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Abstract

Rating prediction is an important application
and a popular research topic in collaborative
filtering. However, both the validity of learn-
ing algorithms, and the validity of standard
testing procedures rests on the assumption
that missing rating data is missing at random
(MAR); this is often violated for real data. In
this paper we present the results of a user sur-
vey and study, in which we collect a random
sample of ratings from current users of an on-
line radio service. In the survey, a large num-
ber of users report they believe their opinion
of a song does affect whether they choose to
rate that song, a violation of the MAR con-
dition. We collected a true random sample
of more than 300,000 song ratings from more
than 30,000 users. An analysis of this data
shows that the sample of random ratings has
markedly different properties than ratings of
user-selected songs. Finally, we present ex-
perimental results which show that learning
an explicit model of the missing data mecha-
nism with an informative prior can lead to a
large improvement in prediction performance
on the random sample of ratings.

1 Introduction

In a collaborative filtering system users assign ratings
to items, and the system uses information from all
users to predict previously unseen items that each user
might like or find useful. The two main tasks within
collaborative filtering are recommendation and rating
prediction. A rating prediction method can be used
to predict the rating for a given item, or as part of a
recommendation method based on estimating all miss-
ing ratings, and then recommending the items with
the highest predicted rating. Collaborative filtering

research within the machine learning community has
focused almost exclusively on developing new models
and new learning procedures to improve rating predic-
tion performance [2, 4, 5, 6, 8].

A critical assumption behind both learning methods
and testing procedures is that the missing ratings are
missing at random [7, p. 89]. One way to violate
the missing at random condition in the collaborative
filtering setting is for the probability of observing a
rating to depend on the value of that rating. In an
internet-based movie recommendation system, for ex-
ample, a user may be much more likely to see movies
that they think they will like, and to enter ratings for
movies that they see. This would create a systematic
bias towards observing ratings with higher values.

Consider how this bias in the observed data im-
pacts learning and prediction. In a nearest neighbour
method it is still possible to accurately identify the
neighbours of a given user [5]. However, the predic-
tion for a particular item is based only on the available
ratings of neighbours who rated the item in question.
Conditioning on the set of users who rated the item can
introduce bias into the predicted rating. The presence
of non-random missing data can similarly introduce a
systematic bias into the learned parameters of para-
metric and semi-parametric models including mixture
models [1], customized probabilistic models [8], and
matrix factorization models [2].

It is important to note that the presence of non-
random missing data introduces a complementary bias
into the standard testing procedure for rating predic-
tion experiments [1] [5] [8, p.90]. Models are usually
learned on one subset of the observed data, and tested
on a different subset of the observed data. If the dis-
tribution of the observed data is different from the
distribution of the fully compltede data for any rea-
son, the estimated error on the test data can be an
arbitrarily poor estimate of the error on the fully com-
pleted data. Marlin, Roweis, and Zemel confirm this
using experiments on synthetic data [9].
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In this paper we present the results of the first study
to analyze the the impact of the missing at random
assumption on collaborative filtering using data col-
lected from real users. The study is based on more
than 30,000 current users of Yahoo! Music’s Launch-
Cast radio service. We begin with a review of the
theory of missing data due to Little and Rubin [7].
We analyze the data that was gathered during the
study, which included a user survey, and collecting rat-
ings for randomly chosen songs. We describe models
for learning and prediction with non-random missing
data, and introduce a new experimental protocol for
rating prediction based on training using user-selected
items, and testing using randomly selected items. Ex-
perimental results show that incorporating a simple,
explicit model of the missing data mechanism can lead
to significant improvements in test error compared to
naively treating the data as missing at random.

2 Missing Data Theory

A collaborative filtering data set can be thought of as
a rectangular array x where each row in the array rep-
resents a user, and each column in the array represents
an item. xim denotes the rating of user i for item m.
Let N be the number of users in the data set, M be
the number of items, and V be the number of rating
values. We introduce a companion matrix of response
indicators r where rim = 1 if xim is observed, and
rim = 0 if xim is not observed. We denote any latent
values associated with data case i by zi. The corre-
sponding random variables are denoted with capital
letters.

We adopt the factorization of the joint distribution of
the data X, response indicators R, and latent vari-
ables X shown in equation 2.1.

P (R,X,Z|µ, θ) = P (R|X,Z, µ)P (X,Z|θ) (2.1)

We refer to P (R|X,Z, µ) as the missing data model or
missing data mechanism, and P (X,Z|θ) as the data
model. The intuition behind this factorization is that
a complete data case is first generated according to the
data model, and the missing data model is then used
to select the elements of the data matrix that will not
be observed.

2.1 Classification Of Missing Data

Little and Rubin classify missing data into sev-
eral types including missing completely at random
(MCAR), missing at random (MAR), and not missing
at random (NMAR) [7, p. 14]. The MCAR condition
is defined in equation 2.2, and the MAR condition is
defined in equation 2.3. Under MCAR the response

probability for an item or set of items can not depend
on the data values in any way. Under the MAR condi-
tion, the data vector is divided into a missing and an
observed part according to the value of r in question:
x = [xmis,xobs]. The intuition is that the probabil-
ity of observing a particular response pattern can only
depend on the elements of the data vector that are
observed under that pattern [10]. In addition, both
MCAR and MAR require that the parameters µ and
θ be distinct, and that they have independent priors.

Pmcar(R|X,Z, µ) = P (R|µ) (2.2)

Pmar(R|X,Z, µ) = P (R|Xobs, µ) (2.3)

Missing data is NMAR when the MAR condition fails
to hold. The simplest reason for MAR to fail is that
the probability of observing a particular element of the
data vector depends on the value of that element. In
the collaborative filtering case this corresponds to the
idea that the probability of observing the rating for a
particular item depends on the user’s rating for that
item. When that rating is not observed, the missing
data are not missing at random.

2.2 Impact Of Missing Data

When missing data is missing at random, maximum
likelihood inference based on the observed data only
is unbiased. We demonstrate this result in equation
2.7. The key property of the MAR condition is that
the response probabilities are independent of the miss-
ing data, allowing the complete data likelihood to be
marginalized independently of the missing data model.
However, when missing data is not missing at random,
this important property fails to hold, and it is not pos-
sible to simplify the likelihood beyond equation 2.4 [7,
p. 219]. Ignoring the missing data mechanism will
clearly lead to biased parameter estimates since the
incorrect likelihood function is being optimized. For
non-identifiable models such as mixtures, we will use
the terms “biased” and “unbiased” in a more general
sense to indicate whether the parameters are optimized
with respect to the correct likelihood function.

Lmar(θ|xobs, r)

=
∫

xmis

∫

z
P (X,Z|θ)P (R|X, µ)dZdXmis (2.4)

= P (R|Xobs, µ)
∫

xmis

∫

z
P (X,Z|θ)dZdXmis (2.5)

= P (R|Xobs, µ)P (Xobs|θ) (2.6)

∝ P (Xobs|θ) (2.7)



Table 1: User reported frequency of rating songs as a function of preference level.

Rating Frequency Preference Level
Hate Don’t Like Neutral Like Love

Never 10.8% 8.8% 9.4% 3.0% 2.7%
Very Infrequently 5.0% 7.8% 14.5% 2.7% 2.1%
Infrequently 5.0% 9.1% 27.1% 4.4% 1.7%
Often 19.4% 28.5% 24.4% 33.1% 11.8%
Very Often 59.8% 45.9% 24.6% 56.8% 81.6%

Hate Don’t like Neutral Like Love
0

10

20

30

40

50

60

70

80
Never
Very Infrequently
Infrequently
Often
Very Often

Survey Results: Yahoo! LaunchCast users were asked to self report how
often they thought they were likely to rate a song for which they had a
given preference. The data above show the percentage of users selecting
each frequency choice when asked about each preference level. Users could
select only one frequency per preference were otherwise unconstrained.

From a statistical perspective, biased parameter esti-
mates are a serious problem. From a machine learning
perspective, the problem is only serious if it adversely
affects the end use of a particular model. Using syn-
thetic data experiments, Marlin, Zemel, and Roweis
demonstrated that ignoring the missing data mecha-
nism in a rating prediction setting can have a signifi-
cant impact on predictive performance [9].

3 Yahoo! LaunchCast Case Study

To properly assess the impact of the missing at random
assumption on rating prediction, we require a test set
consisting of ratings that are a true random sample of
the ratings contained in the complete data matrix. In
this section we describe a study conducted in conjunc-
tion with Yahoo! Music’s LaunchCast Radio service
to collect such a data set.

LaunchCast radio is a customizable streaming music
service where users can influence the music played on
their personal station by supplying ratings for songs.
The LaunchCast Radio player interface allows the user
enter a rating for the currently playing song using a
five star scale.1

Data was collected from LaunchCast Radio users be-
tween August 22, 2006 and September 12, 2006. Users
based in the US were able to join the study by clicking
on a link in the LaunchCast player. Both the survey
and rating data were collected though the study’s web
site. A total of 35, 786 users contributed useable data
to the study.

1The Yahoo! Music LaunchCast web site is available at
http://music.yahoo.com/launchcast/.

3.1 User Survey

The first part of the study consisted of a user survey
containing of sixteen multiple choice questions. The
questions relevant to this work asked users to report on
how their preferences affect which songs they choose to
rate. The question was broken down by asking users to
estimate how often they rate a song given the degree to
which they like it. The results are summarized in table
1, and represented graphically in the accompanying
figure. Each column in the table gives the results for
a single survey question. For example, the column
labeled “neutral” corresponds to the question “If I hear
a song I feel neutral about I choose to rate it:” with the
possible answers being “never”, “very infrequently”,
“infrequently”, “often”, and “very often”.

The results indicate that the choice to rate a song de-
pends quite strongly the a user’s opinion of that song.
Most users tend to rate songs that they love much more
often than songs they feel neutral about, and some-
what more often than songs that they hate. Users were
next asked if they thought their preferences for a song
do not affect whether they choose to rate it. 64.4% of
users responded that their preferences do affect their
choice to rate a song. This dependence indicates a
violation of the missing at random assumption.

3.2 Rating Data Collection

Following the survey, users were presented with a set
of ten songs to rate. The artist name and song title
was given for each song, along with a thirty second
audio clip. If users were not familiar with the song,
they had the option of playing the clip before enter-
ing a rating. Ratings were entered on the standard five
point scale used by Yahoo! Music. The set of ten songs
presented to each user was chosen at random without
replacement from a larger set of 1000 songs that we
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(b) Yahoo! Base Rat-
ing Distribution
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(d) MovieLens Rating
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Figure 1: Distribution of rating values in the Yahoo! base set and survey set compared to several popular
collaborative filtering data sets including EachMovie, MovieLens, and Netflix.
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(a) Histogram of number
of songs vs symmetrised
KL divergence. The me-
dian value is 1.1764.
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(b) Survey marginal dis-
tribution for song 281
with symmetrised KL di-
vergence 1.1711.
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(c) Base marginal distri-
bution for song 281 with
symmetrised KL diver-
gence 1.1711.
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Figure 2: Panels (a) to (c) give an indication of the distribution of differences between base and survey marginal
distributions for each song. Panel (d) shows the distribution of differences between items rated both in the
survey set and the base set.

will refer to as the “survey songs”. The survey songs
were chosen at random from the songs in the Launch-
Cast playlist having at least 500 existing ratings in the
LaunchCast rating database.

We will refer to the survey song ratings collected dur-
ing the survey as the “survey set.” We also extracted
the complete set of ratings for the survey songs from
the LaunchCast rating database. We will refer to this
set of ratings as the “base set.”

Figures 1(a) and 1(b) show the empirical distribution
of ratings in the survey set and the base set. These
figures show a dramatic difference between the two
distributions. The number of five star rating values
is many times lower in the survey set than the base
set, and the two distributions exhibit opposite trends
on rating values two to five. Figures 1(c) to 1(e) give
the rating distributions for several other collaborative
filtering data sets including EachMovie, MovieLens,
and Netflix. All show a skew toward high rating values.

To further analyze the difference between the base set
and the survey set, we computed the distribution over
ratings for each item. For a particular item m let

PS(Xm = v) be the empirical probability of rating
value v in the survey set, and P B(Xm = v) be the em-
pirical probability of rating value v in the base set. We
smooth the empirical probabilities by one count per
rating value to avoid zeros. We use the symmetrised
Kullback−Leibler divergence (SKL) shown in equation
3.8 to measure the difference between the P S(Xm = v)
and PB(Xm = v) distributions for each item m.

SKLm =
V∑

v=1

PS(Xm = v) log
(

PS(Xm = v)
PB(Xm = v)

)

+ PB(Xm = v) log
(

PB(Xm = v)
PS(Xm = v)

)
(3.8)

Figure 2(a) shows a histogram of the symmetrised
Kullback−Leibler divergence values. The thick ver-
tical line in the plot indicates the median SKL value
of 1.1764 bits. Song 281 has an SKL value of 1.1711
bits, the largest SKL value less than the median. Fig-
ures 2(b) and 2(c) illustrate the marginal rating dis-
tributions for song 281. These distributions are qual-
itatively quite different, and half of the songs in the
survey set exhibit a more extreme difference according
to the SKL measure.
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Figure 3: Bayesian multinomial mixture model.

A pertinent question is whether users were truthfully
reporting ratings during the survey? To help answer
this question we extracted the set of ratings that were
observed both in the survey set, and in the base set.
Figure 2(d) shows a histogram of the differences xB

im−
xS

im where the user-song pair (i,m) is observed in both
the survey S and base sets B. We can see from figure
2(d) that the agreement between the two sets of ratings
is quite good.

It is important to note that the observed discrepancy
between the survey set marginal distributions and the
base set marginal distributions is not conclusive evi-
dence that the missing data in the base set is NMAR.
This is due to the fact that the MAR assumption can
hold for the true underlying data model, but not for
more simplistic models like the marginal model used
in the present analysis. Nevertheless, we believe that
the results of the present analysis combined with the
results of the user survey provide compelling evidence
against the MAR assumption.

4 Modeling Non-Random Missing
Data

Many probabilistic models have the property that
missing data can be analytically integrated away un-
der the missing at random assumption. This allows
for computationally efficient, unbiased parameter es-
timation. The multinomial mixture model has this
convenient property, and it has been well studied in
the collaborative filtering domain [8].

When the missing at random assumption is not be-
lieved to hold, equation 2.4 shows that parameter es-
timation will be biased unless the true missing data

Algorithm 1 MAP EM Algorithm for the Bayesian
multinomial mixture model.

E-Step:

qzi ← θz
∏M

m=1
∏V

v=1 β
rim[xim=v]
vmz

∑ K
z=1 θz

∏M
m=1

∏V
v=1 β

rim[xim=v]
vmz

M-Step:
θz ← αz−1+

∑ N
i=1 qzi∑ K

z=1(αz+
∑ N

i=1 qzi)−K

βvmz ← φvmk−1+
∑ N

i=1 qzirim[xim=v]∑ V
v=1 φvmk−V +

∑ N
i=1 qzirim

mechanism is known. In a domain as complex and
high dimensional as collaborative filtering, a more re-
alistic goal is to formulate models of the missing data
mechanism that capture some of its key properties.

In this section we present the basic multinomial mix-
ture model, and give learning and prediction meth-
ods under the MAR assumption. We extend the mix-
ture model by combining it with a Bayesian variant
of the CPT-v missing data model [9], which cap-
tures a key property of the non-random missing data
mechanism implied by the user survey results. We
give learning and prediction methods for the combined
mixture/CPT-v model.

4.1 Multinomial Mixture Data Model

The multinomial mixture model is a generative prob-
abilistic model. It captures the simple intuition that
users form groups or clusters according to their pref-
erences for items. We give a graphical depiction of the
finite Bayesian mixture model in figure 3, and summa-
rize the probabilistic model below.

P (θ,β|α,φ) = D(θ|α)
∏

k

∏

m

D(βmk|φmk) (4.9)

P (Zi = k|θ) = θk (4.10)

P (Xi = xi|Zi = k,β) =
∏

m

∏

v

β[xim=v]
vmk (4.11)

The main feature of the model is the variable Zi, which
indicates which of the K groups or clusters user i be-
longs to. To generate a complete data vector X i for
user i, a value k for Zi is first sampled according to the
discrete distribution P (Zi = k|θ). A rating value v for
each item m is then sampled independently from the
discrete distribution P (Xim = v|Zi = k,βmk). Impor-
tantly, all we observe is the final data vector X i. Zi

is considered a latent variable since its value is never
observed.

In a Bayesian mixture model, the parameters θ and
βmk are also regarded as random variables. Before
generating any data cases, the model parameters are



first sampled from their prior distributions. The same
model parameters are assumed to generate all data
cases. In the present case we choose conjugate Dirich-
let priors for both θ, and βmk. We give the form of
the Dirichlet priors for θ and βmk in equations 4.12
and 4.13.

D(θ|α) =
Γ(

∑K
k=1 αk)

∏K
k=1 Γ(αk)

K∏

k=1

θαk−1
k (4.12)

D(βmk|φmk) =
Γ(

∑V
v=1 φvmk)

∏V
v=1 Γ(φvmk)

V∏

v=1

βφvmk−1
vmk (4.13)

The posterior log probability of the mixture model pa-
rameters θ and βmk given a sample of incomplete data
is shown below in equation 4.14.

Lmar =
N∑

i=1

log

(
K∑

k=1

θk

M∏

m=1

V∏

v=1

βrim[xim=v]
vmk

)

+ log D(θ|α) +
M∑

m=1

K∑

k=1

log D(βmk|φmk) (4.14)

The Bayesian mixture model parameters are learned
from incomplete data by maximizing the posterior log
probability of the observed data. This optimization is
efficiently performed using the Expectation Maximiza-
tion (EM) algorithm of Dempster, Laird, and Rubin
[3]. We give the maximum a posteriori (MAP) EM al-
gorithm for the Bayesian multinomial mixture model
in Algorithm 1. In the expectation step of the algo-
rithm we compute posterior distribution on Zi for each
user i given the current values of the model parame-
ters. This inference procedure is also important for
prediction. We give it in equation 4.15.

P (Zi = z|xi, ri, θ,β) =

θz

M∏

m=1

V∏

v=1

βrim[xim=v]
vmz

K∑

z=1

θz

M∏

m=1

V∏

v=1

βrim[xim=v]
vmz

(4.15)

4.2 The CPT-v Missing Data Model

The CPT-v missing data model was proposed by Mar-
lin, Roweis, and Zemel as the simplest non-random
missing data model [9]. The CPT-v model captures
the intuition that a user’s preference for an item af-
fects whether they choose to rate that item or not.
The model assumes that the choice to rate each item

Algorithm 2 MAP EM Algorithm for the Bayesian
multinomial mixture/CPT-v model.

E-Step:
λvmzn ← ([xim = v]µvβvmz)rim((1 − µv)βvmz)1−rim

γmzn ←
∑V

v=1 λvmzn

qzi ← θzn

∏M
m=1 γmzn∑ K

z=1 θz′
∏M

m=1 γmzn

M-Step:
θz ← αz−1+

∑ N
i=1 qzi∑ K

z=1(αz+
∑ N

i=1 qzi)−K

βvmz ← φvmk−1+
∑ N

i=1 φziλvmzn/γmzn∑ V
v=1 φvmk−V +

∑ N
n=1 qzi

µv ← ξ1v−1+
∑ N

i=1
∑ K

z=1 qzi
∑ M

m=1 rmnλvmzn/γmzn

ξ0v+ξ1v−2+
∑ N

n=1
∑ K

z=1 qzi
∑ M

m=1 λvmzn/γmzn

is independent, and that the probability of rating a
single item, given that the user’s rating for that item
is v, is Bernoulli distributed with parameter µv. We
extend the basic CPT-v model slightly by introducing
a Beta prior on the parameters µv. The probabilistic
model is summarized below.

P (µ|ξ) =
∏

v

Beta(µv|ξv) (4.16)

P (R = r|X = x) = (4.17)
M∏

m=1

V∏

v=1

µrim[xim=v]
v (1 − µv)(1−rim)[xim=v]

The Beta prior we select is the conjugate prior for the
Bernoulli parameters µv. We give the form of the prior
distribution in equation 4.18.

Beta(µv|ξv) =
Γ(ξ0v + ξ1v)
Γ(ξ0v)Γ(ξ1v)

µξ1v−1
v (1 − µv)ξ0v−1

(4.18)

The factorized structure of the model is quite restric-
tive. However, it allows the missing data to be summed
out of the posterior distribution leaving local factors
that only depend on one missing data value at a time.
The log posterior distribution on the model parame-
ters is given in Equation 4.19.

LCPTv =
N∑

n=1

log

(
K∑

z=1

θz

M∏

m=1

γmzn

)
+

V∑

v=1

log Beta(µv|ξv)

(4.19)

γmzn =
{ ∏

v(µvβvmz)[xim=v] ... rim = 1∑
v(1 − µv)βvmz ... rim = 0

As in the Bayesian mixture model case, the log
posterior distribution of the combined Bayesian



mixture/CPT-v model can be maximized using an ex-
pectation maximization algorithm. We give the details
in Algorithm 2. Again, inference for the latent mixture
indicator Zi is the main operation in the expectation
step. As we can see in equation 4.20, the form of the
inference equation is very similar to the standard mix-
ture case.

P (Zi = z|xi, ri, θ,β) =
θz

∏M
m=1 γmzn∑K

z=1 θz
∏M

m=1 γmzn

(4.20)

4.3 Rating Prediction

To make a prediction for user i and item m we first
need to perform inference in the model to compute
the posterior distribution P (Zi = z|xi, ri, θ,β) over
the mixture indicator variable Zi. For the multino-
mial mixture model under the MAR assumption we
use equation 4.15. For the multinomial mixture model
combined with the CPT-v model we use equation 4.20.
For both models, we compute the predictive distribu-
tion over rating values for item m according to equa-
tion 4.21.

P (Xim = v) =
K∑

z=1

βvmzP (Zi = z|xi, ri, θ,β) (4.21)

5 Experimental Method and Results

Both the analysis of the user survey, and the analysis
of the rating data collected in this study suggest that
missing data in the LaunchCast database is not miss-
ing at random. The question we address in this section
is whether treating the missing data as if it were not
missing at random leads to an improvement in predic-
tive performance relative to treating the missing data
as if it were missing at random. We discuss the data
set used for rating prediction experiments, the meth-
ods tested, the experimental protocol, and the results.

5.1 Rating Prediction Data Set

The prediction data set consists of the 1000 songs in
the survey set, as well as an additional 1000 songs cho-
sen at random. Survey users were included in the pre-
diction data set if they had at least 30 existing ratings
on the additional set of items. Non-survey users were
included in the prediction data set if they had at least
30 existing ratings on both sets of songs. The training
data set consists of the ratings from the LaunchCast
rating database for each user included the prediction
data set. The test data set consists of the ratings for
random songs collected during the study for each sur-
vey user in the prediction data set. The overlapping
ratings in the two sets were removed from the training

set. The minimum number of ratings per user, and
the inclusion of non-survey users and items was nec-
essary to create a reasonably dense, but manageably
sized data set.

5.2 Rating Prediction Experiments

The baseline method for the rating prediction exper-
iments is based on the Bayesian multinomial mixture
model under the MAR assumption. We learn the
model using the EM algorithm given in Algorithm 1
with the prior parameters φvmz = 2 and αz = 2 for all
v,m, z.

Initial testing of the CPT-v model showed that it di-
verged to poor boundary solutions using a uniform
prior. This is not surprising since CPT-v has previ-
ously been observed to diverge on real data sets [9]. To
remedy this problem we tried learning only the mix-
ture model parameters with the CPT-v model parame-
ters fixed to the values µ = [0.01, 0.01, 0.01, 0.01, 0.05]
to express the belief that five star ratings are much
more likely to be observed than the other rating val-
ues. We tried relaxing this assumption by setting
the prior on µv to Beta(10, 990) for v = 1, ..., 4, and
Beta(50, 950) for v = 5, and learning both µ, and the
data model parameters. This prior expresses the same
belief that five star ratings are more likely to be ob-
served than the other rating values. It is worth noting
that this very simple prior is the first prior we tested,
and we have not yet investigated the effect of alterna-
tive priors.

Training for each model was performed until the log
posterior converged to six decimal places, or 250
EM iterations were exceeded. Once each model was
trained, it was used to predict the rating values of the
ten randomly selected test items for each survey user
in the test data set. We report error values using mean
absolute error (MAE) [1].

5.3 Rating Prediction Results

Each row of table 2 gives prediction results for a differ-
ent combination of mixture model, and missing data
model. The missing data models are “none”, corre-
sponding to the MAR assumption; “CPT-v Fixed”,
corresponding to setting µ by hand; and “CPT-v
Prior”, corresponding to learning µ under an informa-
tive prior. The results show that the CPT-v selection
model combined with the informative prior achieves
best performance on the test set. This combination
significantly out-performs prediction under the MAR
assumption. It is interesting to note that the best per-
formance is achieved at K = 1. The learned µ param-
eters for K = 1 essentially explain all of the missing
data as having a rating value of one star.



Table 2: Mean Absolute Rating Prediction Error

Model Train MAE Test MAE
K=1/None 1.3354 ± 0.0000 1.2393 ± 0.0000
K=1/CPT-v Fixed 1.3554 ± 0.0000 1.0208 ± 0.0000
K=1/CPT-v Prior 1.7269 ± 0.0000 0.8468 ± 0.0000
K=2/None 0.9447 ± 0.0009 1.2344 ± 0.0007
K=2/CPT-v Fixed 1.0341 ± 0.0636 0.9715 ± 0.0073
K=2/CPT-v Prior 1.6326 ± 0.0192 0.8500 ± 0.0009
K=6/None 0.7546 ± 0.0012 1.1330 ± 0.0057
K=6/CPT-v Fixed 0.7781 ± 0.0016 0.9923 ± 0.0055
K=6/CPT-v Prior 1.2027 ± 0.0056 0.9366 ± 0.0085
K=10/None 0.7349 ± 0.0017 1.1230 ± 0.0061

6 Discussion and Conclusions

In the collaborative filtering domain, both the valid-
ity of learning algorithms, and the validity of standard
testing procedures rests on the assumption that miss-
ing rating data is missing at random. In this paper
we have provided compelling evidence of a violation of
the missing at random assumption in real collabora-
tive filtering data. Furthermore, we have shown that
learning an explicit model of the missing data mecha-
nism can significantly improve rating prediction on a
test set.

Results of the LaunchCast user survey indicate that
users are aware that their preferences impact which
items they choose to rate. Ratings of randomly se-
lected songs collected in this study show systematic
differences relative to ratings of user selected songs.
We introduced a new experimental protocol where
models are trained on ratings of user selected songs,
and tested on ratings of randomly selected songs. Us-
ing this protocol, we found that a very simple missing
data model, with an informative yet not highly tuned
prior, produced a surprising boost in test performance.

There remain many open questions for future work.
We have yet to address the question of sensitivity to
the prior, or the question of model selection. The use
of approximate Bayesian inference may lead to better
predictive performance than the current MAP frame-
work. It would also allow us to consider more flexible
data and missing data models including hierarchical,
and non-parametric constructions. In terms of empir-
ical development, it would be interesting to study the
precision/recall of five star ratings to see if they are
better predicted by more complex data models.

From a broader perspective, using rating prediction to
solve the recommendation problem is much less attrac-
tive without the foundation provided by the MAR as-

sumption. Recommendation methods that can avoid
solving the rating prediction problem may be much
more robust to deviations from the MAR assumption.
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