
Draft submitted to ICAD 2005 Do not distribute until published

PERCEPTUAL DISTANCE IN TIMBRE SPACE

Hiroko Terasawa
�
, Malcolm Slaney

���
,

CCRMA
�

Department of Music
Stanford University
Stanford, California�

hiroko,brg � @ccrma.stanford.edu

Jonathan Berger
�

IBM Almaden Research Center
�

San Jose, California
malcolm@ieee.org

ABSTRACT

This paper describes a perceptual space for timbre, defines an ob-
jective metric that takes into account perceptual orthogonality and
measures the quality of timbre interpolation. We discuss two tim-
bre representations and measure perceptual judgment. We deter-
mined that a timbre space based on mel-frequency cepstral coeffi-
cients (MFCC) is a good model for perceptual timbre space.

1. INTRODUCTION

1.1. Goal and motivation

Timbre is a catch-all term that represents all aspects of a sound,
independent of pitch and loudness [1]. A timbre is often described
by a combination of subjective perceptual dimensions. While there
are many quantitative descriptions of timbre, there is no principled
way to synthesize timbres which will lead to a prescribed percep-
tion. The goal of this work is to develop a quantitative mapping
between a physical description of a timbre, and its human percep-
tion.

The need for reliable mappings of data to perceptual space is
critical for effective sonification. This study addresses this need
in the timbre domain by testing the relationship between percep-
tion and physical representations of sound. Our goal is to find a
computationally viable model or representation for timbre that is
isomorphic with human perception. We describe this model as a
timbre space.

Such a model is vital for timbre based auditory display. Within
the sonification community relative timbre assessment has been
used as a basis of data representation including the utilization of
vowel space as an intuitive categorical space [2], crystallization
sonification [3], and a variety of applications in which traditional
musical instrument sounds were used to represent data (for exam-
ple, [4]). However, the effectiveness of timbre based sonification
is limited by the lack of a generalized representation and a context-
free distance metric. In this work, we test a model of timbre space
by comparing acoustically derived parameters to comparative per-
ceptual judgments by human subjects.

Before describing our approach to timbre representation, it is
worthwhile to compare and contrast previous approaches that de-
scribe and measure timbre.

1.2. Timbre descriptions

Although timbre is vital in describing, classifying and categorizing
musical, speech and environmental sounds quantifiable perceptual

timbre descriptions are lacking.
Timbral descriptions are often confined to impressionistic ad-

jectival description [5] , [6]. A timbre is described as a specific
point within a multidimensional continuum, with that point de-
fined by a combination of subjective perceptual and physical di-
mensions. In this approach paired adjectival antonyms such as
“bright” and “dull” establish perceptual dimensions that correlate
to a combination of parameters including, among others, spectral
centroid, spectral flux and attack transience [7].

Speech is a special case regarding timbre. Speech sounds are
often categorized by the presence and relationships of their for-
mants, the peaks or resonances in the spectrum. Peterson and
Barney [8] plot the location of vowels in this space by noting the
typical distribution of formant locations. This approach is useful
in understanding how speech is generated, recognized, and catego-
rized. However a perceptual model for speech sounds is not readily
extrapolated from this approach.

1.3. Timbre Distance

Most quantitative approaches to timbre perception describe the
distance between two sounds. Popular approaches are based on
speech perception, speech recognition, and the perception of mu-
sical sounds.

One of the earliest approaches to understand sound perception
was undertaken by Harvey Fletcher and his colleagues at Bell Labs
at the start of the 20th century. This work [9] [10] measured sub-
jects’ ability to correctly recognize nonsense words in the presence
of filtering and noise. It suggests that wide bands of frequencies
provide independent information about the speech sounds that are
heard. However this work only applies to speech, only as part of a
recognition task and lacks generalization to describe the underly-
ing acoustic space of any sound.

Speech recognition systems have had great success modeling
the acoustic world using Gaussian mixture models (GMMs) to
build a probabilistic model of the acoustic spectra that are likely
to be found in each type of phoneme. By trial and error, and for
statistical reasons, much of the speech- recognition research has
settled on mel-frequency cepstral coefficients (MFCC) as the un-
derlying model of speech sounds. While MFCC coefficients are
loosely based on a simple model of auditory perception, their pri-
mary benefit is that the different coefficients are statistically in-
dependent so GMMs with diagonal covariance can be used and
an MFCC frontend produces a working speech recognizer. But
MFCC’s success in speech recognition is not the same as proving
that MFCCs are a good model of perception.
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An entirely new and quantitative approach to measuring tim-
bre perception started with the work of Wessel [11], Grey [12]
[13] and the subsequent research [7] [14]. It directly measured the
distance between two musical sounds. By using multi-dimensional
scaling (MDS) the sounds can be represented in a low-dimensional
surface (plane or 3d cube) in such a way that the projected loca-
tions fit the observed perceptual data as closely as possible. There
are two shortcomings with this approach. Most importantly, the
axis produced by the MDS algorithm are not labeled. It is up to the
imagination of the researcher to look at the position of the sounds,
and generate an explanation of what each axis means (for example,
sounds are duller/brighter along this direction.) Secondarily, while
this approach is descriptive of existing sounds, it does not help
us find a sound that has a needed distance between other sounds.
For this we need to find and describe a timbre space that matches
human perception.

1.4. Timbre Space

Our goal is to create a perceptual space that describes the connec-
tion between physical attributes of a timbre and human perception.
A good model of timbre perception describes a space of sounds
with a number of simple properties and explanations.

The best known perceptual maps involve auditory pitch, audi-
tory loudness, spatial geometry, and color vision. In each case, a
relatively simple model connects physical attributes of the sound
(mel for pitch, sones for loudness, and the three cones of the vi-
sual system) with perceptual judgments. We want to do the same
for timbre.

This paper takes a three-step approach. First, we postulate a
metric for the quality of a perceptual space, second we describe a
mathematical representation of a sound’s timbre, finally we mea-
sure the match between representation and perception. The sound
representation that provides the simplest and most parsimonious
description of timbre perception is the best model for timbre space.

A timbre space should be both simple to understand and gener-
ate excellent predictions of human perception. Simple is in the eye
of the beholder and in this paper we will test two similar signal-
processing representations of a sound. We know that timbre is a
multidimensional quantity and an important metric in this work
is that the representation’s axis be perceptually orthogonal. This
means that changes in one parameter do not affect perception of
the other axis.

Our test of perceptual parsimony looks at linearity and orthog-
onality. Linearity suggests that the representation can generate ac-
curate in-between sounds–the perception of an interpolated sound
lies half-way in between the original sounds. The vibrone sound
in McAdams’ work [7] does not fit this criteria since it’s MDS
representation (McAdams’ Figure 1) is not on a line between the
original sounds. McAdams’ work looked at the linearity of three
sounds; in this work we look at 16 sounds at once. Orthogonal-
ity says that changes in one parameter do not affect the perception
of another parameter. We measure both of these properties of a
perceptual space by testing whether the perceptual distance mea-
surements satisfy the Euclidean rule for distance for a range of
representation parameters.

This paper describes a procedure to measure the quality of the
match between a prototypical timbre representation and human
perception. We use this procedure to compare two auditory rep-
resentations and judge which is a better fit to human perception.
In the remainder of this paper we will describe the perceptual rep-

resentations in Section 2, procedures to synthesize timbres from
these representations in Section 3, our experiments in Section 4,
the analysis in Section 6, and finish with conclusions.

2. REPRESENTATIONS OF THE SOUND

There are many audio representations with different degrees of ab-
straction, the spectrum being the most common and straightfor-
ward form. While a spectrum forms a complete representation of
the sound, its arbitrary complexity makes a direct mapping to hu-
man perception unknown.

In this work, we study two different and more compact rep-
resentations of timbre — Linear Frequency Coefficients (LFC)
and Mel-Frequency Cepstral Coefficients (MFCC) — and measure
their ability to model perception. We expect a good representation
will map directly to perception, with variations in one parameter’s
value perceptually orthogonal to changes in another.

MFCC is based on a simple auditory model and is common in
the speech recognition world. LFC is a simplification of MFCC
that we use for comparison. In both cases the spectral shape of a
static sound is represented by a small number of coefficients The
coefficients of LFC and MFCC are ordered. The first coefficient
represents the average power in the spectrum. The second coef-
ficient represents the broad shape of the spectrum. Higher-order
coefficients represent the finer details of the spectral shape. If we
use all the coefficients we retain the spectral shape exactly, but we
use a handful of coefficients to capture the essence of the spectral
shapes. The two representations we study here differ in the details
of the spectrum that are removed.

The Discrete Cosine Transform (DCT) of the spectrum is a
basic tool in our models [15]. Figure 1 shows the basis function
used to calculate the DCT. The first few coefficients of the DCT
serves to represent the major features of the spectrum.

The DCT is often used for compression because of this feature.
In speech recognition, it provides a low dimensional representation
of the original audio spectrum. The DCT coefficients are uncorre-
lated from each other, and this statistical independence enables the
simpler machine learning models when building speech recogni-
tion algorithm. However, the statistical independence is not same
as perceptual orthogonality. Two variables are independent when

���������	��

���������������	������
��
(1)

where
���	���

is the expected value of
�

. In other words, knowing
the value of one coefficient does not provide any information about
the expected value of another coefficient.

Orthogonality is a geometrical concept that says that the dot
product of one vector and another is zero, and thus the vectors
form Euclidean space. Ideally, a model of perceptual space can
be described by orthogonal basis vectors. Both MFCC and LFC
representations use a DCT to simplify and smooth a sound’s spec-
trum.

A summary of the audio representations used in this paper is
shown in Figure 2. In both cases, the parameter which defines the
spectral shape is arbitrarily limited to an array of 13 coefficients.
Our goal is a test to see which sound representation gives the better
model of perception. In this paper we vary the

���������
or
�����

� �
coefficients, and measure the representations fit to perception

judgments.
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2.1. Spectrum

The spectrum ������� of an audio signal ���
	�� is a complete represen-
tation of the sound in frequency domain.

������� ��
 ��� �����
	���� 
 (2)

We are only modeling static sounds in this work, therefore we
can ignore the phase.

2.2. LFC spectrum

The linear frequency coefficients (LFC)
����

are computed by find-
ing the DCT of the conventional spectrum as follows:

� �� ������� ����������� (3)

where � is the DCT bin number. This is similar to the calculation
of the MFCC described in Section 2.3, but without the MFCC’s
frequency and loudness compression.
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Figure 1: Kernel functions of DCT. The first coefficient
���

repre-
sents the average power in the spectrum. The second coefficient���

represents the broad shape of the spectrum. Higher-order co-
efficients,

���
to
���

, represent finer details of the spectral shape.

2.3. Mel-Frequency Cepstrum Coefficients

The Mel-Frequency Cepstrum coefficient (MFCC) is the Fourier
transform of a spectrum, where both frequency and amplitude are
scaled logarithmically. The frequency warping is done according
to the critical bands of the human hearing. The procedures for
obtaining Mel-Frequency Cepstrum coefficients (MFCC) from a
spectrum are illustrated in the figure 2.

A filterbank of 32 channels, with spacing and bandwidth that
resemble the auditory system’s critical bands, warps the linear fre-
quency.

The frequency response of the filterbank  � ����� is shown in
the figure 3. The triangular window  � ����� has the passband of
133.3 Hz for the first 13 channels between 0 Hz and 1 kHz, and a
wider passband, which grows logarithmically, from the 14th chan-
nel as the frequency becomes higher than 1 kHz. The amplitude of
each filter is normalized so that each channel has unit power gain.
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Figure 2: A summary of the two sound representations studied in
this paper. The numbers between the blocks indicate the dimen-
sionality of the data.
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Figure 3: Frequency responses of 32 filters in the the MFCC filter-
bank

We multiply the triangular frequency response of the filters, as
shown in Figure 3, and the sound’s spectrum. Then the total energy
in each channel, > � is integrated to find the filterbank output.

> � �@?A
  � ����� � ������� 
CB � (5)

where � is a channel number in the filterbank, and  � ����� is the
filter response of the � th channel.

The Mel-Frequency Cepstral coefficients,
���

are computed by
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Figure 4: The process to obtain a reconstructed spectrum: First, the spectrum is fed into the filterbank. The MFCC output is the lower-
order coefficients of the DCT on the filterbank output. The IDCT of the MFCC is a smooth version of the filterbank output, discarding the
fundamental frequency and its harmonics. The reconstructed spectrum has a smooth spectral shape.

taking the DCT of the log-scaled filterbank output.

� � ������� � � �-> � � (6)
����������� � � � � (7)

Figure 4 shows the computational process, and pictures of the
resulting data, at a number of points in the calculation. Note as the
signal is processed much of the pitch information, the horizontal
striations, disappear. Pitch is artificially added back in when we
synthesize from the low-dimensional representations.

2.4. Representation comparison

In both cases, LFC and MFCC, we represent a timbre as a low
dimensional vector. Any point in this multidimensional space is a
sound, which for visual purposes we can display as a spectrogram.
Figures 5 and 6 show an array of points in this space as we vary the���

and
���

components of the vector, keeping all other coefficients
but the

� �
component equal to zero. With both

� �
and

� �
set to

zero, and
��� � 0 , the spectrum is flat. As the value of

���
is

increased, going down the first column, there is a growing bump
in the spectrum at DC and in the mid-frequencies. As the value of���

is increased, going across the first row, three bumps increase
in size. Notice that the spacing of the spectral peaks is linear in
frequency for LFC.

3. SYNTHESIS

We test our perceptual models by synthesizing sounds and measur-
ing subjects’ perceptions of relative timbral distance. This section
describes the steps needed to invert the representation described
in the previous section. To make the sounds more life-like, we
present the desired timbre with a pitch and vibrato in the vocal
range.

3.1. Inverse transform of DCT and MFCC

We synthesize the stimuli by inverting the procedures described in
the previous section: We start the synthesis from a given array of,
for example, 13 coefficients, which could be interpreted as either
LFC or MFCC, depending on the representations.

The reconstruction of the spectral shape from the LFC
� ��

is
simply the inverse transform of the DCT

�� �	�7����� � � �� � 4 (8)

The reconstruction of the spectral shape from the MFCC starts
with the inversion of the DCT and amplitude scaling

�� � �
� ���,� � ��� � (9)
�> ��� 078 ���
 4 (10)
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Figure 5: An array of spectrograms generated for a range of
MFCC coefficients. The column show

� �
ranging from 0 to 0.75,

the rows show
� �

ranging from 0 to 0.75.

We assume that the reconstructed filterbank output
�> � repre-

sents the value of the reconstructed spectrum
�������� at the center

frequency of each filter bank,
�� ���3� � � � �> � (11)

where �7� � is the center frequency of the � th auditory filter. There-
fore in order to obtain the reconstruction of the entire spectrum,�������� , we linearly interpolate the values between the center fre-
quencies

������7� � � . The inversions are summarized in the figure 7.

3.2. Additive FM synthesis

The voice-like stimuli used in this study are synthesized using ad-
ditive synthesis of frequency modulated sinusoids. In effect, we
start with a flat and infinite harmonic series, and set the level of
each harmonic based on the desired smooth spectral shape. The
pitch, or fundamental frequency � � , is set to 220 Hz, with the fre-
quency of the vibrato � � set to 6 Hz, and the amplitude of the
modulation

�
set 6 %.

Using the reconstructed spectral shape
�������� , the additive syn-

thesis of the sinusoid is done as following.

� ����� ������ � � � � �
	���
 � :�� �<� � 	�� � � 0���� ��	 :�� ��� � 	���� (12)

where � is the harmonics number.

3.3. Prepared Stimuli

We prepared four sets of stimuli to test the perceptual judgments
of our subjects, as shown in the table 1. For the first group of the
stimuli, the [

���
,
���

] entities of the 13 coefficients are set to non-
zero value, and for the second group, the [

� �
,
� �

] entities are set
to non-zero value giving the following parameters.
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Figure 6: An array of spectrograms generated for a range of LFC
coefficints. The column show

� �
ranging from 0 to 0.75, the rows

show
� �

ranging from 0 to 0.75. Unlike Figure 5, the spectral
bumps are spaced linearly in frequency.

Table 1: prepared stimuli

Set Num. of stimuli Variable Representation
1 16 [

� �
,
� �

] LFC
2 16 [

� �
,
� �

] MFCC
3 16 [

���
,
���

] LFC
4 16 [

���
,
���

] MFCC

� ����� ����� � � 0 � 8 � 8 � ����� 8 � 8 � ����� 8 � 8 � 8 � 8 � 8 � 8 � (13)� � � � � � � � � 0 � 8 � 8 � 8 � � � � 8 � � � � 8 � 8 � 8 � 8 � 8 � 8 � (14)

The values of
� �

,
� �

and
� �

are varied over the set

� � � 8 � 8�4 :�� � 8�4 � � 8#4 9�� � 4 (15)

These are the same parameter values shown in Figures 5 and 6
The arrays of the coefficients are interpreted as LFC or MFCC,
and provide two sets of stimuli for representation, as shown in the
table 1.

4. EXPERIMENT

4.1. Procedures

We measured the distance for four sets of timbre parameters by
asking subjects for their subjective evaluation of the difference be-
tween two sounds in the prospective representation.

The sounds were presented in pairs, where the first is the ref-
erence sound and the second is the trial sound to be evaluated,
with no pause between the paired stimuli. The reference sound
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Figure 7: Inverse transforms of LFC and MFCC
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Figure 8: Additive FM synthesis of the stimuli: The left spectro-
gram shows the harmonic series with pitch vibrato. The middle
is the spectral shape of the desired sound. The right spectrogram
shows the resulting spectrum, in which each harmonics is weighted
according to the spectral shape shown in the middle.

was kept identical through the entire experiment: It has a flat spec-
trum, all the 13 coefficients are zero except

���
(i.e.

� ����� ��� �
or� � � � � � � � � 8 � 8 � .)

The second element of each pair, the trial sound, was varied
in each presentation pair. It was synthesized using the discrete
parameter values shown in Eq. 15.

In order to provide the time for the evaluation, three seconds
of silence was given between pairs. The pairs of sounds were pre-
sented to the subjects in a random order.

For each of the four sets of sounds we played five trial to help
the subjects understand the types and range of sounds that appear
on the main experiment. The first of the example pairs has the
widest range of difference between the reference sound and the
trial sound (

� 8�4 9�� � 8#4 9�� � ). For the second example, the trial sound
is identical to the reference sound (

� 8 � 8 � ). The subsequent three
example pairs presented sounds that fell between the extremes pre-
sented in the first two sample pairs.

In the main experiment, a distance measurement is recorded
after playing a subject a pair of sounds. The subject was asked to
rate the degree of similarity between pair elements on a scale of

one to ten, where one is identical and ten is very different.

4.2. Instruction to the subjects

The following instruction was given to the subjects before the ex-
periment.

You will hear a set of pairs of sounds. Each pair is presented
without pause between the paired sounds. The first element of
the pair will always be the same sound in all pairs throughout the
experiment. The second element of each pair may change in each
set presented. Your task is to rate each pair of sounds in terms of
degree of similarity on a scale of one to ten where one is identical
and ten is very different.

This session has four sections total.
Before each section, you’ll hear five example pairs. The first

pair will present the widest range of difference between the refer-
ence (first) sound and the second element of the pair. The second
is the closest to identical that will be heard in the section. The
other three example pairs will present sounds that fall between the
extremes presented in the first two sample pairs.

4.3. Experiment setup

Ten randomly chosen students from CCRMA, aging 20 – 35 years
old, participated in the experiment. The stimuli were presented to
the subject using a headset in a quiet office environment.

5. ANALYSIS METHOD

We have two stages in the analysis procedures.
In the first stage, we fit the individual distance judgments to a

simple Euclidean model. The residual — the difference between
the subject’s distance estimates and the model’s predictions — is
used to evaluate the performance of the representations (LFC and
MFCC) on each subject.

The second stage evaluates the average performance of the
representation across all subjects. For each of four tests (LFC,
MFCC combined with [

���
,
���

] or [
���

,
���

]), we computed the
mean of the residuals by ten people, and its standard error. The
averaged residuals and the standard errors are used to evaluate the
representation and to judge the quality of the perceptual space.

5.1. Individual Euclidean model fitting

We test the quality of a representation to model an orthogonal per-
ceptual space by fitting the auditory parameters and the subject’s
perceptual distance data to Euclidean distance model. If the sub-
jective data fits a Euclidean model then we say that the representa-
tion is a good model of human perception.

For a two-dimensional test as we performed, the Euclidean
model says B � � � � � � ��� � (16)

where
B

is the perceptual distance which subjects reported in the
experiment,

�
is one entity from the 13 coefficients (

� �
or
� �

) and�
is another entity from the coefficients (

� �
). Note that this is a

linear equation in the known quantities
B �

,
� �

and
� �

.
Multidimensional linear regression is used in order to test the

fit of perceptual data to a Euclidean model. Using matrix notation,
the equation 16 is written as followsB � ���
� � � ��� � � � � � (17)
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where
B � � � � � � ����� � �

(16 is the number of stimuli in a set). The
estimation of the regression model is done by the least squares
method: ���� �� � � ��� � � � ; � � � �3B � (18)

where � � � � � � � �
. The left inverse ��� � � � ; � � � is known as

pseudo-inverse of the matrix, which guarantees the minimum-error
linear estimate.

After estimating the
�� and

��
, the estimated perceptual distance

for any two timbre coefficients
�

and
�

is given as follows�B��
	 �� � � � ���� � 4 (19)

An example of the measured and estimated perceptual distance for
all 16 sounds in one test is shown in Figure 9.

The residual of the linear estimation is:B���
���� 00�� � ��������� B � �B ��� (20)

This residual,
B���
��

is computed for each section of the individual
subject, and used to evaluate which audio representation (LFC or
MFCC) better fits the Euclidean model.
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Figure 9: Plots of perceptual distances, a) measured b) idealized
model, for one subject

5.2. Integrating the individual timbre space of the subjects

After computing the residuals for individual subjects, the mean of
the residuals across subjects is calculated for each representation�B ��
�� � 0���� ��� � B ��
�� � � (21)

where
�

is the number of subjects. The standard error is calcu-
lated as follows. � �  ! ���� � 
 B���
�� � � � �B��"
#��
 �� � 0 (22)�%$ 
#& � � �' � (23)

By comparing the standard error � $ 
#& � of each representa-
tion, we evaluate if the representation is a good model of human
perception.

6. RESULTS

Figure 10 compares the quality of the two perceptual spaces —
LFC versus MFCC — when compared with two different sets of
parameters. By this test, the MFCC representation forms a better
model of timbre space than the simplified LFC representation. In
other words, the MFCC representation allows for more accurate
timbre interpolation and creates a model where the parameter axis
are orthogonal.

Figure 10 shows the average residual per timbre pair. On av-
erage, either timbre space predicts the perceptual judgment with
a mean error of 1 point on a 10-point scale. More precisely, the
variance of the residuals was 6.8 units for the LFC model (on a
10-point scale) and 3.9 for the MFCC model. In both cases, the
models were able to account for 66 % of the variance of the orig-
inal distance judgements. Figure 11 shows the histograms of the
experiment data and the residuals for both LFC and MFCC.
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Figure 10: Model residuals and standard errors: From left, (a)
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7. CONCLUSIONS

In this paper we have articulated a set of criteria for evaluating a
timbre space, described two representations of timbre, measured
subject’s perceptual distance judgments, and found that a model
for timbre based on the MFCC representation accounts for 66 %
of the perceptual variance.

This result is interesting because we have shown an objective
criteria that describes the quality of a timbre space, and established
that MFCC parameters are a good perceptual representation for
static sounds. Previous work has demonstrated that MFCC (and
other DCT-based models) produce representations that are statisti-
cally independent. This work suggests that the auditory system is
organized around these statistical independences and that MFCC
is a perceptually orthogonal space.

Clearly timbre perception is a highly non-linear process. The
procedure described in this paper does not give a closed-form so-
lution to the timbre-space problem. All we can do is test a repre-
sentation and see if it is parsimonious with perceptual judgments.
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Figure 11: Data histograms. The top row shows the histogram of
the subject’s perceptual data, across all coefficients and subjects.
The bottom row shows the histogram of the model residuals.

This paper is the first step towards a complete model of timbre
perception.

Most importantly, the timbre representations we tested here
are static. Many timbre models find that onset time, for example,
is an important component of timbre perception. But the criteria
(linearity and orthogonality) we described here are important as
we add features to the timbre space.

Like the MDS work that precedes this paper, our test based on
distance judgments can not discern the principle axis involved in
timbre perception. Initial statistical tests suggest that the cepstral
coefficients we tested are equally important to timbre judgment.
But any rotation of these axis will produce the same distances.
In vector- space terms, the DCT calculate both a rotation and a
subspace of the original spectral data. Unlike the previous MDS
work, the axis we tested here are defined in mathematical terms
and thus are amenable to direct synthesis.

Finally, we have not begun to understand the contextual and
individual differences involved in timbre perception [16]. Na-
tive American-English speakers have a hard time hearing nasal-
ized vowels in the French language, native Japanese speakers do
not hear the difference between “l” and “r”. Highly-trained audio-
philes cringe over acoustic differences that most of don’t hear. Our
work aims to understand the common principles of timbre percep-
tion.
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