
Chapter 8

UNDERSTANDING THE SEMANTICS OF
MEDIA

Malcolm Slaney, Dulce Ponceleon and James Kaufman
IBM Almaden Research Center
San Jose, California
malcolm@ieee.org

Abstract It is difficult to understand a multimedia signal without being able to
say something about its semantic content or its meaning. This chapter
describes two algorithms that help bridge the semantic understanding
gap that we have with multimedia. In both cases we represent the
semantic content of a multimedia signal as a point in a high-dimensional
space. In the first case, we represent the sentences of a video as a time-
varying semantic signal. We look for discontinuities in this signal, of
different sizes in a one-dimensional scale space, as an indication of a
topic change. By sorting these changes, we can create a hierarchical
segmentation of the video based on its semantic content. The same
formalism can be used to think about color information and we consider
the different media’s temporal correlation properties. In the second
half of this chapter we describe an approach that connects sounds to
semantics. We call this semantic-audio retrieval; the goal is to find a
(non-speech) audio signal that fits a query, or to describe a (non-speech)
audio signal using the appropriate words. We make this connection
by building and clustering high-dimensional vector descriptions of the
audio signal and its corresponding semantic description. We then build
models that link the two spaces, so that a query in one space can be
mapped into a model that describes the probability of correspondence
for points in the opposing space.

Keywords: Segmentation, semantics, multimedia signal, high-dimensional space,
video retrieval, audio analysis, latent semantic indexing (LSI), semantic
content, clustering, non-speech audio signal, hierarchical segmentation,
color information, topic change, sorting, temporal correlation, mixture
of probability experts, MPESAR, SVD, scale space, acoustic space.
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8.1 Semantic Understanding Problem
Due to the proliferation of personal cameras and inexpensive hard

disk drives, we are drowning in media. Unfortunately, the tools we
have to understand this media are very limited. In this chapter we
describe tools that help us understand the meaning of our media. We will
demonstrate that tools that analyze the semantic content are possible
and this represents a high-level understanding of the media.

There are many systems which find camera shot boundaries—low-level
events in the video where the camera changes to a new view of the scene
[Srinivasan et al., 1999]. There are some tools, described below, which
attempt to segment video at a higher level. But this level of analysis
does not tell us much about the meaning represented in the media.

Only recently have researchers constructed higher-level understanding
from multimedia signals. Aner [Aner and Kender, 2002] suggest an
approach that finds the background in a video shot, and then clusters
shots into physical scenes by noting shots with common backgrounds.
This is one way to build up a higher-level representation of the video,
but we argue that the most important information is in the words.

Retrieving media is a similarly hard problem. Systems such as IBM’s
QBIC system [Flickner et al., 1993] allow users to search for images
based on the colors and images in an image. This is known as query-
by-example, but most people don’t think about their image requests in
terms of colors or shapes. A better tool uses semantic information to
retrieve objects based on the meaning in the media.

In the remainder of this section we will talk about specific approaches
for segmentation and retrieval, and describe how our approaches differ.
Section 8.1.3 describes the rest of this chapter.

8.1.1 Segmentation Literature
Our work extends previous work on text and video analysis and seg-

mentation in several different ways.
Latent semantic indexing (LSI) has a long history, starting with Deer-

wester’s paper [Deerwester et al., 1990], as a powerful means to summa-
rize the semantic content of a document and measure the similarity of
two documents. We use LSI because it allows us to quantify the position
of a portion of the document in a multi-dimensional semantic space.

Hearst [Hearst, 1994] proposes to use the dips in a similarity mea-
sure of adjacent sentences in a document to identify topic changes. Her
method is powerful because the size of the dip is a good indication of the
relative amount of change in the document. We extend this idea using
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scale-space techniques to allow us to talk about similarity or dissimilarity
over larger portions of the document.

Miller and her colleagues proposed Topic Islands [Miller et al., 1998],
a visualization and segmentation algorithm based on a wavelet analysis
of text documents. Their wavelets are localized in both time (document
position) and frequency (spectral content) and allow them to find and
visualize topic changes at many different scales. The localized nature
of their wavelets makes it difficult to isolate and track segmentation
boundaries through all scales. We propose to summarize the text with
LSI and analyze the signal with smooth Gaussians, which are localized
in time but preserve the long-term correlations of the semantic path.

Segmentation is a popular topic in the signal and image processing
worlds. Witkin [Witkin, 1984] introduced scale-space ideas to the seg-
mentation problem and Lyon [Lyon, 1984] extended Witkin’s approach
to multi-dimensional signals. A more theoretical discussion of the scale-
space segmentation ideas was published by Leung [Leung et al., 2000].
The work described here extends the scale-space approach by using LSI
as a basic feature and changing the distance metric to fit semantic data.

The key concept in our segmentation work is to think about a video
signal’s path through space, and detect jumps at multiple scales. The
signal processing analysis proposed in this chapter is just one part of a
complete system. We use a singular-value decomposition (SVD) to do
the basic analysis, but more sophisticated techniques are also applicable.
Any method which allows us to summarize the image and semantic con-
tent of the document can also be used in conjunction with the techniques
described here.

8.1.2 Semantic Retrieval Literature
There are many multimedia retrieval systems that use a combina-

tion of words or examples to retrieve audio (and video) for users. Our
algorithm, mixtures of probability experts for semantic-audio retrieval
(MPESAR), is a more sophisticated model connecting words and media.

An effective way to find an image of the space shuttle is to enter the
words “space shuttle jpg” into a text-based web search engine. The
original Google system did not know about images, but, fortunately,
many people created web pages with the phrase “space shuttle” and a
JPEG image of the shuttle. The MPESAR work expands those search
techniques by considering the acoustic and semantic similarity of sounds
to allow users to retrieve sounds without running searches on the exact
words used on the web page.
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Barnard [Barnard and Forsyth, 2001] used a hierarchical clustering
algorithm to build a model that combined words and image features
to create a single hierarchical model that spanned both semantic and
image features. He demonstrated the effectiveness of coupled clustering
for an information-retrieval task and argued that the words written by
a human annotator describing an image (e.g., “a rose”) often provide
information that complements the obvious information in the image (it
is red).

MPESAR improves on three aspects of Barnard’s approaches. First,
the semantic and image features do not have the same probability dis-
tributions. Barnard’s algorithm assumes that image features can be
described by a multinomial distribution, while a Gaussian is probably
more appropriate. Second, and perhaps most important, there is noth-
ing in Barnard’s algorithm that guarantees that the features used to
build each stage of the model include both semantic and image fea-
tures. Thus, the algorithm is free to build a model that completely
ignores the image features and clusters the ‘documents’ based on only
semantic features. Third, MPESAR interpolates between models. Pre-
vious work assigned each document to a single cluster and used a single
model (winner-take-all) to map to the opposite domain. On the other
hand, MPESAR calculates the probability that each cluster generates
the query and then calculates a weighted average of models based on
the cluster probabilities.

The MPESAR algorithm is appropriate for mapping one type of me-
dia to another. We illustrate the idea here using audio and semantic
documents because audio retrieval is a simpler problem.

8.1.3 Overview
In this chapter, we describe semantic tools for understanding media1.

The key to these tools is a representation of the media’s content based
on the words contained in the media, or words describing the media. In
this work we use mathematical tools to represent a set of words as a
point in a vector space. We will then use this vector representation of
the semantic content to allow us to create a hierarchical table of contents
for a multimedia signals, or to build a query-by-semantics system.

Our description of the semantic tools is structured as follows. In Sec-
tion 8.2 of this chapter, we will describe some common tools and math-
ematics we use to analyze multimedia signals. Section 8.3 describes
an algorithm for hierarchical segmentation that uses the color, acous-

1This chapter combines material first published elsewhere [Slaney et al., 2001; Slaney, 2002]
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tic, and semantic information in the signal. Section 8.4 describes our
semantic-retrieval algorithm, which is applied to audio retrieval.

8.2 Analysis Tools
We use two types of transformations to reduce raw text and video

signals into meaningful spaces where we can find edges or events.
The SVD provides a principled way to reduce the dimensionality of

a signal in a manner which is optimum, in a least-squared sense. In
the next sub-sections, we describe how we apply the SVD to color and
semantic information. The SVD transformation allows us to summarize
different kinds of video data and combine the results into a common
representation (Section 8.3.5).

8.2.1 SVD Principles
We express both semantic and video data as vector-valued functions

of time, �x(t). We collect data from an entire video and put the data into
a matrix, X, where the columns of X represent the signal at different
times. Using an SVD, we rewrite the matrix X in terms of three matrices,
U, S and V, such that

X = USVT . (8.1)

The columns of the U and V matrices are orthonormal; S is a diagonal
matrix. The values of S along the diagonal are ordered such that

S11 >= S22 >= S33 >= ... >= Snn (8.2)

where n is the minimum of the number of rows or columns of X.
The SVD allows us to generate approximations of the original data.

If the first k diagonal terms of S are retained, and the rest are set to
zero, then the rank k approximation to X, or Xk, is the best possible
approximation to X (in the least squares sense):

|X − Xk| = min
rank(Y)≤k

|X − Y| ≥ |X− Xk+1|. (8.3)

The first equality in equation 8.3 says that Xk is the best approximation
in all k-dimensional subspaces. The second inequality states that, as
we add more terms, and thus increase the size of the subspace, the
approximation will not deteriorate (it typically improves).

Typically the first singular values are large; they then decay until a
noise floor is reached. We want to keep the dimensions that are highly
significant, while setting the dimensions that are dominated by noise to
zero.
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The columns of the U matrix are an ordered set of vectors that ap-
proximate the column space of the original data. In our case, each
column of the X matrix is the value of our function at a different point
in time. As we use more terms of S, the columns of U provide a better
and better approximation to the cloud of data that forms from �x(t).

Given the left-singular vectors U and our original data X, we project
our data into the optimal k-dimensional subspace by multiplying

Yk = (Uk)TX (8.4)

where Uk contains only the first k columns of U, and Yk = �xk(t) is a
k-dimensional function of time. We compute a new SVD and a new U
matrix for each video, essentially creating movie-dependent subspaces
with all the same advantages of speaker-dependent speech recognition.

We use the SVD to reduce the dimensionality of both our audio and
image video data. The reduced representation is nearly as accurate as
the original data, but is more meaningful (the noise dimensions have
been dropped) and is easier to work with (the dimensionality is signifi-
cantly lower).

8.2.2 Color Space
Color changes provide a useful metric for finding the boundary be-

tween shots in a video [Srinivasan et al., 1999]. We can represent the
color information by collecting a histogram of the colors within each
frame and noting the temporal positions in the video where the his-
togram indicates large frame-to-frame differences.

We collected color information by using 512 histogram bins. We con-
verted the three red, green, and blue intensities— each of which range
in value from 0 to 255— to a single histogram bin by finding the log, in
base 2, of the intensity value, and then packing the three colors into a
9-bit number using floor() to convert to an integer:

Bin = 64floor(log2(R)) + 8floor(log2(G)) + floor(log2(B)) (8.5)

We chose this logarithmic scaling because it equalizes the counts in the
different bins for our test videos.

The color histogram of the video frames converts the original video
images into a 512-dimensional signal that is sampled at 29.97 Hz. The
order of the dimensions is arbitrary and meaningless; the SVD will pro-
duce the same subspace regardless of how the rows or columns of the X
matrix are arranged.
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8.2.3 Word Space
Latent semantic indexing (LSI), a popular technique for information

retrieval [Dumais, 1991], uses an SVD in direct analogy to the color anal-
ysis described above. As we did with the color data, we start analyzing
the audio data by collecting a histogram of the words in a transcript of
the video.

Normally, in information retrieval, each document is one of a large
collection of electronically-formatted documents from which we want to
retrieve the best match. In our case we want to study only a single
document, so we consider portions of that document—sentences. The
sentences of a document define a semantic space; each sentence, in gen-
eral, represents a specific point in the semantic space.

Two difficult problems associated with semantic information retrieval
are posed by synonyms and polysemy. Often, two or more words have
the same meaning—synonyms. For information retrieval, we want to be
able to use any synonym to retrieve the same information. Conversely,
many words have multiple meanings—polysemy. For example, apple in
a story about a grocery store is likely to have a different meaning from
Apple in a story about a computer store.

The SVD allows us to capture both relationships. Words that are
frequently used in the same section of text are given similar counts in
the histogram. The SVD is sensitive to this correlation, in that one
of the singular vectors points in the combined direction. Furthermore,
words such as apple show up in two different types of documents, repre-
senting the two types of stories and will thus contribute to two different
directions in the semantic space.

Changes in semantic space are based on angles, rather than on dis-
tance. A simple “sentence” such as “Yes!” has the same semantic con-
tent as “Yes, yes!” Yet the second sentence contains twice as many
words, and, in semantic space, it will have a vector magnitude that is
twice as large. Instead of using a Euclidean metric, we describe the
similarity of two points in semantic space by the angle between the two
vectors. We usually compute this value by finding the cosine of the angle
between the two vectors,

cos(φ) = (ν1 · ν2)/(|ν1||ν2|). (8.6)

8.3 Segmenting Video
Browsing videotapes of image and sound (hereafter referred to as

“videos”) is difficult. Often, there is an hour or more of material, and
there is no roadmap to help viewers find their way through the medium.
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It would be tremendously helpful to have an automated way to cre-
ate a hierarchical table of contents that listed major topic changes at
the highest level, with subsegments down to individual shots. DVDs
provide the chapter indices; we would like to find the position of the
sub-chapter boundaries. Realization of such an automated analysis re-
quires the development of algorithms which can detect changes in the
video or semantic content of a video as a function of time. We propose a
technology that performs this indexing task by combining the two ma-
jor sources of data—images and words—from the video into one unified
representation.

With regard to the words in the sound track of a video, the information-
retrieval world has used, with great success, statistical techniques to
model the meaning, or semantic content, of a document. These tech-
niques, such as LSI, allow us to cluster related documents, or to pose a
question and find the document that most closely resembles the query.
We can apply the same techniques within a document or, in the present
case, the transcript of a video. These techniques allow us to describe
the semantic path of a video’s transcript as a signal, from the initial
sentence to the conclusions. Thinking about this signal in a scale space
allows us to find the semantic discontinuities in the audio signal and to
create a semantic table of contents for a video.

Our technique is analogous to one that detects edges in an image.
Instead of trying to find similar regions of the video, called segments,
we think of the audio–visual content as a signal and look for “large”
changes in this signal or peaks in its derivative. The location of these
changes are edges; they represent the entries in a table of contents.

8.3.1 Temporal Properties of Video
The techniques we describe in this chapter allow us to characterize

the temporal properties of both the audio and image data in the video.
The color information in the image signal and the semantic information
in the audio signal provide different information about the content.

Color provides robust evidence for a shot change in a video signal.
An easy way to convert the color data into a signal that indicates scene
changes is to compute each frame’s color histogram and to note the
frame-by-frame differences [Srinivasan et al., 1999]. In general, however,
we do not expect the colors of the images to tell us anything about the
global structure of the video. The color balance in a video does not
typically change systematically over the length of the film. Thus, over
the long term, the video’s overall color often does not tell us much about
the overall structure of the video.
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Random words from a transcript, on the other hand, do not reveal
much about the low-level features of the video. Given just a few words
from the audio signal, it is difficult to define the current topic. But
the words indicate a lot about the overall structure of the story. A
documentary script may, for instance, progress through topic 1, then
topic 2, and finally topic 3.

We describe any time point in the video by its position in an color–
semantic vector space. We represent the color and the semantic infor-
mation in the video as two separate vectors as a function of time. We
concatenate these two vectors to create a single vector that encodes the
color and the semantic data. Using scale-space techniques we can then
talk about the changes that the color–semantic vector undergoes as the
video unwinds over time. We label as segment boundaries large jumps
in the combined color–semantic vector. “Large jumps” are defined by a
scale-space algorithm that we describe in Section 8.3.4.

8.3.2 Segmentation Overview
This chapter proposes a unified representation for the audio–visual

information in a video. We use this representation to compare and con-
trast the temporal properties of the audio and images in a video. We
form a hierarchical segmentation with this representation and compare
the hierarchical segmentation to other forms of segmentation. By uni-
fying the representations we have a simpler description of the video’s
content and can more easily compare the temporal information content
in the different signals.

As we have explained, we combine two well-known techniques to find
the edges or boundaries in a video. We reduce the dimensionality of
the data and put them all into the same format. The SVD and its
application to color and word data were described in Section 8.2. We
describe the test material we use to illustrate our algorithm in Section
8.3.3.

Scale-space techniques give us a way to analyze temporal regions of
the video that span a time range from a few seconds to tens of min-
utes. Properties of scale spaces and their application to segmentation
are described in Section 8.3.4.

In Section 8.3.5, we describe our algorithm, which combines these two
approaches.

We discuss several temporal properties of video, and present simple
segmentation results, in Section 8.3.6. Our representation of video al-
lows us to measure and compare the temporal properties of the color
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and words. We perform a hierarchical segmentation of the video, auto-
matically creating a table of contents for the video.

We conclude in Section 8.3.7 with some observations about this rep-
resentation.

8.3.3 Test Material
We evaluated our algorithm using the transcript from two different

videos.
The shortest test was the manual transcript of a 30 minute CNN

Headline News television show [Linguistic Data Consortium, 1997]. This
transcript is cleaner than those typically obtained from closed-captioned
data or automatic speech recognition.

We also looked at the words and images from a longer documentary
video, “21st Century Jet,” about the making of the Boeing 777 airplane
[PBS Home Video, 1995]. We analyzed the color information from the
first hour of this video, and the words from all six hours.

In these two cases we have relatively clean transcripts and the ends of
sentences are marked with periods. We can also use automatic speech
recognition (ASR) to provide a transcript of the audio, but sentence
boundaries are not reliably provided by ASR systems. In that case,
we divide the text arbitrarily into 20 word groups or “sentences.” We
believe that a statistical technique such as LSI will fail gracefully in the
event of word errors. For the remainder of this chapter we will use the
word “sentence” to indicate a block of text, whether ended by a period
or found by counting words.

8.3.4 Scale Space
Witkin [Witkin, 1984] introduced the idea of using scale-space seg-

mentation to find the boundaries in a signal. In scale space, we analyze
a signal with many different kernels that vary in the size of the tempo-
ral neighborhood that is included in the analysis at each point in time.
If the original signal is s(t), then the scale-space representation of this
signal is given by

sσ(t) =
∫

s(τ)g(σ, t − τ)dτ, (8.7)

where g(σ, t − τ) is a Gaussian kernel with a variance of σ. With σ
approaching zero, sσ(t) is nearly equal to s(t). For larger values of σ, the
resulting signal, sσ(t), is smoother because the kernel is a low-pass filter.
We have transformed a one-dimensional signal into a two-dimensional
image that is a function of t and σ.
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An important feature of scale space is that the resulting image is a
continuous function of the scale parameter, σ. Because the location of a
local maximum in scale space is well behaved [Babaud et al., 1986], we
can start with a peak in the signal at the largest scale and trace it back
to the exact point at zero scale where it originates. The range of scales
over which the peak exists is a measure of how important this peak is
to the signal.

In scale-space segmentation, we look for changes in the signal over
time. We do so by calculating the derivative of the signal with respect
to time and then finding the local maximum of this derivative. Because
the derivative and the scale-space filter are linear, we can exchange their
order. Thus, the properties of the local maximum described previously
also apply to the signal’s derivative.

Lyon [Lyon, 1984] extended the idea of scale-space segmentation to
multi-dimensional signals, and used it to segment a speech signal. The
basic idea remains the same: He filtered the signal using a Gaussian
kernel with a range of scales. By performing the smoothing indepen-
dently on each dimension, he traced with the new signal a smoother path
through his 92-dimensional space. To segment the signal, he looked for
the local peaks in the magnitude of the vector derivative.

Cepstral analysis transforms each vocal sound into a point in a high-
dimensional space. This transformation makes it easy to recognize each
sound (good for automatic speech recognition) and to perform low-level
segmentation of the sound (as demonstrated by Lyon). Unfortunately,
the cepstral coefficients contain little information about high-level struc-
tures. Thus, we consider the image and the semantic content of the
video.

Combining LSI analysis with scale-space segmentation is straightfor-
ward. This process is illustrated in Figure 8.1. We describe the scale-
space process as applied to semantic content. The analysis of the acoustic
and color data is identical to the semantic information.

The semantic data is first grouped into a time sequence of sentences,
si. From these groups, we create a histogram of word frequencies, �H(si),
a vector function of sentence number si. LSI/SVD analysis of the full
histogram produces a k-dimensional representation, �Hk(si) = Xk of the
document’s semantic path (where the dimensionality k is much less than
the original histogram.) In this work2 we arbitrarily set k = 10.

We use a low-pass filter on each dimension of the reduced histogram
data �Hk(si), replacing s in equation 8.7 with each component of �Hk(si) =

2Information retrieval systems often use 100–300 dimensions to distill thousands of docu-
ments, but those collections cover a larger number of topics than we see in a single document.
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Hk si( )
Hk si σ,( )

H si( )

Figure 8.1. The LSI-SS algorithm. The top path shows the derivative
based on euclidean distance. The bottom path shows the proper distance
metric for LSI based on angle. See Section 8.3.4 for definitions.

[H1(si)H2(si)...Hk(si)]T to find a low-pass filtered version of the seman-
tic path. This replacement gives �Hk(si, σ), a k-dimensional vector func-
tion of sentence number and scale.

We are interested in detecting edges in acoustic, color and semantic
scale spaces. An important property of the scale-space segmentation is
that the length of a boundary in scale space is a measure of the impor-
tance of that boundary. It is useful to think about a point representing
the document’s local content wandering through the space in a pseudo-
random walk. Each portion of the video is a slightly different point in
space, and we are looking for large jumps in the topic space. As we
increase the scale, thus lowering the cutoff frequency of a low-pass filter,
the point moves more sluggishly. It eventually moves to a new topic, but
small variations in topic do not move the point much. Thus, the bound-
aries that are left at the largest scales mark the biggest topic changes
within the document.

The distance metric in Witkin’s original scale-space work [Witkin,
1984] was based on Euclidean distance. When we use LSI as input to
a scale-space analysis, our distance metric is based on angle. The dot
product of adjacent (filtered and normalized) semantic points gives us
the cosine of the angle between the two points. We convert this value
into a distance metric by subtracting the cosine from one.

When we use LSI within a document, we must choose the appropriate
block size. Placing the entire document into a single histogram gives
us little information that we can use to segment the document. On the
other hand, one-word chunks are too small; we would have no way to link
single-word subdocuments. The power of LSI is available for segments
that comprise a small chunk of text, where words that occur in close
proximity are linked together by the histogram data.

Choosing the proper segment size is straightforward during the seg-
mentation phase, since projecting onto a subspace is a linear operation.



Understanding the Semantics of Media 231

SVD
Scale &
Filter

SVD
Scale &
Filter

Color

Words

10D
Color
Data

10D
Word
DataHistogram
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Figure 8.2. Combining color, words and scale space analysis. The result
is a 20-dimensional vector function of time and scale.

Thus, even if we start with single-word histograms, the projection of the
(weighted) sum of the histograms is the same as the (weighted) sum of
the projections of the histograms.

The story is not so simple with the SVD calculation. For this study,
we chose a single sentence as the basic unit of analysis, based on the
fact that one sentence contains one subject. It is possible that larger
subdocuments, or documents keyed by other parameters of a video, such
as color information, might be more meaningful. The results of the
temporal studies, described in Section 8.3.6.0, suggest that the optimal
segment size is four to eight sentences, or a paragraph.

8.3.5 Combined Image and Audio Data
Our system for hierarchical segmentation of video combines the audio

(semantic) and image (color) information into a single unified represen-
tation, and then uses scale-space segmentation on the combined signal
(Figure 8.2).

Our algorithm starts by analyzing a video, using whatever audio and
image features are available. For this chapter, we concentrated on the
color and the semantic histograms. We perform an SVD on each feature,
gaining noise tolerance and the ability to handle synonyms and polysemy
(see Section 8.2.3).

The SVD, for either the color or the words, is performed in two steps.
We build a model by collecting all the features of the signal into a matrix
and then computing that matrix’s SVD to find the k left-singular vectors
that best span the feature space. We use the model by projecting the
same data onto these k-best vectors to reduce the dimensionality of
the signal. The semantic information typically starts with more than
1,000 dimensions; the color information has 512 dimensions. For the
examples described in this chapter, we reduced all signals to individual
10-dimensional spaces.
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Figure 8.3. These three plots show the derivatives of the scale space rep-
resentations for the colors (top), words (middle) and combined (bottom)
spaces of the Boeing 777 video. Many details are lost because the 102089
frames are collapsed into only a few inches on this page.

The challenge when combining information in this manner is to not
allow one source of information to overwhelm the others. The final steps
before combining the independent signals are scaling and filtering. Scal-
ing confers similar power on two independent sources of data. Typically,
color histograms have larger values, since the number of pixels in an
image tends to be much greater than the number of words in a semantic
segment. Without scaling, the color signal is hundreds of times larger
than the word signal; the combined signal makes large jumps at every
color change, whereas semantic discontinuities have little effect.

To avoid this problem and to normalize the data, we balance the
color and the semantic vectors such that both had an average vector
magnitude of 1. Other choices are possible; for example, one might de-
cide that the semantic signal contains more information about content
changes than does the image signal and thus should have a larger magni-
tude. Plots showing the derivative of the color, word and the combined
scale spaces are shown in Figure 8.3.

As we will discuss in Section 8.3.6.0, each signal has a natural fre-
quency content, which we can filter to select a scale of interest. Thus,
it might be appropriate to high-pass filter the color information to min-
imize the effects of changes over time scales greater than 10 seconds,
while low-pass filtering the semantic information to preserve the infor-
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mation over scales greater than 10 seconds. We did not do this kind of
filtering for the results presented in this chapter.

We combined the audio and visual data by aligning and concatenating
the individual vectors. Alignment (and resampling) is important because
the audio and image data have different natural sampling rates. Typi-
cally, the color data are available at the frame rate, 29.97 Hz, whereas
the word information is available only at each sentence boundary—which
occurred every 8 seconds, on average, in the Boeing 777 video that we
studied.

We marked manually the start of each sentence in the video’s au-
dio channel. The marking was approximate, delineating the beginning
of each sentence within a couple of seconds. We then created a new
10-dimensional vector by replicating each sentence’s SVD-reduced rep-
resentation at all the appropriate frame times. Then, based on the ap-
proximate sentence delineations, we smoothed the semantic vector with
a 2-second rectangular averaging filter.

We concatenate the video and semantic vectors at each frame time,
turning two 10-dimensional signals, sampled at 29.97 Hz, into a single
20-dimensional vector. We then can use these data as input to the scale-
space algorithm.

8.3.6 Hierarchical Segmentation Results
We evaluated our approach with two studies. First, we studied the

temporal properties of videos and text, by characterizing the temporal
autocorrelation of the color and semantic information in news and doc-
umentary videos (Section 8.3.6.0). Second, to quantify the results of our
segmentation algorithm, we performed scale-space hierarchical segmen-
tation on two multimedia signals and compared the results to several
types of segmentations (Section 8.3.6.0).

Temporal Results. There are many ways to characterize the tem-
poral information in a signal. The autocorrelation analysis we describe
in this section tells us the minimum and maximum interesting temporal
scales for the audio and image data. This information is important in
the design and characterization of a segmentation algorithm.

Autocorrelation. We investigated the temporal information in the
signals by computing the autocorrelation of our representations:

Rxx(τ) =
∫ ∞

−∞
x′(t)x′(t + τ)dt, (8.8)
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Figure 8.4. Color and word autocorrelations for the Boeing 777 video.

where x′ is the original signal with the mean subtracted. There are
six one-hour videos in the Boeing 777 documentary. The short length
makes it difficult to estimate very long autocorrelation lags (more than
30 minutes). We computed the autocorrelation individually for each
hour of video, then averaged the results across all videos to obtain a
more robust estimate of the autocorrelation.

For both the image and the semantic data we used the reduced-
dimensionality signals. We assumed that each dimension is independent
and summed the autocorrelation over the first four dimensions to find
the average correlation. The results of this analysis are shown in Figure
8.4 for both the image and the semantic signals.

The correlation for the color data is high until about 1/10 minute,
when it falls rapidly to zero. This behavior makes sense, since the av-
erage shot length in this video, as computed by YesVideo (see Section
8.3.6.0), is 8 seconds.

Grouped Autocorrelation. At first, we were surprised by the
semantic-signal results: There was little correlation at even the smallest
time scale. We postulated that individual sentences have little in com-
mon with one another, but that groups of consecutive sentences might
show more similarity. Usually, the same words are not repeated from
one sentence to the next, and neighboring sentences should be nearly
orthogonal.
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Figure 8.5. Grouping 4–8 sentences produces a larger semantic autocor-
relation (data from the Boeing 777 video). This peak corresponds to
29–57 seconds of the original video.

By grouping sentences—averaging several points in semantic space—
we formed a more robust estimate of the exact location of a given portion
of a transcript or document in semantic space. In Figure 8.5, we show
the results that we obtained by grouping sentences of the Boeing 777
video. In the line marked “8 sentences,” we grouped (averaged) the
reduced-dimensionality representation of eight contiguous sentences, and
computed the correlations between that group and other groups of eight,
non overlapping, sentences.

Figure 8.5 shows that, indeed, the correlation starts small when we
consider individual sentences, and gradually grows to a maximum for
groups of between four and eight sentences, and then falls again as the
group size increases. Evidently, grouping four to eight sentences allows
us to estimate reliably a single point in semantic space. The correlation
reaches a minimum at approximately 200 sentences.

Interestingly, in two documents we saw a strong anti-correlation around
200 sentences [Slaney et al., 2001]. This is interesting because it indi-
cates that the topic has moved from one side of the semantic space to
the opposite side in the course of 200 sentences.

Segmentation Results. We evaluated our hierarchical represen-
tation’s ability to segment the 30-minute Headline News television show
and the first hour of the Boeing 777 documentary. We describe qualita-
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tive results and a quantitative metric, and show how our results compare
to those obtained with automatic shot-boundary and manual topical seg-
mentations.

Most videos are not organized in a perfect hierarchy. In text, the
introduction often presents a number of ideas, which are then explored
in subsequent sections; a graceful transition is used between ideas. The
lack of hierarchy is much more apparent in a news show, the structure of
which may be somewhat hierarchical, but is designed to be watched in a
linear fashion. For example, the viewer is teased with information about
an upcoming weather segment, and the “top of the news” is repeated at
various stages through the broadcast.

We illustrate our hierarchical segmentation algorithm by showing in-
termediate results using just the semantic information from the Head-
line News video. The results of hierarchical segmentations are compared
with the ground truth. The LDC [Linguistic Data Consortium, 1997]
provided story boundaries for this video, but we estimated the high-level
structure based on our familiarity with this news program. The timing
and other meta information were removed from the transcript before
analysis. We found 257 sentences in this broadcast transcript; which
after the removal of stop words, contained 1032 distinct words.

Intermediate Results. Our segmentation algorithm measured the
changes in a signal over time as a function of the scale size. A scale-space
segmentation algorithm produced a boundary map showing the edges in
the signal, as shown in Figure 8.6. At the smallest scale there were many
possible boundaries; at the largest scale, with a long smoothing window,
only a small number of edges remained.

Due to the local peculiarities of the data, the boundary deviated from
its true location as we moved to large windows. We traced the bound-
ary back to its true location (at zero scale) and drew the straightened
boundary map shown at the bottom of Figure 8.6. For any one bound-
ary, indicated by its vertical lines, strength is represented by line height,
and is a measure of how significant this topic change is to the document.

Qualitative Measure. The classic measures for the evaluation
of text-retrieval performance [Allan et al., 1998] do not extend easily
to a system that has hierarchical structure. Instead, we evaluated our
results by examining a plot that compared headings and the scale-space
segmentation strength. The scale-space analysis produced a large num-
ber of possible segmentations; for each study, we plotted only twice the
number of boundaries indicated by the ground truth.
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Figure 8.6. Representations of the semantic information in the Headline
News video in scale space. The top image shows the cosine of the angular
change of the semantic trajectory with different amounts of low-pass fil-
tering. The middle plot shows the peaks of the scale-space derivative for
the tomography chapter. The bottom plot shows the peaks traced back
to their original starting point. These peaks represent topic boundaries.

Our results of calculating the hierarchical segmentations of the Head-
line News are shown in Figure 8.7. On the right, the major (left most
text) and the minor (right most text) headings are shown. The left side
of the plot shows the strength of the boundary. The “Weather,” “Tech
Trends” and “Lifestyles” sections are indicated within a few sentences,
yet there are large peaks at other locations in the transcript. Interest-
ingly, there is a large boundary near sentence 46, which neatly divides
the softer news stories at the start of this broadcast from the political
stories that follow.

We measured the degree of agreement between two segmentations by
looking at both ends of a fixed window passed over two sets of seg-
mentation data. Figure 8.8 summarizes the process for one set of data
labeled with ground truth and for another set labeled “experimental.”
The segmentation, at this point, is successful if both ends of the window
fall within the same segment or if each is in a different segment. The
segmentation is wrong if, for example, the ground-truth window falls
entirely within one segment and the experimental window covers two or
more segmentation boundaries. We move the window over the entire
document and calculate the fraction of correct windows.
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Figure 8.7. A comparison of ground truth (right) and the size of bound-
aries for the Headline News video as determined by scale-space segmen-
tation. The major headings are in all capitals, and the sub-headings are
in upper and lower case.

Correct Correct Error Error

Ground
Truth

Experimental
Results

Figure 8.8. We evaluate accuracy by measuring whether the ends of a
fixed-size window fall in the same or different segments.
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Our quantitative measure of segmentation performance was suggested
by Lafferty and refined by Doddington [Allan et al., 1998] An especially
important property of Lafferty’s measure for semantic segmentations is
that small offsets in the segmentation lower the performance metric, but
do not cause complete misses. We used a fixed window size that was
50 percent of the length of the average segment calculated using the
ground-truth segmentation.

Lafferty’s segmentation metric has several properties that were re-
flected in our data. Assume that the probability that any particular
frame is a boundary is independent and is fixed at p = 1/(2N) where N
is the window length or half the average segment length. If we measure
the accuracy of an experimental result with just one (large) segment,
then Lafferty’s measure is asymptotically equal to

(1 − p)N ≈ 0.606. (8.9)

Conversely, if we measure the accuracy of a segmentation that puts a
boundary at every time step, then Lafferty’s measure is equal to

1 − (1 − p)N ≈ 0.394. (8.10)

Finally, if we compare two random segmentations, each with the same
probability of a boundary, Lafferty’s measure indicates that the segmen-
tation accuracy is

(1 − p)2N + [1 − (1 − P )N ]
2 ≈ 0.523. (8.11)

Shot Boundary Segmentation. We used the segmentation pro-
duced by a state-of-the-art commercial product, designed by YesVideo
[YesVideo, Inc., 2002], as our shot-boundary ground truth. They re-
ported that, on a database of professionally produced wedding videos,
their segmenter had an overall precision of 93% and a recall of 91%. For
their test set, most of the errors, both false positives and false negatives,
were due to uncompensated camera motion.

We performed quantitative tests on the first hour of the Boeing 777
video. This video had 102,089 frames. The semantic analysis found 1314
distinct words in 537 sentences. There were shot boundaries on average
every 242 frames. The standard deviation of the Gaussian blur used in
scale-space filtering is σ = 1.1s−1, where s is the scale number.

To evaluate our combined representation, we show the results here
using only the color data, only the word data, and the combination. We
evaluate Lafferty’s measure for the segmentation boundaries predicted
at each scale, effectively assuming that a single scale would produce the
best segmentation. Assuming all segmentation boundaries are at the
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Figure 8.9. This figure shows the accuracy of the scale-space segmenta-
tion algorithm, at any one scale, at finding shot boundaries. Video was
the first hour of the Boeing 777 video, compared to ground truth from
YesVideos segmenter [YesVideo, Inc., 2002].

same scale is not the best solution; instead, the information from the
scale-space segmentation metric should be used as input to a higher-
level model of video transitions, as suggested by Srinivasan [Srinivasan
et al., 1999].

Figure 8.9 shows how segmentation accuracy varied with scale, com-
paring the segmentation at each scale to the YesVideo results. At small
scales the probability, as predicted by equation 8.10, was 40%. At large
scales, only one or two boundaries were found, and, as predicted by equa-
tion 8.9, the accuracy was 60%. At the middle scale, the segmentation
accuracy was 77%—well above that of random segmentations (52%).
As expected, the semantic signal does not predict the color boundaries.
Adding the semantic information to the color information does reduce
the highest accuracy at any one scale to 67%.

Semantic Segmentation. We also compared our algorithm’s se-
mantic segmentations to those of humans. Two of the authors of this
chapter and a colleague segmented the transcript of the first hour of the
Boeing 777 video. There was a wide range in what these three readers
described as a segment; they chose to segment the text with 29, 37, and
122 segment boundaries. They found it difficult to produce a hierarchi-
cal segmentation of the text. The video was designed to be watched in
one sitting; it transitions smoothly from topic to topic, weaving a single
story.
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Figure 8.10. Manual segmentation versus scale, tested with Lafferty’s
measure (all three manual segmentations). Source data from the first
hour of the Boeing 777 video.

Figure 8.10 shows how the scale-space segmentation compares, across
scale, to the manual segmentations. As expected, the best scale is larger
than that shown for the color segmentations in Figure 8.9. The scale-
space segmentation algorithm matches each of the humans’ segmenta-
tions equally well. Perhaps most surprisingly, the color information is a
good predictor of the semantic boundaries. This correlation may indi-
cate that the color signal carries information regarding content changes
that is richer than we assumed.

8.3.7 Segmentation Conclusions
We have demonstrated a new framework for combining into a unified

representation and for segmenting information from multiple types of
information from a video. We used the SVD to reduce the dimensionality
of each signal. Then, we applied scale-space segmentation to find edges
in the signals that corresponded to large changes. We demonstrated how
these ideas apply to words and to color information from a video.

These techniques are an important piece of a complete system. The
system we have described does not have the domain knowledge to know
that, for example when it is considering a videotape of a news broadcast,
the phrase “coming up after the break” is a pointer to a future story
and is not a new story in its own right. Systems that include domain
knowledge about specific types of video content [Dharanipragada et al.,
2000] show how this knowledge is incorporated.
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We have described the natural-frequency content of information in a
video. Autocorrelation analysis showed that the color information was
correlated for about 0.1 minute, whereas the semantic content showed
significant correlation for hundreds of sentences (tens of minutes). These
results suggest the smallest meaningful unit of semantic information is
about 8 sentences.

We described our hierarchical segmentation results by comparing them
to conventional segmentations. Qualitatively, the automatic segmen-
tation has many similarities to a manual segmentation. It is hard to
evaluate the quantitative results, but we were surprised by the amount
of information that was available in the color information for topical
segmentation.

The methods we described here are equally useful with other informa-
tion from a video. This includes speaker identification features, musical
key, speech/music indicators, and even audio emotion. These techniques
do not give any assistance with professional video production techniques,
such as L-cuts, which change the audio topic and the camera shot at dif-
ferent times.

8.4 Semantic Retrieval
The previous section described an algorithm which used the semantic

(and perhaps also the color information) to segment media. In this
section, we build links between the media and the semantic content.

This section describes a method of connecting sounds to words, and
words to sounds. Given a description of a sound, the system finds the
audio signals that best fit the words. Thus, a user might make a request
with the description “the sound of a galloping horse,” and the system
responds by presenting recordings of a horse running on different sur-
faces, and possibly of musical pieces that sound like a horse galloping.
Conversely, given a sound recording, the system describes the sound or
the environment in which the recording was made. Thus, given a record-
ing made outdoors, the system says confidently that the recording was
made at a horse farm where several dogs reside.

A system that has these functions, called MPESAR (mixtures of prob-
ability experts for semantic–audio retrieval), learns the connections be-
tween a semantic space and an acoustic space. Semantic space maps
words into a high-dimensional probabilistic space. Acoustic space de-
scribes sounds by a multidimensional vector. In general, the connection
between these two spaces will be many to many. Horse sounds, for ex-
ample, might include footsteps and neighs.
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Figure 8.11. MPESAR models all
of semantic space with overlap-
ping multinomial clusters, each
portion in the semantic model is
linked to equivalent sound doc-
uments in acoustic space with a
GMM.

Figure 8.12. MPESAR describes
with words an audio query
by partitioning the audio space
with a set of acoustic models and
then linking each cluster of audio
files (or documents) to a proba-
bility model in semantic space.

Figure 8.11 shows one half of MPESAR: how to retrieve sounds from
words. Annotations that describe sounds are clustered and represented
with multinomial models. The sound files, or acoustic documents, that
correspond to each node in the semantic space are modeled with Gaus-
sian mixture models (GMMs). Given a semantic request, MPESAR
identifies the portion of the semantic space that best fits the request,
and then measures the likelihood that each sound in the database fits
the GMM linked to this portion of the semantic space. The most likely
sounds are returned to satisfy the user’s semantic request.

Figure 8.12 shows the other half of MPESAR: how to generate words
to describe a sound. MPESAR analyzes the collection of sounds and
builds models for arbitrary sounds. This approach gives us a multi-
dimensional representation of any sound, and a distance metric that
permits agglomerative clustering in the acoustic space. Given an acous-
tic request, MPESAR identifies the portion of the acoustic space that
best fits the request. Each portion of the acoustic space has an associ-
ated multinomial word model, and from this model MPESAR generates
words to describe the query sound.

In general, sounds that are close in acoustic space might correspond to
many different points in semantic space, and vice versa. Thus, MPESAR
builds two completely separate sets of models: one connecting audio to
semantic space and the other connecting semantic to audio space.

8.4.1 The Algorithm
Mixture of Probability Experts. MPESAR uses a mixture of
experts approach [Waterhouse, 1997] to link semantic and audio spaces.
A mixture of experts approach uses a different expert for different regions
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of an input space. Thus, one expert might be responsible for horse
sounds while another is responsible for bird sounds.

Mathematically, a mixture of probability experts for semantic to audio
retrieval is summarized by the following equation

P (a|q) =
∑

c

P (c|q)P (a|c) (8.12)

Here P (c|q) represents the probability that a semantic query (q) matches
a cluster (c). The probability that a particular portion of acoustic space
is associated with an expert or cluster (c) is given by P (a|c). To find
the overall probability of a point in audio space given the query, P (a|q),
we sum over all possible clusters, essentially interpolating the different
expert’s opinions to arrive at the final probability estimate.

We want to calculate the probability of a cluster given a query. We
group semantic documents into clusters and then estimate P (q|c). Using
Bayes’ rule: P (c|q) = P (c)P (q|c)/P (q). The P (c) and P (q|c) terms are
calculated using clustering algorithms described in Sections 8.4.1.0 and
8.4.1.0 Since the query is given, we can ignore the P (q) term. The same
formalism is used for the audio to semantic problem.

Semantic Features. MPESAR uses multinomial models to rep-
resent and cluster a collection of semantic documents. The likelihood
that a document matches a given multinomial model is described by
L =

∏
pni

i , where pi is the probability that word i occurs in this type
of document, and ni is the number of times that word i is found in this
document. The set of probabilities, pi, is different for different types
of documents. Thus, a model for documents about cows will have a
relatively high probability for containing “cow” and “moo,” whereas a
model for documents that describe birds with have a high probability
of containing “feather.” These multinomial models accomplish the same
task as LSI—convert a bag of words into a multinomial vector—but have
a more principled theory.

A semantic document contains the text used to describe an audio
clip. MPESAR uses the PORTER stemmer to remove common suffixes
from the words, and deletes common words on the SMART list before
further processing [Porter, 1980]. In effect, a 705-dimensional vector
(the multinomial coefficients) describes a point in semantic space, and
MPESAR partitions the space into overlapping clusters of regions.

Smoothing is used in statistical language modeling to compensate
for a paucity of data. It is called smoothing because the probability
associated with likely events is reduced and distributed to events that
were not seen in the training data. The most successful methods [Chen



Understanding the Semantics of Media 245

and Goodman, 1996] use a back-off method, where data from simpler
language models are used to set the probability of rare events. MPESAR
uses a unigram word model, so the back-off model suggests a uniform
low probability for all words.

Acoustic Features. Sound is difficult to analyze because it is
dynamic. The sound of a horse galloping is constantly changing at time
scales in the hundreds of milliseconds; a hoofstep is followed by silence,
and then by another hoofstep. Yet we would like a means to transform
the sound of a galloping horse into a single point in an acoustic space.
This section describes acoustic features that allow us to describe each
sound as a single point in acoustic space, and to cluster related sounds.

Conventional acoustic features for speech recognition and for sound
identification use a short-term spectral slice to characterize the sound
at 10-ms intervals. A combination of signal-processing and machine-
learning calculations endeavors to capture the sound of a horse as a
point in auditory space.

MFCC (mel-frequency cepstral coefficient) is a popular technique in
the automatic speech recognition community to analyze speech sounds.
Based on auditory perception, the MFCC representation captures the
overall spectral shape of a sound, while throwing away the pitch infor-
mation. This allows MFCC to distinguish one vowel from another or one
instrument from another; while ignoring the melody. We use MFCC to
reduce an audio signal from it’s original representation (22kHz sampling
rate) to a 13-dimensional vector sampled 100 times a second.

MFCC has been used in earlier music segmentation work [Foote, 1999],
but it is not the ideal representation. In this work it allows us to capture
the overall timbral qualities of the sound, but ignore the detailed pitch
information. The dimensionality reduction is similar to that performed
by an SVD, but takes into account specialized knowledge about audio
and dimensions that are safe to ignore. The MFCC representation does
not give us any high-level information about rhythm or other musical
properties of the signal. Eventually we hope that more sophisticated
acoustic features will allow us to segment musical accompaniment at
phrase or beat boundaries, or even to detect mood changes in movie
scores.

The process of converting a waveform into a point in acoustic space is
shown in Figure 8.13. The MFCC algorithm [Quatieri, 2002] decomposes
each signal into broad spectral channels and compresses the loudness of
the signal. RASTA filtering [Quatieri, 2002] is used on the MFCC coeffi-
cients to remove long-term spectral characteristics that often occur due
to the different recording environments. Then seven frames of data—
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Figure 8.13. The acoustic signal processing chain. Arrows are marked
with the signals dimensionality. All but the last are sampled at 100Hz.
The final output is sampled once per sound.

three before the current frame, the current frame, and the three frames
following the current frame—are stacked together. Finally, linear dis-
criminant analysis (LDA) [Quatieri, 2002] uses the intra- and inter-class
scatter matrices for a hand-labeled set of classes to project the data onto
the optimum dimensions for linear separability.

The long-term temporal characteristics of each sound are captured
using a GMM. One of the Gaussians might capture the start of the
footstep, a second captures the steady-state portion, a third captures
the footstep’s decay, and, finally, a fourth captures the silence between
footsteps. The GMM measures the probability that a vector sequence fits
a probabilistic model learned from the training sounds. Unlike hidden
Markov models (HMMs), a GMM ignores temporal order.

MPESAR converts the MFCC-RASTA-LDA plus GMM recognition
system into an auditory space by using model likelihood scores to mea-
sure the closeness of a sound to pre-trained acoustic models. The nega-
tive log-likelihood that a sound fits a model is a measure of the distance
of the new sound from the test model.

Acoustic to Semantic Lookup. Given representations of acoustic
and semantic spaces, we can now build models to link the two spaces to-
gether. The overall algorithm for both acoustic to semantic and semantic
to acoustic lookup is shown in Figure 8.14.

MFCC 
LDA

Agglomerative
Clustering

Stem and
Histogram

Multinomial
Clustering

GMM for
Distance

Build
Models

Build
Models

Audio Processing

Text Processing

Figure 8.14. A schematic showing the process of building the MPESAR
models. The top line shows the construction of the audio to semantic
model and the bottom line shows the construction of the semantic to
audio model.
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Acoustic space is clustered into regions using agglomerative cluster-
ing [Jain and Dubes, 1988]. We compute the distance between each pair
of training sounds [L(model a|sound b)+ L(model b|sound a)]/2 where
L(modela|soundb) represents the likelihood that sound b is generated
by model a. At each step, agglomerative clustering grows another layer
of a hierarchical model by merging the two remaining clusters that have
between them the smallest distance. MPESAR uses “complete” link-
age, which uses the maximum distance between the points that form
the two clusters, to decide which clusters should be combined. While
agglomerative clustering generates a hierarchy, MPESAR only uses the
information about which sounds are clustered. Leaves at the bottom of
the tree are considered clusters containing a single document.

Each acoustic cluster is composed of a number of audio tracks and
their associated descriptive text. A new 10-element GMM with diagonal
covariance models all the sounds in this cluster and estimates the prob-
ability density for acoustic frames in this cluster, P (a|c). Given a new
sound, MPESAR uses this model to estimate the probability that a new
sound belongs to this cluster. The text associated with each acoustic
sample in the cluster is used to estimate the semantic model associated
with this cluster. This is written as a simple multinomial model; there
is not enough text in this study to form a richer model.

Given a new waveform, MPESAR queries all acoustic GMMs to find
the probability that each possible cluster generated this query. Each
cluster comes with an associated semantic model. MPESAR uses a
weighted average of all the semantic models, based on cluster proba-
bilities, to estimate the semantic model that describes the test sound.
The words that describe the test sound are entries in the semantic multi-
nomial model with the highest probabilities.

Semantic to Acoustic Lookup. A similar procedure is used
for semantic to acoustic lookup. A document’s point in semantic space
is described by the coefficients of a unigram multinomial model. Se-
mantic space is clustered into regions using a multinomial clustering
algorithm, which uses an iterative expectation-maximization algorithm
[Nigam et al., 1998] to group documents with similar (multidimensional)
models. In this work, we assign each document to its own cluster, and
then split the entire corpus into a number of arbitrary-sized clusters (32,
64, 128 and 256 clusters for the corpus).

Each text cluster is composed of a number of text documents and
their associated audio tracks. All the text associated with each cluster
is used to form a unigram multinomial model of the text documents.
All of the audio associated with a cluster is used to form a 10-element
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GMM to describe the link to audio space. (Note there are three sets of
GMMs used in this work: the GMMs used to compute the distances as
part of audio clustering, the GMMs used to model each audio cluster,
and the GMMs used to model the sounds associated with each semantic
cluster.)

Given a text query, MPESAR finds the probability that each semantic
cluster generated the query. Then the acoustic models are averaged
(weighted by the cluster probabilities) to find the probability that any
one sound fits the query.

8.4.2 Testing
This section describes several tests performed using the algorithms

described above.

Data. The animal sounds from two sets of sound effect CDs were
used as training and testing material. Seven CDs from the BBC Sound
Effects Library (#6, 12, 30, 34, 35, 37, 38) contained 261 separate tracks
and 390 minutes of animal sounds. Two CDs from the General 6000
Sound Effect library (all tracks from CD6003 and tracks 18 to 40 of
CD6023) totaled 122 tracks and 110 minutes of animal sounds.

The concatenated name of the CD (e.g., “Horses I”) and track de-
scription (e.g., “One horse eating hay and moving around”) forms a
semantic label for each track. The audio from the CD track and the
liner notes form a pair of acoustic and semantic documents used to train
the MPESAR system.

The system training and testing described in this chapter were per-
formed on distinct sets of data. 80% of the tracks (307) from both sets
of CDs were randomly assigned as training data in the procedure shown
in Figure 8.15. The remaining 20% of the tracks (93) were reserved for
testing. Mixing the data obtained from the two sets of CDs is important
for several reasons. First, the acoustic environments of the two data
sets are different; RASTA reduces these effects. Second, the words and
description are different because the sounds are labeled by different or-
ganizations with different needs. For example, the BBC describes the
sound of a cat’s vocalization as miaow and the General Sound Effects
CD uses meow. Finally, the two sets of audio data do not contain the
same sounds: There are many sounds in the General set which are not
represented in the BBC training set.

Acoustic Feature Reduction and Language Smoothing. The
audio-feature reduction using LDA was computed using portions of the
audio data from both sets of CDs. We chose ten broad classes of dis-
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Figure 8.15. A schematic of the audio to semantic testing procedure.

tinct sound types (baboon, bird, cat, cattle, dog, fowl, goat, horse, lion,
pig, sheep). The stacked features from only those audio tracks that
fit these classes were used as input to the LDA algorithm. This com-
putation produced a matrix that reduced the 91-dimensional data to
the 10-dimensional subspace that best discriminates between these 10
classes. This dimensionality reduction was fixed for all experiments.

A simple test was used to set the amount of smoothing in the lan-
guage models. Without smoothing, the semantic lookup results were
poor because many of the General sounds were labeled with the word
“animal,” which was seldom used in the BBC labels. The results here
were generated using a back-off method that added a small constant
probability (1/Nw, where Nw is the number of words in the vocabulary)
to each word model.

Labeling Tests. Figure 8.15 shows the test procedure for the
acoustic-to-semantic task (a similar procedure is used to test semantic-
to-audio labeling.) Audio from each test track is applied as an acoustic
query to the system. The MPESAR system calculates the probability
of each cluster given this acoustic query. These cluster probabilities
are used to weight the semantic models associated with each cluster.
The result is a multinomial probability distribution that represents the
probabilities that each word in the dictionary describes the acoustic test
track. The likelihoods that each test-track description fit the query’s
semantic description were sorted and the rank of the true test label was
recorded.

Figures 8.16 and 8.17 show histograms of the true test ranks for both
directions of the MPESAR algorithm. Figure 8.16 shows the acoustic-
to-semantic results and the median rank of the true result over all the
test tracks is 17.5. Figure 8.17 shows the semantic-acoustic results and
the median rank of the true result for this direction is 9. At this point
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Figure 8.16. Histogram of true label ranks based on likelihoods from
audio-to-semantic tests.

we do not understand the difference in performance between these two
directions.

8.4.3 Retrieval Conclusions
This chapter described a system that uses a mixture of probability

experts to learn the connection between an audio and a semantic space,
and the reverse. It describes the conversion of sound and text into
acoustic and semantic spaces and the process of creating the mixture
of probability experts. The system was tested using commercial sound-
effect CDs and is effective at labeling acoustic queries with the most
appropriate words, and for finding sounds that fit a semantic query.

There are several improvements to this system that are worth pur-
suing. First, an algorithm that integrates the clustering and the MPE
training will improve the system’s models. Second, a richer acoustic
description, perhaps replacing the GMMs with hidden Markov models,
will provide more discrimination power. Finally, larger training sets will
improve the system’s knowledge.
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Figure 8.17. Histogram of true label ranks based on likelihoods from
semantic-to-audio tests.
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