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ABSTRACT
A novel approach for obtaining labeled training data is pre-
sented to directly estimate the model parameters in a su-
pervised learning algorithm for automatic chord recognition
from the raw audio. To this end, harmonic analysis is first
performed on symbolic data to generate label files. In paral-
lel, we synthesize audio data from the same symbolic data,
which are then provided to a machine learning algorithm
along with label files to estimate model parameters. Ex-
perimental results show higher performance in frame-level
chord recognition than the previous approaches.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
models

General Terms
Algorithms

Keywords
Chord recognition, hidden Markov model, supervised learn-
ing, MIDI

1. INTRODUCTION
A musical chord is a set of simultaneous tones. Succession

of chords over time, or chord progression, form the core of
harmony in a piece of music. Hence analyzing the overall
harmonic structure of a musical piece often starts with label-
ing every chord. Automatic chord labeling is very useful for
those who want to do harmonic analysis of music. Once the
harmonic content of a piece is known, a sequence of chords
can be used for further higher-level structural analysis where

∗This paper is based on the previous work by the same au-
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phrases or forms can be defined. Chord sequences with tim-
ing information of chord boundaries are also a very compact
and robust mid-level representation of musical signals for
such applications as music identification, music segmenta-
tion, music similarity finding, and audio thumbnailing. For
these reasons and others, automatic chord recognition has
recently attracted a number of researchers in the Music In-
formation Retrieval field.

Hidden Markov models (HMMs) are very successful for
speech recognition, and gigantic databases with labels accu-
mulated over decades play an important role in estimating
the model parameters appropriately. However, there is no
such database available for music. Furthermore, the acous-
tical variance in a piece of music is far greater than that in
speech in terms of its frequency range, instrumentation, dy-
namics, and/or duration, and thus a lot more data is needed
to train the models for generalization.

Hand-labeling the chord boundaries in a number of record-
ings is not only an extremely time consuming and tedious
task but also is subject to errors made by humans. In this
paper, we propose a method of automating this daunting
task to provide the machine learning models with labeled
training data. To this end, we use symbolic data such as
MIDI data to generate chord names and their boundaries as
well as to create audio. Audio and chord boundary infor-
mation generated this way are in perfect alignment, and we
can use them to directly estimate the model parameters.

There are several advantages to this approach. First, we
do not need to manually annotate chord boundaries with
chord names to obtain training data. Second, we can gen-
erate as much data as needed with the same symbolic files
but different musical attributes by just changing instrumen-
tation, tempo, or dynamics when synthesizing audio. This
helps avoid overfitting the models to a specific type of mu-
sic. Third, sufficient training data enable us to include more
chord types such as 7th, augmented, or diminished.

This paper continues with a review of related work in Sec-
tion 2; in Section 3, we describe how we extract the feature
vectors, and explain the model and the method of obtaining
the labeled training data; in Section 4, we present empirical
results with discussions, and draw conclusions followed by
directions for future work in Section 5.

2. RELATED WORK
Sheh and Ellis proposed a statistical learning method for

chord segmentation and recognition [11]. They used the
hidden Markov models (HMMs) trained by the Expectation
Maximization (EM) algorithm, and treated the chord labels



as hidden values within the EM framework. In training the
models, they used only the chord sequence as an input to the
models, and applied the forward-backward or Baum-Welch
algorithm to estimate the model parameters. The frame
accuracy in percent they obtained was about 76% for seg-
mentation and about 22% for recognition, respectively. The
poor performance for recognition may be due to insufficient
training data compared with a large set of classes (20 songs
for 147 chord types). It is also possible that the flat-start
initialization of training data yields incorrect chord bound-
aries resulting in poor parameter estimates.

Bello and Pickens also used HMMs with the EM algo-
rithm [1]. What was novel in their approach was that they
incorporated musical knowledge into the models by defin-
ing a state transition matrix based on the key distance in a
circle of fifths, and avoided random initialization of a mean
vector and a covariance matrix of observation distribution.
In addition, in training the model’s parameter, they selec-
tively updated the parameters of interest on the assump-
tion that a chord template or distribution is almost uni-
versal, thus disallowing adjustment of distribution param-
eters. The accuracy thus obtained was about 75% using
beat-synchronous segmentation with a smaller set of chord
types (24 major/minor triads only). In particular, they ar-
gued that the accuracy increased by as much as 32% when
the adjustment of the observation distribution parameters
is prohibited.

The present paper expands our previous work on chord
recognition [8]. It is based on the work of Sheh and Ellis
or Bello and Pickens in that the states in the HMM repre-
sent chord types, and we try to find the optimal path, i.e.,
chord sequence in a maximum-likelihood sense. The most
prominent difference in our approach is, however, that we
use labeled training data by which model parameters can
be directly estimated. Furthermore, we propose a method
to automatically obtain the labeled training data, removing
the problematic and time consuming task of manual anno-
tation of precise chord boundaries. In this paper, we build
two separate HMMs from two training data sets of different
instrumentation, and investigate how each model performs
when various types of input are given.

3. SYSTEM
Our system starts with extracting suitable feature vectors

from the raw audio. Like most chord recognition systems, a
chroma vector or a PCP vector is used as the feature vector.

3.1 Chroma Features
A chromagram or a Pitch Class Profile (PCP) is the choice

of the feature set in automatic chord recognition or key ex-
traction since introduced by Fujishima [3]. Perception of
musical pitch involves two dimensions – height and chroma.
Pitch height moves vertically in octaves telling which oc-
tave a note belongs to. On the other hand, chroma tells
where it stands in relation to others within an octave. A
chromagram or a pitch class profile is a 12-dimensional vec-
tor representation of a chroma, which represents the relative
intensity in each of twelve semitones in a chromatic scale.
Since a chord is composed of a set of tones, and its label is
only determined by the position of those tones in a chroma,
regardless of their heights, chroma vectors appear to be an
ideal feature to represent a musical chord or a musical key.

Fujishima developed a realtime chord recognition system,

where he derived a 12-dimensional pitch class profile from
the DFT of the audio signal, and performed pattern match-
ing using the binary chord type templates [3]. Gomez and
Herrera proposed a system that automatically extracts from
audio recordings tonal metadata such as chord, key, scale
and cadence information [4]. They used as the feature vec-
tor, a Harmonic Pitch Class Profile (HPCP), which is based
on Fujishima’s PCP, and correlated it with a chord or key
model adapted from Krumhansl’s cognitive study [7]. Simi-
larly, Pauws used the maximum-key profile correlation al-
gorithm to extract key from the raw audio data, where
he averaged the chromagram features over variable-length
fragments at various locations, and correlate them with the
24 major/minor key profile vectors derived by Krumhansl
and Kessler [9]. Harte and Sandler used a 36-bin chroma-
gram to find the tuning value of the input audio using the
distribution of peak positions, and then derived a 12-bin,
semitone-quantized chromagram to be correlated with the
binary chord templates [5].

There are some variations when computing a 12-bin chro-
magram, but it usually follows the following steps. First,
the DFT of the input signal X(k) is computed, and the
constant-Q transform XCQ is calculated from X(k), using
a logarithmically spaced frequencies to reflect the frequency
resolution of the human ear [2]. The frequency resolution of
the constant-Q transform follows that of the equal-tempered
scale, which is also logarithmically based, and the kth spec-
tral component is defined as

fk = (21/B)k
fmin, (1)

where fk varies from fmin to an upper frequency, both
of which are set by the user, and B is the number of bins
in an octave in the constant Q transform. Once XCQ(k) is
computed, a chromagram vector CH can be easily obtained
as:

CH(b) =

M−1
X

m=0

˛

˛XCQ(b + mB)
˛

˛, (2)

where b = 1, 2, · · · , B is the chromagram bin index, and
M is the number of octaves spanned in the constant Q spec-
trum. For chord recognition, only B = 12 is needed, but
B = 24 or B = 36 is also used for fine tuning.

In our system, we used fmin = 48 Hz, and fmax = 5, 250
Hz. For the number of bins in an octave, we used B = 12
for MIDI-synthesized audio, and B = 36 for real recordings
to obtain 12-bin Quantized chromagram proposed by Harte
and Sanlder [5], which compensates a possible mistuning
present in the recordings by reallocating the peaks based on
the peak distribution.

3.2 Hidden Markov Model
A hidden Markov model [10] is an extension of a dis-

crete Markov model, in which the states are hidden in the
sense that an underlying stochastic process is not directly
observable, but can only be observed through another set of
stochastic processes.

We recognize chords using a 36-state HMM. Each state
represents a single chord, and the observation distribution
is modeled by a single multivariate Gaussian in 12 dimen-
sions defined by its mean vector µi and covariance matrix
Σi, where i denotes ith state. We assume the features are



uncorrelated with each other, and thus use diagonal covari-
ance matrix. State transitions obey the first-order Markov
property; i.e., the future is independent of the past given the
present state. In addition, we use an ergodic model since we
allow every possible transition from chord to chord, and yet
the transition probabilities are learned.

Once the model parameters – initial state probabilities,
state transition probabilities, and mean vector and covari-
ance matrix for each state – are learned, the Viterbi algo-
rithm is applied to the model to find the optimal path, i.e.,
chord sequence, in a maximum likelihood sense given an in-
put signal.

In our model, we have defined 36 classes or chord types
according to their sonorities only – major, minor, and di-
minished chords for each pitch class. We grouped triads
and seventh chords with the same root and sonority into
the same category. For instance, we treated E minor triad
and E minor seventh chord as just E minor chord without
differentiating the triad and the seventh. Augmented chords
were not considered because they scarcely appear in West-
ern tonal music. We found this class size appropriate in a
sense that it lies between overfitting and oversimplification.

3.3 Harmonic Analysis on Symbolic Data
In order to train a supervised model, we need label files

which must contain annotated chord boundaries as well as
chord names. To automate this laborious process, we use
symbolic data to generate label files as well as audio data.
To this end, we first convert a symbolic file to a format which
can be used as an input to a chord analysis tool. Chord an-
alyzer then performs harmonic analysis and outputs a file
with root information and note names from which complete
chord information (i.e., root and its sonority – major, mi-
nor, or diminished triad/seventh) is extracted. Sequence of
chords are used as ground-truth or labels when training the
HMM. In parallel, we use the same symbolic files to gen-
erate audio files using a sample-based synthesizer. Audio
data generated this way are in perfect sync with chord la-
bel files obtained above, and are enharmonically rich as in
real acoustic recordings because audio samples in a synthe-
sis engine contain the upper harmonics as well. Figure 1
illustrates the overview of the system.

4. IMPLEMENTATION AND
EXPERIMENTS

As shown in Figure 1, our system for generating labeled
training data has two main blocks running in parallel. First,
harmonic analysis is performed on symbolic data. We used
symbolic files in Humdrum data format. Humdrum is a
general-purpose software system intended to help music re-
searchers encode, manipulate, and output a wide variety
of musically-pertinent representations.1 For harmonic anal-
ysis, we used the Melisma Music Analyzer developed by
Sleator and Temperley by the authors.2 The Melisma Mu-
sic Analyzer takes a piece of music represented by an event
list, and extracts musical information from it such as me-
ter, phrase structure, harmony, pitch-spelling, and key. By
combining harmony and key information extracted by the
analysis program, a complete Roman-numeral analysis is

1http://dactyl.som.ohio-state.edu/Humdrum/
2http://www.link.cs.cmu.edu/music-analysis/
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Figure 1: Overview of the system.

performed, from which we can generate label files with se-
quence of chord names.

The analysis program was tested on a corpus of excerpts
and the 48 fugue subjects from the Well-Tempered Clavier,
and the harmony analysis and the key extraction yield the
accuracy of 83.7% and 87.4%, respectively [12].

In the feature extraction block in our system, MIDI files
are synthesized using Timidity++. Timidity++ is a free
software synthesizer, and converts MIDI files into audio files
in a WAVE format.3 It uses a sample-based synthesis tech-
nique to generate enharmonically rich audio as in real record-
ings. The raw audio is downsampled to 11025 Hz, and 12-bin
chroma features are extracted from it with the frame size of
8192 samples and the hop size of 2048 samples. The chroma
vectors are then used as input to the HMM along with the
label files obtained above.

To examine the model’s dependence on the training data,
we chose two different training data sets and obtained two
model parameters on each data set. For the first model,
we used as a training data set 81 files of solo piano music
by J. S. Bach, Beethoven, and Mozart in a Humdrum data
format at the Center for Computer Assisted Research in

3http://timidity.sourceforge.net/



the Humanities at Stanford University.4 We used 196 files
of string quartet music by Beethoven, Haydn, and Mozart
to estimate the second set of parameters. These files were
converted to a format which can be used in the Melisma
Music Analyzer as well as to a MIDI format using the tools
developed by Craig Sapp.5 The audio data synthesized from
these MIDI files for the first and the second model is about
4 hours long or 76,500 frames, and 12 hours long or 233,500
frames, respectively (16 hours or 310,000 frames total).

Figure 2 shows a transition probabilities matrix and tran-
sition probabilities for C major chord estimated from the
training data set. It can be observed that the transition
matrix is strongly diagonal since chord duration is usually
longer than the frame length, and thus the state does not
change for several frames, which makes a transition proba-
bility to itself highest.

As illustrated in Figure 3, however, chord progression
based on music theory can also be found in transition prob-
abilities, for example, in the case of C major chord. As
mentioned, it has the largest probability of staying within
the same state, i.e., within C major chord, because of faster
frame rate than the rate of chord changes, but has compa-
rably higher probabilities for making a transition to specific
chords like F major, G major, or F minor chord than to
others. F major and G major have subdominant-tonic and
dominant-tonic relationships with C major, respectively, and
transitions between them happen very often in Western tonal
music. C major chord is also a dominant chord of F minor,
and therefore a C major to F minor transition is frequent as
well. This tonic-dominant relationship can also be observed
in Figure 2 as off-diagonal lines with 4 and 5 semitone offsets
with respect to their tonics.

Figure 4 exemplifies the observation distribution parame-
ters estimated from each training data set for C major chord.
On the left is the mean chroma vector for C major chord for
each model. It is obvious that they both have three largest
peaks at chord tones or at C, E, and G, as expected. In
addition, we can also see relatively large peaks at D, A#,
and B, which come from the third harmonics of chord tones
and/or from the seventh chords. One noticeable thing is a
relatively high peak at the root note or at C in the bottom
figure for HMM B, which was obtained from the training
data composed of 196 string quartets. This can be explained
by the fact that there are four instruments – violin I/II, vi-
ola, and cello – in a string quartet, and there is a very high
chance of more than one instrument playing the root note
simultaneously, which is the most important note in a the-
ory of harmony, resulting in stronger spectral energy at the
root note. Diagonal vectors of covariance matrices for C
major chord is also consistent with what is expected from
the music theoretical knowledge. Chord tones or C, E, and
G are strongly correlated with themselves whereas very low
correlation was found with D#, F#, or G#.

4.1 Empirical Results
We tested our models on the selected corpus of excerpts

from the Kostka and Payne’s book [6]. The book not only
includes harmonic analyses of the excerpts done by the au-
thors, but also is accompanied by corresponding audio files
which were recorded using real acoustic instruments. The
test set consists of 10 short excerpts – 5 piano solos and 5

4http://www.ccarh.org/
5http://extras.humdrum.net/

string quartets. None of the test set was included in a train-
ing data set. Table 1 describes information on test material
in more detail. Test data first goes through the chroma anal-
ysis which outputs 12-bin quantized chroma feature vectors.
These feature vectors are then fed into the trained HMMs.
Recognition is accomplished as the Viterbi algorithm finds
the optimal path given the model parameters and the in-
put observation vectors. We compared the output of the
model, which is a sequence of frame-level chord names, with
the hand-marked ground-truth to make scores for frame rate
accuracy.

In computing scores, we only counted exact matches as
correct recognition. We tolerated the errors at the chord
boundaries by having some time margins of a few frames
around the boundaries. This assumption is fair since the
ground-truth was generated by human by listening to a
piece, which can’t be razor sharp.

Since we have two separate parameter sets trained on two
different training data sets, we tested each test data set for
each parameter set. In addition, we estimated another set
of parameters using all the training data, i.e., by combining
both piano solo and string quartets together, which amount
to 277 audio files, 16 hours of audio, or 310,000 frames.
Therefore, we have six categories of test results for two test
data sets and three parameter sets.

The recognition results from one example is shown in Fig-
ure 5. The test material was the fourth piano example of
Beethoven’s Piano Sonata Op. 14, No. 2, II. 12-bin chro-
magram is shown at the top, and the recognition for each
model is displayed below it.

As can be seen in Figure 5, all three parameter sets suc-
cessfully identify chord types as well as their boundaries. It
is interesting to note that the performance is worst for piano
parameters even though the test material was of the same
kind. This may suggest that the model performance is more
dependent on the amount of training data than its speci-
ficity. This observation is generally true for all test data
except for a few exceptions.

Table 2 shows frame-rate recognition results for all six
possible test data – parameter pairs. The total recognition
rate was highest for the combined parameters, followed by
the string quartet parameters and the piano parameters for
both test data sets although the differences were not signif-
icant.

Analyses on the results show that most errors come from
the non-chord tones such as passing tones especially in a
piece with a fast tempo. Two worst performances in the
whole test data sets are such cases (piano solo #3 and string
quartet #2). Since the size of an analysis window is fixed,
if a given input has a fast tempo, the window will span over
more notes, and it is highly likely that more than one chord
is contained in a single frame, causing a great confusion
to the system. Beat-synchronous analysis done in [1] will
help avoid this kind of problems because not only the rate
of chord changes is usually slower than the beat, but also
non-chord tones rarely occur on-beat.

We also tested our models on the whole recording of Bach’s
Prelude in C major performed by Glenn Gould. It is approx-
imately 140 seconds long, and contains 753 frames. The
ground truth came from harmonic analysis done by the au-
thors. Figure 6 shows recognition results for the parameters
trained on both piano music and string quartets.

As can be seen in Figure 6, estimated chord boundaries
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Figure 2: 36x36 transition probability matrices obtained from 81 solo piano music (HMM A) and from 196
string quartets (HMM B). For viewing purpose, logarithm was taken to the original matrices. Axes are
numbered in the order of major, minor, and diminished chords.
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Table 1: Test Material
Type Title Length (sec/# of frames)

Piano Solo Mozart, Sonata K.309, III 5.96/32
Beethoven, Sonata Op.13, II 8.26/44

Mozart, Sonata K.545, II 27.56/148
Beethoven, Sonata Op.14, No.2, I 7.52/40

Haydn, Sonata No.33, III 6.18/33
String Quartet Haydn, Quartet Op.76, No.1, III 3.32/17

Schubert, Quartet Op.post., I 6.24/33
Haydn, Quartet Op.20, No.4, I 9.96/53
Haydn, Quartet Op.3, No.3, IV 10.67/57
Mendelssohn, Quartet Op.80, IV 16.33/87
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Figure 4: Estimated mean chroma vector and covariance matrix for C major chord for HMM A (top) and
HMM B (bottom).
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Figure 6: Frame-level state path (chord sequence) of the first 60 seconds from Bach’s Prelude in C Major

(BWV 846) performed by Glenn Gould. Solid vertical lines indicate actual chord boundaries.

Table 2: Recognition Results
Training Data Test Data Recog. Rate (%)

Piano Piano 1 71.88
Piano 2 93.18
Piano 3 47.97
Piano 4 90.00
Piano 5 100.00
Total 68.69

String Quartet Piano 1 90.63
Piano 2 72.73
Piano 3 56.76
Piano 4 100.00
Piano 5 100.00
Total 73.40

All Piano 1 75.00
Piano 2 90.91
Piano 3 56.76
Piano 4 100.00
Piano 5 100.00
Total 74.41

Piano String Quartet 1 100.00
String Quartet 2 51.52
String Quartet 3 64.15
String Quartet 4 94.74
String Quartet 5 85.06

Total 79.35
String Quartet String Quartet 1 100.00

String Quartet 2 45.45
String Quartet 3 69.81
String Quartet 4 92.98
String Quartet 5 86.21

Total 79.76
All String Quartet 1 100.00

String Quartet 2 45.45
String Quartet 3 69.81
String Quartet 4 94.74
String Quartet 5 86.21

Total 80.16

are very closely aligned with the ground-truth boundaries.
Furthermore, almost all chord names are also correctly rec-
ognized. As mentioned in Section 3.2, dominant seventh
chords were recognized as their root triads, which we treated
as correct recognition. The overall frame-level accuracy was
about 92.03%.

Except for some sporadic errors, most consistent errors
in the test data came from the confusion between A minor
seventh chord and C major chord as can be seen in the
middle of Figure 6. A minor seventh is composed of four
notes – A, C, E, and G – in which C, E, and G are also
chord tones of C major triad. Since we treated A minor
triad and A minor seventh as one class, it is highly likely
that A minor seventh is misrecognized as C major triad in
the presence of a G note, which was the case. We expect
that the system will be less sensitive to this sort of confusion
if we increase the class size to include seventh chords and
train our model on more data.

To further investigate the validity of our model’s gener-
ality on different musical styles, we performed another test
using a totally different type of music in terms of its genre,
instrumentation, era, etc. The test material was popular
rock music by Michael Chapman. It has typical instrumen-
tation that can be seen in any popular rock music, consisting
of electric guitar, electric bass, voice, and drums. Figure 7
illustrates recognition results for the first 20 seconds using
the parameters trained on all data.

Again, the model successfully identifies chord names and
their boundaries almost perfectly except for a little earlier
detection of A minor chord. This is very encouraging be-
cause the model was never trained on such type of music,
and it still yields a very high performance. This in turn
supports the idea of using one single model for all kinds of
music.

It is hard to directly compare performance of our system
with previous work since we are using different type of music
for testing as well as for training. But we believe our high
performance, when training on synthetic pieces and testing
on live recordings, will only get better as we add more pieces
to our training collection and add additional instrumenta-
tions.
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Figure 7: Frame-level state path (chord sequence) of the first 20 seconds from Michael Chapman’s Another

Crossroads. Solid vertical lines indicate actual chord boundaries.

5. CONCLUSION
The main contribution of this work is the automatic gen-

eration of labeled training data for a machine learning model
for automatic chord recognition. By using the chord labels
with explicit segmentation information, we directly estimate
the model parameters in an HMM.

In order to accomplish this goal, we have used symbolic
data to generate label files as well as to create audio files.
The rationale behind this idea was that it is far easier and
more robust to perform harmonic analysis on the symbolic
data than on the raw audio data since symbolic files such
as MIDI files contain noise-free pitch information. In addi-
tion, by using a sample-based synthesizer, we could create
audio files which have enharmonically rich spectra as in real
acoustic recordings.

As feature vectors, we used 12-bin tuned chroma vectors
which have been successfully used by others for the chord
recognition application. We have defined 36 classes or chord
types in our model, which include for each pitch class three
distinct sonorities – major, minor, and diminished. We
treated seventh chords as their corresponding root triads,
and disregarded augmented chords since they very rarely
appear in tonal music.

In order to examine the generality of our approach, we
obtained two different model parameters trained on two
musically distinct data sets, and another set of parameters
trained on all data sets. After the model parameters were es-
timated from the training data sets, various types of unseen
test inputs from real recording were fed to the models, and
the Viterbi algorithm was applied to find the best probable
state path, i.e., chord sequence, at the frame rate. Exper-
iments showed very promising results in terms of model’s
generality as well as recognition performance.

In this paper, we trained our model only on classical music
even if we had two data sets that differ in instrumentation.
In the near future we plan to include more training data
with different genres and styles to see if we can develop any
genre-specific model. Particularly, we believe that a transi-
tion probability matrix can be used for musical genre iden-
tification. For instance, the transition probability matrix of
a blues model will exhibit a very strong I-IV-I-V-I transi-

tion pattern since almost all blues music obey a rule of such
harmonic progression.

In addition, we consider higher-order HMMs in the future
because chord progressions based on Western tonal music
theory show such higher-order characteristics. Therefore,
knowing two or more preceding chords will help make a cor-
rect decision.
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