
the Born (solid line) and Rytov (dashed line) approximations. The 
error for a total of 120 objects with a refractive index of 1.01, 1.02 
and 1.03 are shown. 

of the cylinders varied by a factor of forty, the simulation 
parameters were adjusted accordingly. For a cylinder ofra­
dius R the scattered field was calculated for 512 receivers 

along a line 2R from the center of the cylinder and spaced 
at l/16R intervals . 

In each of the simulations the Born approximation is only 
slightly better than the Rytov approximation until the Born 
approximation crosses its threshold with a phase shift of 
0.77r. Because the error in the Rytov approximation is rela­
tively flat it is clearly superior for large object and small re­
fractive indices. Using simulated data and the Rytov ap­
proximation we have successfully reconstructed objects as 
large as 2000A. in radius. 

4.4 Multiple Scattering Effects 

The simulations above have only considered reconstructions 
of simple cylindrical objects with a constant refractive index. 
While these objects do have the advantage that it is possible 
to write an expression for the scattered fields they perhaps 
are not a good model of the real world. Simulations of more 
complicated objects are needed, but the calculation of the 
scattered fields are either more difficult or not possible at 
all. One type of object that can be modeled are those that 
consist of multiple cylinders. 

A major source of difficulty with multi-component* 
objects is dealing with the interaction between the various 
components. Depending on the interaction between the 
components, the total scattered field may or may not bear 
any resemblance with the simple sum of the scattered fields 
for each of the components, assuming the others to be ab­
sent. A new computational procedure for calculating the 
inter-component interaction was presented in [36]. With the 
computer programs developed we are able to generate the 
scattered fields that are not limited by the first order as­
sumption. Although the results shown will only include the 
second order fields for a multicomponent object, the com­
putational procedure can easily be generalized for higher 
order scattering effects. 

Since all currently available diffraction tomography al­
gorithms are based on the assumption that the object 
satisfies the first order scattering assumption, it is interesting 
to test them under conditions when this assumption is vio­
lated. We have used the scattered fields obtained with the 
new computational procedure to test these algorithms, and 
shown the resulting artifacts. Our main conclusion drawn 
from computer simulation study is that even when object 
inhomogeneities are as small as 5 percent of the back­
ground, multiple scattering can introduce severe distortion 
in reconstructions of multi-component objects. 

One can, in principle, obtain the exact solution to the wave 
equation for a multi-component object provided one is able 
to solve the boundary value problem for the entire object. 
In practice it is not possible to do so even for two- or three-

* By a single component object, we mean one that is composed of a single 
circular or elliptical cylinder. Analytical expressions are available for the 
scattered fields of such objects. A multiple-component object has more than 
one cylinder; for our purposes the cylinders will all be parallel to each 
other. 
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Incident 
field component 1 

Fig. 24. A two component phantom illuminated with incident field 
Ui(r). 

component objects, and one must take recourse to compu­
tational procedures. We have based our algorithms on 
Twersky's theory in which the scattered field is expressed 
as an infinite summation of different order terms [15]. First 
order fields are obtained by considering the interaction of 
the original incident field with each component, assuming 
the others to be absent. First order fields caused by a com­
ponent when incident on the other components generate the 
second order fields, and so on. 

The basic elements of multiple scattering theory that we 
will use in our computational modeling will now be explained 
in detail with the help of a two component object (The ap­
proach is easily generalized to more than two components.) 
Figure 24 shows a two component phantom being illumi­
nated by a field denoted by ui(r) (In the absence of the 
phantom the field everywhere will be uj{r).) We will use u(fa) 
to denote the actual field at a point (fa) as shown in the fig­
ure. u(fa) is equal to 

u(fa) = u#a) + <Pi (fa) + </J2(fa), (87) 

where ¢1 (fa) and </J2(fa) are, respectively, the scattered fields 
at fa caused by the phantom components 1 and 2. 

Let Uinc(fi) be the incident field at the center of the ith 
component, and let o8 (fa,fi) be an operator function such that 
when it is applied to the fields incident on the scattering 
component at fi, it generates the scattered field at the ob­
servation point fa. In terms of os's, ¢1 and ¢2 are given by 

<Plia) = o.(fa,fi)Uinc(fi) i = 1,2. (88) 

Substituting (88) in (87), we get 

u(fa) = u(fa) + os(falf1)Uinc(f1) + os(falf2)Uinc(f2). (89) 

The field incident at the site of each scatterer may be ex­
pressed as 

UincO\) = Ui(f1) + os(f1Jf2)Uinc(f2), 

Uinc(f2) = Ui(f2) + Os(f2 I f1)Uinc(r1). 

Substituting (90) and (91) in (89), we get 

u(fa) = ui(fa) + os(falf1)u#1) 

+ os(ralf2)u#2) + os(ralr1)os(f1Jr2)uinc(r2) 

(90) 

(91) 

+ os(ralf2)os(f2Jf1)uinc(f1). (92) 

Ifwe again substitute (90) and (91) in (92), we have the fol­
lowing expression 

u(fa) = ui(fa) + os(falf1)ui(f1) + os(ralr2)u#2) 

+ os(ralf1)os(f1lf2)u#2) + o.(falr2)os(r2Jr1)ui(r1) 

+ Os(ral fi)os(f1 I f2)os(r2I fi)UincO\) 

+ o.(ral r2)os(r2l r1)os(r1 I r2)Uinc(r2). (93) 

A more compact way to express the above equation is 

U(ra) = Uj(fa) + Ufirst-order(fa) + Usecond-order(ra) 

+ Uhigher-order(fa). (94) 

The quantities Ufirst-orden Usecond-order and Ubigher-order rep­
resent the first order, second order, and higher order con­
tributions at the observation point fa. These are given by 

Ufirst-order(ra) = o.(ralr1)ui(fi) + Os(falr2)ui(r2) (95) 

Usecond-order(ra) = Os(ral f2)0s(r2J f1)Ui(r1) 

+ o.(ral r1)os(r1 I f2)ui(r2) (96) 

Ubigher-order(ra) = Os(ral r1)os(r1 I r2)0s(r2 I r1)Uinc(r1) 

+ Os(fal r2)os(r2l r1)0.(r1 I r2)Uinc(r2) (97) 

Receivers 
line 

FIRST-ORDER SCATTERED FIELDS AT7a 

Receiver 
line 

SECOND-ORDER SCATTERED FIELDS AT7a 

Fig. 25. This figure depicts the first and second-order scattered 
fields for a two component object. 
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Fig. 26. Cross section of a two-component object reconstructed 
using the conventional diffraction reconstruction technique. 
Diameter of the cylinders is 6;\ and their refractive index is 1.02. 
(a) Only the first order scattered fields are used for generating the 
data for this reconstruction. (b) Doubly scattered fields are in­
cluded in the projection data for this reconstruction. 

In Fig. 25, we have shown the first and the second order 
scattering processes for a two component object. For the first 
order scattering, each component interacts independently 
with the incident illumination, being oblivious of the exis­
tence of the other. To compute the second order scattering 
terms, each component interacts with the fields sent in its 
direction by the other component, and so on. 

The computing procedure discussed above was used to 
generate 64 projections over 360° for the object. An inter­
polation based algorithm was then used to reconstruct the 
object cross-section; the results follow. 

In the reconstructions shown in Figs. 26, 27, 28, and 29 we 

15 .5 

(a) 

15 5 

(b) 

have shown the magnitude of the deviation of the recon­
structed refractive index from that of the background, which 
was assumed to be unity. Plots labeled (a) show the recon­
struction obtained when the projections were generated by 
ignoring the second and higher order scattered fields. On the 
other hand, the plots labeled (b) show the reconstructions 
when the second order fields are included in the projec­
tions. 

In Fig. 26 the change in the refractive index of the 6/... 
cylinders was set to 2%. Although there is some distortion 
introduced in the direction of the line joining the center of 
the cylinders, it is negligible. However, when the refractive 
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t- Fig. 27. Cross section of a two-component object reconstructed 
'-" using the conventional diffraction reconstruction technique. 

(b) 

index change is increased in Fig. 27 to 3 percent, the distor­
tion becomes quite noticeable; and in Fig. 28 a 5% change in 
refractive index is enough to cause the distortion to dominate 
the reconstruction. When the number of cylinders is in­
creased the distortion is higher as seen in Fig. 29. This is 
expected because in this case there are more projections 
affected by second order scattering. It should be mentioned 
that the computational effort required for generating the 
projections is enormous. To illustrate, it took three hours of 
cpu time on the AP120B array processor for computing 64 
projections of a three component object. 

Diameter of the cylinders is 6,\ and their refractive index is 1.03. 
(a) Only the first order scattered fields are used for generating the 
data for this reconstruction. (b) Doubly scattered fields are in­
cluded in the projection data for this reconstruction. 

4.5 The Effect of Attenuation 

Although in ultrasonic imaging the role of attenuation is 
minor, in microwave imaging it can not be ignored. Micro­
wave attenuation rates in water are presented for the at­
tenuation and phase factors at various frequencies in 
graphical and algebraic form by Foti et al elsewhere in this 
volume. Microwaves at 4 GHz, for example, undergo almost 
3 db of attenuation per centimeter of travel in water; thus, 
the assumption in the Born approximation is quickly vio­
lated. In the remainder of this section, the effect of attenu-
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Fig. 28. Cross section of a two-component object reconstructed 
using the conventional diffraction reconstruction technique. 
Diameter of the cylinders is 6A. and their refractive index is 1.05. 
(a) Only the first order scattered fields are used for generating the 
data for this reconstruction. (b) Doubly scattered fields are in­
cluded in the projection data for this reconstruction. 

ation will be described as well as its affect on the resolution 
of the reconstruction. 

The angular spectrum of a field on the line x = x1 propa­
gates to line x = x2 according to the following relation 

A(ky,X2) = A(ky,X1)ehiko2-ky2(xrx1). (98) 

Figure 30 shows a plot of the magnitude of the exponential 
factor in Eq. (98) as a function of both the attenuation of the 
medium and the spatial frequency of the plane wave in the 
y direction. We have plotted the magnitude in db as a 
function of the dimensionless parameter y, where kx = yk0. 

Thus, for 'Y = 0 the wave is traveling directly towards the 
receiver line, while for 'Y = 1 the wave is propagating along 
the direction of the receiver line. In this plot the attenuation 

15.5 

(a) 

... 

-j6 0 

(b) 

factor and 'Y have been changed from 0 to 5.0 db/cm and 0 
to 1.0, respectively. It is clear that the high frequency com­
ponents (larger y) are more attenuated than those compo­
nents at lower frequencies (those that travel directly towards 
the receiver line). This means that as the field propagates 
in an attenuating medium, it loses its high frequency com­
ponents. 

Remembering the Fourier domain coverage of diffraction 
transmission tomography, one can now associate this phe­
nomenon with a degradation in resolution. This point is il­
lustrated in Fig. 31. As in the case of no attenuation, the 
inner circle corresponds to transmission tomography, while 
the outer ring represents the data measured by a reflection 
tomographic system. The difference made by attenua-
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tion is shown as the shaded area. In this region, the attenu­
ation of the medium reduces the amplitude of the plane wave 
components below a minimum tolerable Signal to Noise 
Ratio (SNR). Thus, this region of the object's Fourier 
transform is unmeasurable. 

In the Synthetic Aperture technique, the concept of 
propagation of the angular spectrum can be applied in an 
attenuating medium. This results in upper bounds on ky and 
(3. ky is the spatial frequency associated with the transmitter, 
and (3 is the spatial frequency associated with the receiver. 
This point is illustrated in Fig. 32. More angular views re­
store the resolution lost due to the use of an attenuating 
coupling medium. The coverage in the reflection mode also 
shrinks as shown in the figure. 

':--. 

15 5 

15 .5 

Fig. 29. Cross section of a two-component object reconstructed 
using the conventional diffraction reconstruction technique. 
Diameter of the cylinders is 6;\ and their refractive index is 1.05. 
(a) Only the first order scattered fields are used for generating the 
data for this reconstruction. (b) Doubly scattered fields are in­
cluded in the projection data for this reconstruction. 

5. CONCLUSIONS 

The use of microwave tomographic imaging gives the phy­
sician new information about the physiologic status of a 
patient. X-ray tomography is based on the Fourier Slice 
Theorem; but, because of the diffraction and refraction of 
microwaves as they travel through the body, this theory is 
not useful with microwaves. Instead the Fourier Diffraction 
Projection Theorem is used to relate the fields scattered by 
an object illuminated with a plane wave to the Fourier 
transform of the object. Like the x-ray case, it is possible to 
measure the scattered fields from a number of different di­
rections and form an estimate of the object's microwave re­
fractive index. 
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angular spectrum expansion in a lossy medium as a function of 
directional angle and attenuation constant of the medium. ')' is 
the direction cosine of these components. The direction cosines 
are related to the spatial frequency of the angular spectrum 
components as described by Goodman (27, sect. 3.8), and in Ap­
pendix I of the paper by Farhat elsewhere in this volume. 

coverage lost 
due to attenuation 

Fig. 31. Object's Fourier domain coverage for plane wave to­
mography in transmission and reflection modes, in a lossy me­
dium. The lower resolution in transmission tomography is due 
to the smaller radius ( v'2ko compared to 2ko) of the coverage 
circle as shown here. The effect of attenuation is shown in the 
shaded area. 
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Fig. 32. When the medium is lossy, a larger number of views in the 
Synthetic Aperature technique can increase the resolution and 
decrease the distortion in the reconstructed image. The coverage 
shown corresponds to three rotational views of the object, 60° 
apart. 

In addition, this chapter has presented an alternative 
derivation of the Fourier Diffraction Projection Theorem. 
This approach will allow for efficient implementations of 

higher order reconstruction techniques on digital com­
puters. 

By carefully designing a simulation procedure, we have 
isolated the effects of the first order Born and Rytov ap­
proximations in diffraction imaging. While both procedures 
can produce excellent reconstructions for small objects with 
small refractive index changes, they both quickly break down 
when their assumptions are violated. The assumptions limit 
the Born approximation to objects where the product of the 
diameter and the relative refractive index are less than 0.35A.; 
and the Rytov approximation to objects with a refractive 
index that differs by less than 2% from the surrounding 
media, with essentially no constraint on the size of the 
object. 

Two problems need to be solved for microwave imaging 
to ~ecome successful for medical imaging. Foremost, re­
construction algorithms based on higher order approxima­
tions to the scattered field will be needed. With 4 GHz mi­
crowaves in water, biological structures span tens of wave­
lengths and often have refractive index variations of more 
than 100%. In addition, high spatial frequency suffer from 
large attenuation in water-based microwave systems. An 
approach that takes into account the attenuation effects of 
the coupling medium and the target should be studied. Mi­
crowave systems for medical imagery must take into account 
the different Fourier coverage provided by Sn and S21 data 
collection system designs and seek high k coupling media 
with lower loss. 
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