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ABSTRACT

In the past researchers have proposed a variety of features
that are based on the human auditory system. However none
of these features have been able to replace mel-frequency
cepstral coefficients (MFCCs) as the preferred feature for
audio classification problems, either because of computa-
tional costs involved or because of their poor performance
in the presence of noise. In this paper we present new fea-
tures derived from a model of the early auditory system. We
compare the performance of the new features with MFCC
in a four-class audio classification problem and show that
they perform better. We also test the noise robustness of the
new features in a two-way audio classification problem and
show that it outperforms the MFCCs. Further, these new
features can be implemented in low-power analog VLSI cir-
cuitry making them ideal for low-power sensor networks.

1. INTRODUCTION

In order to implement signal processing algorithms for au-
dio classification and auditory scene analysis in hand-held
and remote-sensing devices it is important that a power ef-
ficient method be deviced to extract features that could be
used for further signal processing. Researchers [1], [2] have
shown the feasibility of implementing the MFCCs [3] in
low-power analog VLSI circuitry. However MFCCs do not
perform as well in the presence of noise. In this paper we
presentnoise-robust auditory features(NRAF) as a viable
alternative to MFCCs. NRAF can be implemented in low-
power analog VLSI circuitry with a cost comparable to that
of implementing MFCCs and provide better performance in
the presence of noise.

Of late there has been a lot of interest in fabricating and
utilizing miniature, low-power, and intelligent sensor ele-
ments and arrays. A low-power analog VLSI front-end for
audio classification can be interfaced with such systems to
provide end-to-end acoustic surveillance. The low-power
feature of the front-end would allow it to be integrated with
a networked array of autonomous sensors that can then be
deployed in the field [4]. Such a low-power audio classi-

fier is especially important as a front-end to an autonomous
sensor that uses a small battery for power and is expected
to monitor its environment for months at a time. The rest of
the sensor’s processing circuits need only be powered when
the right kinds of sounds are present. Another important use
for a low-power audio classification is in hearing aids where
auditory scene analysis can be performed to automatically
switch between different hearing aid algorithms based on
the current environment. Such a front-end would also be
very useful in the design of smart microphones that have
sophisticated capabilities beyond that of passive sound re-
ception.

The rest of the paper is organized as follows, section 2
explains the features used for the audio classification task.
Section 3 talks about the experimental setup, followed by
results and conclusions.

2. FEATURES

The NRAF features are derived from a model of the early
auditory system [5]. The input signal is passed through a
bandpass filter bank. The signal is then non-linearly com-
pressed followed by a difference with the adjacent channels.
This is followed by a half-wave rectification and smoothing
filter. The half-wave rectification followed by the smooth-
ing is in some sense a peak detector. The output at this stage
is referred to as the auditory spectrum [5]. Figures 3 and 4
show the auditory spectrum and the spectrogram for a noisy
speech input. It can be seen that the auditory spectrogram
filters out some of the noise that appears in the normal spec-
trogram. The auditory spectrum is robust to noise for two
reasons: the difference operation between adjacent chan-
nels reduces the effects of stationary noise, and a non-linear
property known as phase locking emphasizes the signal. We
compute a discrete cosine transform (DCT) of the logarithm
of the output of the smoothing filter to obtain the NRAFs.
The filter bank consists of 128 filters tuned from 180 Hz
to 7246 Hz. The smoothing (temporal integration) is done
over 8 msec. Thus we have 128 features for every 8 msec
“frame.” Principal component analysis is performed to re-



duce the dimension of the features to 64. Figure 2 shows
the block diagram of the NRAF feature extraction. Build-
ing blocks of the feature extraction circuit have been built
using a CMOS 0.5µm process. Each stage in the process-
ing pathway such as the BPF filter bank consumes less than
20µW.

Fig. 1. Mathematical model of the early auditory system
consisting of filtering in the cochlea (analysis stage), con-
version of mechanical displacement into electrical activity
in the IHC (transduction stage) and the lateral inhibitory
network in the cochlear nucleus(reduction stage) [5].

For the purpose of comparison we also extracted the
MFCCs. Each one second training sample is divided into 32
msec frames with 50% overlap and 13 MFCC coefficients
are computed from each frame.

Three different methods were used to test the discrimi-
nating abilities of MFCCs and NRAFs. In the first method
the mean and variance of the features over all frames are
computed and used to train the classifier. We refer to this
as the “mean–variance” method. In the second method fea-
ture vectors from each frame are used as training vectors
to train the classifier. Each frame is treated as a new in-
put to the classifier. We refer to this as the “all-frame”
method. In the third method we implemented the “stack-
ing” method described by Slaney [6] to enhance the per-
formance of MFCCs. Three frames, the frame before the
current frame, the current frame and the one following the
current frame are stacked together to form a 39-dimensional
feature vector. An optimal dimensionality reduction trans-
form [7] is then used to reduce the dimension to 8. Thus
each frame is represented by a 8-dimensional feature vector
which is used to train the classifier. The stacking method
was not be implemented for the NRAFs due to the com-
putational costs involved in performing the optimal dimen-
sionality reduction transform on stacked frames that are rep-
resented by 128-dimensional feature vectors.

3. EXPERIMENT

The database consisted of four classes: noise, animal
sounds, music and speech. Each of the sound samples was
one second long. The noise class comprised of nine dif-
ferent types of noises from the NOISEX database including
babble noise. The animal class comprised of a random se-
lection of animal sounds from the BBC Sound Effects au-
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Fig. 2. The bandpass filtered version of the input is non-
linearly compressed. The difference operation between
lower and higher channels approximates a spatial derivative.
The half-wave rectification followed by the smoothing filter
picks out the peak. The DCT is performed to decorrelate
the signal.

dio CD collection. The music class was formulated using
the RWC music database and included different genres of
music [8]. The speech class was made up of spoken digits
from the TIDIGITS and AURORA database. The training
set consisted of a total of 4325 samples with 1144 noise,
732 animal, 1460 music and 989 speech samples and the
test set consisted of 1124 samples with 344 noise, 180 ani-
mal, 354 music and 246 speech samples. The sounds in the
database are publicly available and the sample file name and
file offsets are available from the authors.

A Gaussian Mixture model (GMM) was used to model
each class of data and the feature vectors from each class
were used to train the GMM. During testing, the likelihood
that a test sample belongs to each model is computed and the
sample is assigned to the class whose model produces the
highest likelihood. During testing in the all-frames method
the likelihood of each frame belonging to the four different
classes is computed and a majority voting is performed to
determine the class of the sample.

To test the noise robustness of the MFCCs and NRAFs,
a two class (speech and music) audio classification problem
was chosen. White noise was added to produce samples
with various signal-to-noise ratios. The GMM model was
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Fig. 3. Figure showing the spectrogram for a noisy speech
input.
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Fig. 4. Figure showing an auditory spectrum for a noisy
speech input [5].

trained using the clean samples and tested with the noisy
samples.

4. RESULTS

Among the three methods used to test the performance of
MFCCs the mean–variance method performed best. Al-
though we believe that with sufficient number of frames
stacked together the stacked frames method should per-
form at least as well as the mean–variance method. For
the NRAF, using all the frames to train the GMM performs
slightly better than the mean–variance method. Overall,
NRAF does better than MFCCs. The results are tabulated in
Tables 1. The confusion matrix of MFCC and NRAF exper-
iments (Tables 2–6.) show that NRAFs learn the speech and
noise class very well. MFCCs do well on the speech class

but their performance on the other classes is not as good.
Both features do equally bad on the animal class, which is
the hardest to classify due to the variety of sounds present
and also due to the close proximity of some of the sounds to
the noise class.

Performance of MFCCs and NRAFs
Method MFCC NRAF

Mean–variance 85.85 % 90.22 %
All-frames 81.05 % 92.97 %

Stacked 82.38 % -

Table 1. Table showing performance of MFCCs and
NRAFs for a four-class audio classification problem using
different methods.

Noise Animal Music Speech
Noise 310 18 30 0

Animal 0 140 55 0
Music 34 22 269 0
Speech 0 0 0 246

Table 2. Table showing Confusion matrix for MFCC
(mean-variance). This method gave an accuracy of 85.85
%

Noise Animal Music Speech
Noise 253 9 31 0

Animal 47 137 39 0
Music 0 34 275 0
Speech 44 0 9 246

Table 3. Table showing Confusion matrix for MFCC (all-
frames). This method gave an accuracy of 81.05 %

The noise robustness results are as shown in Table 7.
We see that the NRAF features outperform MFCCs. An
error of 41% percent corresponds to the case were all the
samples of class two (speech) are misclassified as that of
class one (music). We used the mean–variance method for
comparison because this did best for MFCCs, but the results
for NRAF might improve by using the all-frame method.

5. CONCLUSION

In this paper we presented noise-robust features that per-
form better than the standard MFCCs. These features can
be implemented in low-power analog VLSI circuits making
them attractive to ubiquitous sensor applications. Future



work would involve developing features that provide bet-
ter discrimination and also designing a classification struc-
ture that can be implemented in low-power analog VLSI
circuitry. This would enable us to have a low-power au-
tonomous classification system.
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Noise Animal Music Speech
Noise 343 56 55 1

Animal 0 115 42 0
Music 1 8 226 3
Speech 0 1 31 242

Table 4. Table showing Confusion matrix for MFCC
(stacked). This gave an accuracy of 82.38 %

Noise Animal Music Speech
Noise 294 19 1 20

Animal 50 140 12 3
Music 0 9 339 2
Speech 0 12 2 241

Table 5. Table showing Confusion matrix for NRAF (mean-
variance). This method gave an accuracy of 90.22 %

Noise Animal Music Speech
Noise 344 31 0 0

Animal 0 148 49 0
Music 0 1 305 0
Speech 0 0 0 246

Table 6. Table showing confusion matrix for NRAF (all-
frames). This method gave an accuracy of 92.79 %
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