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ABSTRACT
This paper focuses on resolving a number of issues that ap-
pear when the performance of human speech recognition is
compared to that of automatic speech recognition. In partic-
ular human experimental data suggest that the resulting error
is a product of the individual streams. On the other hand,
Bayesian combination requires a multiplication of the esti-
mates of prior probabilities and likelihoods. We show that,
in principle, there is no discrepancy. The product of errors is
a performancemeasure and human and machine performance
may be consistent with this empirically established regularity.
The product of probabilities is step in an algorithm to achieve
the performance that may or may not be consistent with the
product of errors. The main problem is that most of prior dis-
cussions failed to distinguish the performance measures from
the estimates of the parameters used in the algorithm.

Index Terms— Speech Recogntion, Pattern Recogntion

1. INTRODUCTION

Despite major advances in automatic speech recognition
(ASR), its performance usually falls short of the human abil-
ity to perceive and recognize speech. This discrepancy mo-
tivates investigations of human perceptual abilities as well as
the differences between human and machine speech recogni-
tion with the ultimate goal to develop systems that exceed hu-
man performance. This approach requires a characterization
of human performance, a complete description of the compu-
tational algorithms and an evaluation of the machine perfor-
mance that can then be compared to those human listeners. It
is useful to note that the performance of both human and ASR
is greatly influenced by the contextual information. This in-
formationmust, therefore be incorporated in both approaches.
Since in most realistic situations, the absolute perfor-

mance of humans exceeds that of ASR, the Thus, it is possible
to evaluate the relative improvement due to adding contex-
tual information or the relative deterioration due to removal of
portion of signals in different spectral bands. This approach
enables one to estimate how efficacy of various information
sources used in ASR. This approach is particularly attractive

because of the availability of human performance data gath-
ered during the last 100 years [?].
Our work is motivated by a discrepancy between the per-

formance of a system based on machine-learning principles,
and empirical models describing the performance of human
listeners. This issue is important because recognizers com-
bine information from multiple source. Simple probability
models suggest the error rate should be related to the one mi-
nus the product of correct probabilities for each source, or
perhaps given as the sum of error sources. Instead, it appears
that human performance is a related to the product of errors.
This paper aims to describe machine-learningmodels that can
better model the (superior) human performance.
In this paper we summarize the results of experiments in-

volving manipulations of the frequency content of the acous-
tic speech signals as well as the effect of additional contex-
tual information on human performance. We then describe
a general algorithmic approach used in ASR systems while
clearly distinguishing the computational process from the per-
formance measure of such systems. Finally we will illus-
trate situations where the performance of the algorithmic ap-
proaches is consistent with the human despite the different
approaches to computation.

2. HUMAN PERFORMANCE
CHARACTERIZATION

Human speech-recognition performance, intensely studied
during the last 100 years, depends on a combination of acous-
tic information and on a variety of constraints derived from
the context that limits the possible utterances. In this research,
human subjects are confronted with acoustic stimuli and are
asked to report what they heard – i.e. to recognize the speech
sounds. Their performance is typically summarized by the
proportion of correct responses; these summaries of the em-
pirical results are the estimates of the theoretical representa-
tion of their performance denoted by the probability of correct
responses,Q
Acoustic information is subject to a great deal of variabil-

ity due to a variety of acoustic effects , ranging from specific
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speakers’ characteristics, e.g., accent, to the distortions due to
background noise and room acoustics. One way that the hu-
man auditory system seems to copewith these effects involves
dividing the acoustic input into frequency bands that are used
as independent inputs to the recognition mechanisms; these
are called critical bands. The discovery and recognition of
this fact stimulated extensive experimentation by Fletcher and
his colleagues, recently revived by Allen, provided an elegant
summary of the interactions of information distributed over
the acoustic frequency bands. The majority of these experi-
ments were performed with meaningless, but pronounceable
utterances, e.g., consonant-vowel-consonant sequences, cho-
sen in order to minimize the ability of the listeners to use con-
text, and in particular linguistic cues.
Although the mechanism underlying the combination pro-

cess is not yet known in detail, Fletcher and his colleagues [?]
discovered that the biological combination scheme appears to
obey the following regularity. If the recognition performance
to acoustic input X from several non-overlapping bands cen-
tered around frequency fi with minimal context is given by
QX,i (X), then the human performance of the (acoustic-only)
combination is approximately given by

QX (X) = 1−
∏
∀i

(1−QX,i (X)) . (1)

The implication of this functional form is that an error is com-
mitted only if none of the channels yields the correct classifi-
cation.
As it turns out, a similar functional relationship holds

when human listeners are aided by context, i.e., the human au-
ditory system combines acoustic and contextual information
sources. Contextual constraints can and frequently are ex-
pressed in terms of probability of various utterances. Context-
related constraints can, for example, limit the number of pos-
sible words to two, e.g., yes or no,. Alternatively, context
can restrict the possible words to those that pertain to a par-
ticular topic. Understanding the way that the human audi-
tory system combines the acoustic and contextual informa-
tion is likely to provide important insights into cognitive pro-
cesses. This question stimulated behavioral research of the ef-
fect of context-related constraints on human recognition per-
formance.
In particular, there is evidence [?, ?, ?] that the combina-

tion of contextual and acoustic effects can be characterzed in
terms of the product of errors associated with these two sep-
arate types of information. In particular, if the performance
of the human observer without acoustic input and based on
guessing using only the context information is QC , then the
performance due to the combination of context and acoustic
inputs is approximately given by

Q (X) = 1− (1−QX (X)) (1−QC)r (2)
where r > 0 is a real scaling parameter, approximately usu-
ally between 1 and 2. In other words, the probability of an

error is given by the product of the error due to acoustics
times the probability of an error due to the contextual deci-
sion. Note that the probability of correct classification based
on context is independent of the specific input signal. In this
case, the effect of context represents the context-dependent
prior probability of the correct class.
The product of errors as well as the fusion of context with

acoustic information observed in human perception are both
consistent with the notion of maximizing estimates of poste-
rior class-probability as computed by Bayesian approaches.
They represent ways to approximate Bayesian computations
when the true probabilities are not available and the classi-
fier has only access to the estimates of these probabilities. In
the reminder of the paper we show that some of these be-
haviors are already consisted with the behavior of ASR sys-
tems. In particular in Section 3 we show the reason why an
analogue of Equation 2 is a more efficient representation of
fusion of acoustic and contextual information than a straight
product. In Section 4 we demonstrate that a probabilistic rep-
resentation of context and acoustic information can yield per-
formance consistent with the product of errors. In Section 5
we note without proof that combing a large number of sub-
optimal classifiers, consistent with the product of errors, can
approximate the optimal performance obtainable by Bayesian
representation. In conclusion we suggest that the approxima-
tions used by the human system may be a useful way to im-
plement future ASR systems.

3. AUTOMATIC SPEECH RECOGNITION

Automatic speech recognition (ASR) involves many subtle
and complex computational algorithms that are well beyond
the scope of this summary. For the purpose of this presenta-
tion, we focus on general aspects of the ASR that are common
to most of the ASR systems.
Automatic speech recognition generally involves training

and possibly validation sets of labeled acoustic examples. The
training sets are assumed to be samples of acoustic utterances
representing the actual situations and contexts that will con-
front the trained ASR systems. In addition to the acoustic
samples, the training frequently involves textual training sets
used to improve the estimates of prior probabilities of utter-
ances. In either case, the proportion of examples in these
training sets are assumed to represent the prior probabilities
Pr {L|C} of labels L in context C. We note that the actual
specification of the labels may involve complex models, se-
quences of models, e.g. utterances, associated with each la-
bel. We should also note that successful ASR systems may be
trained on a variety of training sets. Moreover, in some situa-
tions, the prior probabilitiesmay be determined from different
training sets than those used to train the acoustics-based esti-
mates. In any case, the acoustic measurements are assumed to
be good estimates of the likelihoodPr {X |L}. Unfortunately,
ASR systems cannot compute these probabilities—they can
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only output values that can at best be construed to be the es-
timates of these probabilities. We will denote the estimates
obtained by the ASR system by P̂ {L|C}and P̂ {X |L}. We
re-iterate that these quantities are only estimates of the actual
probabilities and are themselves random variables whose dis-
tributions depend on the specific algorithms used to compute
them and on the distribution of the input data.
The estimates of the prior probability and the likelihood

are then used by the ASR system to estimate the posterior
probability,

P̂ {L|X, C} =
P̂ {L, X |C}
P̂ {X |C} =

P̂ {L|C} P̂ {X |L}∑M
i=1 P̂ {X |Li} P̂ {Li|C}

(3)
where we assume a finite set ofM labels Li. The output de-
termined by an ASR is usually chosen to be the most probable
label, i.e., the labelL∗ that maximizes the estimate of the pos-
terior probability:

L∗ = arg max
L

{
P̂ (L|X, C)

}
(4)

We note that in practice, most ASR systems estimate the
logarithms of a quantity proportional to the probability of the
observed data (without normalization), e.g., for the joint prob-
ability in Eq.(3),

log
(
P̂ {L, X |C}

)
≈ log

[
P̂ {L|C}

]
+log

[
P̂ {X |L}

]
(5)

where all three terms are random variables. The general as-
sumption that holds in case of normal distributions is that the
logarithms of the likelihood and prior probability estimates
are random variables that represent unbiased estimates of the
log probabilities. But Equation (5) represents essentially a
linear regression problem, the left hand estimate should opti-
mally be computed by weighted combination of the indepen-
dent variables, i.e.,

log
(
P̂ {L, X |C}

)
= a1 log

[
P̂ {X |L}

]
+a2 log

[
P̂ {L|C}

]
,

(6)
where a1, a2 are real regression coefficients that depend in-
versely on the variance of the individual estimates. In par-
ticular, those inputs with higher variance will be associated
with smaller weights. Since for the purpose of ASR, the ab-
solute magnitude of the posterior probability is not essential,
the quantity to be maximized in Equation (4) is actually

λ =
log

(
P̂ {L, X |C}

)

a1
= log

[
P̂ {X |L}

]
+γ log

[
P̂ {L|C}

]

(7)
where γ = a2/a1. Equivalently, the decision variable can be
interpreted as an estimate of the posterior probability and is

frequently written in terms of a product probabilities where
the prior is raised to the power γ,

D = P̂ {X |L}
(
P̂ {L|C}

)γ

. (8)

We note that the decision variable in an ASR, i.e., D is
based on a product of the estimates of the probabilities. This
product, however, does not mean that the performance of the
ASR cannot be consistent with the product of errors as shown
in Equations (1) and (2). We will illustrate this phenomenon
in the next section.

4. EFFECT OF CONTEXT — SIMPLE EXAMPLE

In this section we demonstrate that even a very simple ASR
system that multiplies probability estimates to compute the
value of the decision variable as in Eq. 5, the performance
of the system can be consistent with the product of errors.
Our system combines a simple model of acoustic recognition,
with a simple class-based contextual model. The contextual
model is always correct, up to a point. It knows the right class
and the only errors it makes are because it doesn’t know the
specific instance in the class.
Assuming the approach to ASR given in Section 3, we

examine a simple example of the effect of context on ASR
performance. For the purpose of this example we assume that
an ASR system is recognizing one ofM labels as illustrated
in Fig 4. Without loss of generality we assume that the cor-
rect response is L1, and thus the probability of choosing L1

given just the acoustic information is higher than all other
choices, P̂ {L1|X} ≥ P̂ {Li|X} , ∀i > 1. We further as-
sume that if there is an error due to acoustics the erroneous
labels are generated with probability 1/ (M − 1), a simplify-
ing assumption.
The probability that the system assigns the correct label

based only on the acoustics is equal toQX , but there is a con-
text model which alsomust be considered. For this we assume
that the correct context only allows labels L ∈ [1, K], where
K < M . This is equivalent to saying the context model al-
ways predicts the correct class (i.e. it’s a vowel, or a verb) but
it doesn’t know which of the K labels is correct. Assuming
all the labels consistent with the context are equally likely,
the probability of a correct response based only on context is
QC = 1/K . In effect this means that the contextual model
produces a binary decision. It restricts the possible labels, but
will not “fix” an acoustic mis-recognition.
When the context is combined with the acoustic analysis

this simplified system assigns an incorrect label only if the
acoustic analysis yields an error. The system has selected an
incorrect response, but one that is consistent with the con-
text, in this case labels L ∈ [2, K]. There are two cases that
need to be considered: (1) the erroneous acoustic response is
within the context set and (2) the erroneous acoustic response
is outside the context set and the system must randomly select
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Fig. 1. A simple example of a integration of bottom up, acous-
tic recognition with a top-down, context based recognition.
The numbers corresponds to the labels—the correct label is
L=1. The context specifies K labels that are consistent with
the context.

one of the remaining K − 1 incorrect labels with probabil-
ity (K − 1) /K. Thus the probability of error with a system
based on acoustics, X , and context, C, is the product of the
acoustic error, times the two sources of error above, or

E (X, C) = (1−QX)
[
gC + (1− gC)

(
K−1

K

)]

= (1−QX)
(

K−1
K

) [
M

M−1

]

= (1−QX) (1−QC)
[

M
M−1

]
,

(9)

where gC = K−1
M−1 is the probability that acoustic response

is within the set allowed by the (correct) context. The result-
ing system error is for all practical purposes approximates the
product of acoustic and contextual errors, consitent with with
the human empirical data, Eq. (2). A more complex analysis
is required to determine the probability of error for more gen-
eral distributions due to the context and acoustic estimates of
the probabilities.

5. PERFORMANCE OFMULTI-STREAM ASR

In this final section we examine whether it is possible to build
a detector that is consistent with the “product of errors” de-
scribed by Eq. (1). It is easy to show that an optimal fu-
sion algorithm combining conditionally-independent detec-
tors that never make false-positive errors—as opposed to “no-
response”—produces the desired result. This system makes
an error only if none of the “high-threshold” detectors gives a
response and the system has to make a guess. In this case the
probability of making a error is given by the product of errors
(no responses) of the individual detectors, in particular:

QX (X) = 1− M − 1
M

∏
∀i

(1−QX,i (X)) , (10)

where M is the number of output classes. As M increases
Eq. (10) approximates Eq. (1), which characterizes human
performance.
In actual ASR systems, where the input is an acoustic

signal X represented by real-valued features, the conditional
distributions of the features, given class, are usually overlap-
ping. In this case, detectors that do not make false alarm re-
quire “high thresholds” and yield suboptimal performance. It
is, however, possible to approximate such a “high-threshold”

system by combining a large number of conditionally inde-
pendent, weaker classifiers or detectors [?]. When the number
of these classifiers is large, the “high-threshold” detectors can
be approximatedwith very simple combination rules such as a
majority vote. Nevertheless, the resulting performance is not
optimal in the sense of minimizing errors. This result, based
on the notion of conditional independence of individual chan-
nels, suggests that a system that obeys Eq. (1) is suboptimal.

6. DISCUSSION

We demonstrated that although ASR algorithms compute a
decision variables based on the product of the probability es-
timates, the performance of the system can be consistent with
the product of error. We used a simple, but realistic model
of acoustics and context (or language), yet when we analyzed
the probability of incorrect recognition, the result in Eq. 9 is
nearly identical to the model in Eq. 2 of how humans make
errors. This is counterintuitive because one is maximizing
performance by multiplying the estimates of probabilities, yet
the system performance is described by multiplying one mi-
nus the probabilities. We demonstrated a simple implementa-
tion of a combination of acoustic with contextual constraints
consistent with the biological data.
Interestingly, an implementation of a process that fuses in-

dependent channels that obey the product of errors rule turns
out to be more difficult and controversial. It appears that the
only way to specify such process involves suboptimal detec-
tors and their combination. Although the individual high-
threshold classifiers are suboptimal, as the number of clas-
sifiers increases, the combined error converges to zero and
thereby approaches optimality. If this conjecture turns out to
be true, we should be able to build machines that exceed the
performance of humans.
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